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RIDGE REGRESSION aka Tikhonov Regularization

(1) + (A) + `2 penalized mean loss (d).

Find w that minimizes |Xw � y|2 + � |w0|2 = J(w)
where w0 is w with component ↵ replaced by 0.
X has fictitious dimension but we DON’T penalize ↵.

Adds a regularization term, aka a penalty term, for shrinkage: to encourage small |w0|. Why?
– Guarantees positive definite normal eq’ns; always unique solution.

[Standard least-squares linear regression yields singular normal equations when the sample points lie
on a common hyperplane in feature space.] E.g. when d > n.

ridgequad.png

[At left, we see a quadratic form for a positive semidefinite cost function associated with least-squares
regression. This cost function has many minima, and the regression problem is said to be ill-posed.
By adding a small penalty term, we obtain a positive definite quadratic form (right), which has one
unique minimum. The term “regularization” implies that we are turning an ill-posed problem into a
well-posed problem.]
[That was the original motivation, but the next has become more important . . . ]

– Reduces overfitting by reducing variance. Why?
Imagine: 275,238x2

1 � 543,845x1x2 + 385,832x2
2 is best fit for well-spaced points all with |y| < 1.

Small change in x ) big change in y!
[Given that all the y values in the data are small, it’s a sure sign of overfitting if tiny changes in x cause
huge changes in y.]
So we penalize large weights.
[This use of regularization is closely related to the first one. When you have large variance and a lot
of overfitting, it implies that your problem is close to being ill-posed, even though technically it might
be well-posed.]
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ridgeterms.pdf (ISL, Figure 6.7) [In this plot of weight space, �̂ is the least-squares solu-
tion. The red ellipses are the isocontours of |Xw � y|2. The isocontours of |w0| are circles
centered at the origin (blue). The solution lies where a red isocontour just touches a blue
isocontour tangentially. As � increases, the solution will occur at a more outer red isocon-
tour and a more inner blue isocontour. This helps to reduce overfitting.]

Setting rJ = 0 gives normal eq’ns

(X>X + �I0) w = X>y

where I0 is identity matrix w/bottom right set to zero. [Don’t penalize the bias term ↵.]

Algorithm: Solve for w. Return h(z) = w>z.

Increasing � ) more regularization; smaller |w0|
Recall [from the previous lecture] our data model y = Xv + e, where e is noise.
Variance of ridge reg. is Var(z>(X>X + �I0)�1X>e).
As �! 1, variance! 0, but bias increases.
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ridgebiasvar.pdf (ISL, Figure 6.5) [Plot of bias2 & variance as � increases.]

[So, as usual for the bias-variance trade-o↵, the test error as a function of � is a U-shaped curve. We find the
bottom by validation.]

� is a hyperparameter; tune by (cross-)validation.

Ideally, features should be “normalized” to have same variance.
Alternative: use asymmetric penalty by replacing I0 w/other diagonal matrix.
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Bayesian Justification for Ridge Reg.

Assign a prior probability on w0: a Gaussian P(w0) ⇠ N(0,�2). Apply MLE to the posterior prob.
[This prior probability says that we think weights close to zero are more likely to be correct.]

Bayes’ Theorem: posterior P(w|X, y) =
L(w) ⇥ prior P(w0)

P(X, y)
Maximize log posterior = lnL(w) + ln P(w0) � const

= �const |Xw � y|2 � const |w0|2 � const
) Minimize |Xw � y|2 + � |w0|2

This method (using likelihood, but maximizing posterior) is called maximum a posteriori (MAP).
[A prior probability on the weights is another way to understand regularizing ill-posed problems.]

SUBSET SELECTION

[Some of you may have noticed as early as Homework 1 that you can sometimes get better performance on
a spam classifier simply by dropping some useless features.]

All features increase variance, but not all features reduce bias.
Idea: Identify poorly predictive features, ignore them (weight zero).

Less overfitting, smaller test errors.
2nd motivation: Inference. Simpler models convey interpretable wisdom.

Useful in all classification & regression methods.
Sometimes it’s hard: Di↵erent features can partly encode same information.

Combinatorially hard to choose best feature subset.

Alg: Best subset selection. Try all 2d � 1 nonempty subsets of features.
Choose the best model by (cross-)validation. Slow.

[Obviously, best subset selection isn’t feasible if we have a lot of features. But it gives us an “ideal”
algorithm to compare practical algorithms with. If d is large, there is no algorithm that’s both guaranteed to
find the best subset and that runs in acceptable time. But heuristics often work well.]

Heuristic 1: Forward stepwise selection.
Start with null model (0 features); repeatedly add best feature until test errors start increasing (due to over-
fitting) instead of decreasing. At each outer iteration, inner loop tries every feature and chooses the best by
validation. Requires training O(d2) models instead of O(2d).
Not perfect: e.g. won’t find the best 2-feature model if neither of those

features yields the best 1-feature model. [That’s why it’s a heuristic.]
Heuristic 2: Backward stepwise selection.
Start with all d features; repeatedly remove feature whose removal gives best reduction in test errors.
Also trains O(d2) models.
Additional heuristic: Only try to remove features with small weights.

Q: small relative to what?
Recall: variance of least-squ. regr. is proportional to �2(X>X)�1

z-score of weight wi is zi =
wi
�
p

vi
where vi is ith diagonal entry of (X>X)�1.

Small z-score hints “true” wi could be zero.
[Forward stepwise is a better choice when you suspect only a few features will be good predictors. Backward
stepwise is better when you suspect you’ll keep most of the features. If you’re lucky, you’ll stop early.]
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LASSO (Robert Tibshirani, 1996)

Regression w/regularization: (1) + (A) + `1 penalized mean loss (e).
“Least absolute shrinkage and selection operator”
[This is a regularized regression method similar to ridge regression, but it has the advantage that it often
naturally sets some of the weights to zero.]

Find w that minimizes |Xw � y|2 + � kw0k1 where kw0k1 =
dX

i=1

|wi| (Don’t penalize ↵.)

Recall ridge regr.: isosurfaces of |w0|2 are hyperspheres.
The isosurfaces of kw0k1 are cross-polytopes.
The unit cross-polytope is the convex hull of all the positive & negative unit coordinate vectors.

[Draw this figure by hand crosspolys.png ]

[You get larger and smaller cross-polytope isosurfaces by scaling these.]
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lassoridge.pdf [Isocontours of the terms of the objective function for the Lasso appear at
left. The ridge regression terms appear at right for comparison.]

[The red ellipses are the isocontours of |Xw � y|2, and the least-squares solution lies at their center. The
isocontours of kw0k1 are diamonds centered at the origin (blue). The solution lies where a red isocontour
just touches a blue diamond. What’s interesting here is that in this example, the red isocontour touches just
the tip of the diamond. So the weight w1 gets set to zero. That’s what we want to happen to weights that
don’t have enough influence. This doesn’t always happen—for instance, the red isosurface could touch a
side of the diamond instead of a tip of the diamond.]

[When you go to higher dimensions, you might have several weights set to zero. For example, in 3D, if
the red isosurface touches a sharp vertex of the cross-polytope, two of the three weights get set to zero. If
it touches a sharp edge of the cross-polytope, one weight gets set to zero. If it touches a flat side of the
cross-polytope, no weight is zero.]
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lassoweights.pdf (ISL, Figure 6.6) [Weights as a function of �.]

[This shows the weights for a typical linear regression problem with about 10 variables. You can see that as
lambda increases, more and more of the weights become zero. Only four of the weights are really useful for
prediction; they’re in color. Statisticians used to choose � by looking at a chart like this and trying to eyeball
a spot where there aren’t too many predictors and the weights aren’t changing too fast. But nowadays they
prefer cross-validation.]

Sometimes sets some weights to zero, especially for large �.
Algs: subgradient descent, least-angle regression (LARS), forward stagewise

[Lasso can be reformulated as a quadratic program, but it’s a quadratic program with 2d constraints, because
a d-dimensional cross-polytope has 2d facets. In practice, special-purpose optimization methods have been
developed for Lasso. I’m not going to teach you one, but if you need one, look up the last two of these
algorithms. LARS is built into the R Programming Language for statistics.]

[As with ridge regression, you should probably normalize the features first before applying Lasso.]


