
80 Jonathan Richard Shewchuk

15 More Decision Trees, Ensemble Learning, and Random Forests

DECISION TREES (continued)

[Last lecture, I taught you the vanilla algorithms for building decision trees and using them to classify test
points. There are many variations on this basic algorithm; I’ll discuss a few now.]

Multivariate Splits

Find non-axis-aligned splits with other classification algs or by generating them randomly.

multivariate.pdf [An example where an ordinary decision tree needs many splits to ap-
proximate a diagonal linear decision boundary, but a single multivariate split takes care of
it.]

[Here you can use other classification algorithms such as SVMs, logistic regression, and Gaussian discrim-
inant analysis. Decision trees permit these algorithms to find more complicated decision boundaries by
making them hierarchical.]

May gain better classifier at cost of worse interpretability or speed.
[Standard decision trees are very fast because that they check only one feature at each treenode. But if there
are hundreds of features, and you have to check all of them at every level of the tree to classify a point, it
slows down classification a lot. So it sometimes pays to consider methods like forward stepwise selection
when you’re learning so that when you classify, you only need to check a few features at each treenode.]
Can limit # of features per split: forward stepwise selection, Lasso.

More Decision Trees, Ensemble Learning, and Random Forests 81

Decision Tree Regression

Creates a piecewise constant regression fn.

|

R1 R2 R3

R4 R5

X1 t1

X2 t2 X1 t3

X2 t4

t1

t2

t3

t4

R1

R2

R3

R4

R5

X1

X1

X2

X
2

regresstree.pdf, regresstreefn.pdf (ISL, Figure 8.3) [Decision tree regression.]

Cost J(S) = 1
|S |
P

i2S (yi � µS)2, where µS is the mean label yi for sample pts i 2 S .

[So if all the points in a node have the same y-value, then the cost is zero.]
[We choose the split that minimizes the weighted average of the costs of the children after the split.]

Stopping Early

[The basic version of the decision tree algorithm keeps subdividing treenodes until every leaf is pure. We
don’t have to do that; sometimes we prefer to stop subdividing treenodes earlier.]

Why?
– Limit tree depth (for speed)
– Limit tree size (big data sets)
– Complete tree may overfit
– Given noise or overlapping distributions, purity of leaves is counterproductive; better to estimate

posterior probs

[When you have overlapping class distributions, refining the tree down to one sample point per leaf is
absolutely guaranteed to overfit. It’s better to stop early, then classify each leaf node by taking a vote of its
sample points. Alternatively, you can use the points to estimate a posterior probability for each leaf, and
return that. If there are many points in each leaf, the posterior probabilities might be reasonably accurate.]

82 Jonathan Richard Shewchuk

leaf.pdf [In the decision tree at left, each leaf has multiple classes. Instead of returning
the majority class, each leaf could return a posterior probability histogram, as illustrated at
right.]

How? Select stopping condition(s):
– Next split doesn’t reduce entropy/error enough (dangerous; pruning is better)
– Most of node’s points (e.g., > 95%) have same class [to deal with outliers]
– Node contains few sample points (e.g., < 10)
– Cell’s edges are all tiny
– Depth too great [risky if there are still many points in the cell]
– Use validation to compare

[The last is the slowest but most e↵ective way to know when to stop: use validation to decide whether
splitting the node is a win on the validation data. But if your goal is to avoid overfitting, it’s generally even
more e↵ective to grow the tree a little too large and then use validation to prune it back. We’ll talk about
that next.]

Leaves with multiple points return
– a majority vote or class posterior probs (classification) or
– an average (regression).

Pruning

Grow tree too large; greedily remove each split whose removal improves validation performance.
More reliable than stopping early.

[We have to do validation once for each split that we’re considering removing. But you can do that pretty
cheaply. What you don’t do is reclassify every sample point from scratch. Instead, you keep track of which
points in the validation set end up at which leaf. When you are deciding whether to remove a split, you
just look at the validation points in the two leaves you’re thinking of removing, and see how they will be
reclassified and how that will change the error rate. You can do this very quickly.]

[The reason why pruning often works better than stopping early is because often a split that doesn’t seem to
make much progress is followed by a split that makes a lot of progress. If you stop early, you’ll never find
out. Pruning is a simple idea, but it’s highly recommended when you have enough time to build and prune
the tree.]

More Decision Trees, Ensemble Learning, and Random Forests 83

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training
Cross−Validation
Test

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

prunehitters.pdf, prunedhitters.pdf (ISL, Figures 8.5 & 8.2) [At left, a plot of decision tree
size vs. errors for baseball hitter data. At right, the best decision tree has three leaves.
Players’ salaries: R1 = $165,174, R2 = $402,834, R3 = $845,346.]

[In this example, a 10-node decision tree was constructed to predict the salaries of baseball players, based
on their years in the league and average hits per season. Then the tree was pruned by validation. The best
decision tree on the validation data turned out to have just three leaves.]

ENSEMBLE LEARNING

Decision trees are fast, simple, interpretable, easy to explain,
invariant under scaling/translation, robust to irrelevant features.

But not the best at prediction. [Compared to previous methods we’ve seen.]
High variance.

[For example, suppose we take a training data set, split it into two halves, and train two decision trees, one
on each half of the data. It’s not uncommon for the two trees to turn out very di↵erent. In particular, if the
two trees pick di↵erent features for the very first split at the top of the tree, then it’s quite common for the
trees to be completely di↵erent. So decision trees tend to have high variance.]

[So let’s think about how to fix this. As an analogy, imagine that you are generating random numbers from
some distribution. If you generate just one number, it might have high variance. But if you generate n
numbers and take their average, then the variance of that average is n times smaller. So you might ask
yourself, can we reduce the variance of decision trees by taking an average answer of a bunch of decision
trees? Yes we can.]

84 Jonathan Richard Shewchuk

wisdom.jpg, penelope.jpg [James Surowiecki’s book “The Wisdom of Crowds” and Pene-
lope the cow. Surowiecki tells us this story . . .]

[A 1906 county fair in Plymouth, England had a contest to guess the weight of an ox. A scientist named
Francis Galton was there, and he did an experiment. He calculated the median of everyone’s guesses. The
median guess was 1,207 pounds, and the true weight was 1,198 pounds, so the error was less than 1%. Even
the cattle experts present didn’t estimate it that accurately.]
[NPR repeated the experiment in 2015 with a cow named Penelope whose photo they published online.
They got 17,000 guesses, and the average guess was 1,287 pounds. Penelope’s actual weight was 1,355
pounds, so the crowd got it to within 5 percent.]
[The main idea is that sometimes the average opinion of a bunch of idiots is better than the opinion of one
expert. And so it is with learning algorithms. We call a learning algorithm a weak learner if it does better
than guessing randomly. And we combine a bunch of weak learners to get a strong one.]
[Incidentally, James Surowiecki, the author of the book, guessed 725 pounds for Penelope. So he was o↵ by
87%. He’s like a bad decision tree who wrote a book about how to benefit from bad decision trees.]

We can take average of output of
– di↵erent learning algs
– same learning alg on many training sets [if we have tons of data]
– bagging: same learning alg on many random subsamples of one training set
– random forests: randomized decision trees on random subsamples

[These last two are the most common ways to use averaging, because usually we don’t have enough training
data to use fresh data for every learner.]

[Averaging is not specific to decision trees; it can work with many di↵erent learning algorithms. But it
works particularly well with decision trees.]

Regression algs: take median or mean output
Classification algs: take majority vote OR average posterior probs

[Apology to readers: I show some videos in this lecture, which cannot be included in this report.]

[Show averageaxis.mov] [Here’s a simple classifier that takes an average of “stumps,” trees of depth 1.
Observe how good the posterior probabilities look.]
[Show averageaxistree.mov] [Here’s a 4-class classifier with depth-2 trees.]

More Decision Trees, Ensemble Learning, and Random Forests 85

[The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user
ratings for films, based on previous ratings. It ran for three years and ended in 2009. The winners used
an extreme ensemble method that took an average of many di↵erent learning algorithms. In fact, a couple
of top teams combined into one team so they could combine their methods. They said, “Let’s average our
models and split the money,” and that’s what happened.]

Use learners with low bias (e.g., deep decision trees).
High variance & some overfitting are okay. Averaging reduces the variance!
[Each learner may overfit, but each overfits in its own unique way.]
Averaging sometimes reduces the bias & increases flexibility;

e.g., creating nonlinear decision boundary from linear classifiers.
Hyperparameter settings usually di↵erent than 1 learner.
[Because averaging learners reduces their variance. But averaging rarely reduces bias as much as it reduces
variance, so you want to get the bias nice and small before you average.]
of trees is another hyperparameter.

Bagging = Bootstrap AGGregatING (Leo Breiman, 1994)

[Leo Breiman was a statistics professor right here at Berkeley. He did his best work after he retired in 1993.
The bagging algorithm was published the following year, and then he went on to co-invent random forests
as well. Unfortunately, he died in 2005.]

breiman.gif [Leo Breiman]

[Bagging is a randomized method for creating many di↵erent learners from the same data set. It works well
with many di↵erent learning algorithms. One exception seems to be k-nearest neighbors; bagging mildly
degrades it.]
Given n-point training sample, generate random subsample of size n0 by sampling with replacement. Some
points chosen multiple times; some not chosen.

86 Jonathan Richard Shewchuk

1 3 4 6 8 9
. &

6 3 6 1 1 9 8 8 4 9 1 8

If n0 = n, ⇠ 63.2% are chosen. [On average; this fraction varies randomly.]
Build learner. Points chosen j times have greater weight:
[If a point is chosen j times, we want to treat it the same way we would treat j di↵erent points all bunched
up infinitesimally close together.]

– Decision trees: j-time point has j ⇥ weight in entropy.
– SVMs: j-time point incurs j ⇥ penalty to violate margin.
– Regression: j-time point incurs j ⇥ loss.

Repeat until T learners. Metalearner takes test point, feeds it into all T learners, returns average/majority
output.

Random Forests

Random sampling isn’t random enough!
[With bagging, often the decision trees look very similar. Why is that?]
One really strong predictor! same feature split at top of every tree.
[For example, if you’re building decision trees to identify spam, the first split might always be “viagra.”
Random sampling might not change that. If the trees are very similar, then taking their average doesn’t
reduce the variance much.]
Idea: At each treenode, take random sample of m features (out of d).

Choose best split from m features.
[We’re not allowed to split on the other d � m features!]
Di↵erent random sample for each treenode.
m ⇡

p
d works well for classification; m ⇡ d/3 for regression.

[So if you have a 100-dimensional feature space, you randomly choose 10 features and pick the one
of those 10 that gives the best split. But m is a hyperparameter, and you might get better results by
tuning it for your particular application. These values of m are good starting guesses.]
Smaller m! more randomness, less tree correlation, more bias

[One reason this works is if there’s a really strong predictor, only a fraction of the trees can choose that pre-
dictor as the first split. That fraction is m/d. So the split tends to “decorrelate” the trees. And that means
that when you take the average of the trees, you’ll have less variance.]
[You have to be careful, though, because you don’t want to dumb down the trees too much in your quest for
decorrelation. Averaging works best when you have very strong learners that are also diverse. But it’s hard
to create a lot of learners that are very di↵erent yet all very smart. The Netflix Prize winners did it, but it
was a huge amount of work.]

Sometimes test error reduction up to 100s or even 1,000s of decision trees!
Disadvantage: loses interpretability/inference.
[But the compensation is it’s more accurate than a single decision tree.]

Variation: generate m random multivariate splits (oblique lines, quadrics); choose best split.
[You have to be a bit clever about how you generate random decision boundaries; I’m not going to discuss
that today. I’ll just show lots of examples.]

[Show treesidesdeep.mov] [Lots of good-enough conic random decision trees.]
[Show averageline.mov]

More Decision Trees, Ensemble Learning, and Random Forests 87

[Show averageconic.mov]
[Show square.mov] [Depth 2; look how good the posterior probabilities look.]
[Show squaresmall.mov] [Depth 2; see the uncertainty away from the center.]
[Show spiral2.mov] [Doesn’t look like a decision tree at all, does it?]
[Show overlapdepth14.mov] [Overlapping classes. This example overfits!]
[Show overlapdepth5.mov] [Better fit.]

500.pdf [Random forest classifiers for 4-class spiral data. Each forest takes the average of
400 trees. The top row uses trees of depth 4. The bottom row uses trees of depth 12. From
left to right, we have axis-aligned splits, splits with lines with arbitrary rotations, and splits
with conic sections. Each split is chosen to be the best of 500 random choices.]

randomness.pdf [Random forest classifiers for the same data. Each forest takes the average
of 400 trees. In these examples, all the splits are axis-aligned. The top row uses trees of
depth 4. The bottom row uses trees of depth 12. From left to right, we choose each split from
1, 5, or 50 random choices. The more choices, the less bias and the better the classifier.]

