
CS 189
Spring 2015

Introduction to
Machine Learning Midterm

• You have 80 minutes for the exam.

• The exam is closed book, closed notes except your one-page crib sheet.

• No calculators or electronic items.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

• For true/false questions, fill in the True/False bubble.

• For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be
more than one). We have introduced a negative penalty for false positives for the multiple choice questions
such that the expected value of randomly guessing is 0. Don’t worry, for this section, your score will be the
maximum of your score and 0, thus you cannot incur a negative score for this section.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. True or False /26
Q2. Multiple Choice /36
Q3. Parameter Estimation /10
Q4. Dual Solution for Ridge Regression /8
Q5. Regularization and Priors for Linear Regression /8

Total /88
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Q1. [26 pts] True or False
(a) [2 pts] If the data is not linearly separable, then there is no solution to the hard-margin SVM.

© True © False

(b) [2 pts] Logistic Regression can be used for classification.

© True © False

(c) [2 pts] In logistic regression, two ways to prevent β vectors from getting too large are using a small step size
and using a small regularization value.

© True © False

(d) [2 pts] The L2 norm is often used because it produces sparse results, as opposed to the L1 norm which does
not.

© True © False

(e) [2 pts] For a Multivariate Gaussian, the eigenvalues of the covariance matrix are inversely proportional to the
lengths of the ellipsoid axes that determine the isocontours of the density.

© True © False

(f) [2 pts] In a generative binary classification model where we assume the class conditionals are distributed as
Poisson, and the class priors are Bernoulli, the posterior assumes a logistic form.

© True © False

(g) [2 pts] Maximum likelihood estimation gives us not only a point estimate, but a distribution over the parameters
that we are estimating.

© True © False

(h) [2 pts] Penalized maximum likelihood estimators and Bayesian estimators for parameters are better used in
the setting of low-dimensional data with many training examples as opposed to the setting of high-dimensional
data with few training examples.

© True © False

(i) [2 pts] It is not a good machine learning practice to use the test set to help adjust the hyperparameters of your
learning algorithm.

© True © False

(j) [2 pts] A symmetric positive semi-definite matrix always has nonnegative elements.

© True © False

(k) [2 pts] For a valid kernel function K, the corresponding feature mapping φ can map a finite dimensional vector
into an infinite dimensional vector.

© True © False

(l) [2 pts] The more features that we use to represent our data, the better the learning algorithm will generalize
to new data points.

© True © False

(m) [2 pts] A discriminative classifier explicitly models P (Y |X)

© True © False
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Q2. [36 pts] Multiple Choice
(a) [3 pts] Which of the following algorithms can you use kernels with?

© Support Vector Machines

© Perceptrons

© None of the above

(b) [3 pts] Cross validation:

© Is often used to select hyperparameters

© Is guaranteed to prevent overfitting

© Does nothing to prevent overfitting

© None of the above

(c) [3 pts] In linear regression, L2 regularisation is equivalent to imposing a:

© Logistic prior

© Gaussian prior

© Laplace prior

© Gaussian class-conditional

(d) [3 pts] Say we have two 2-dimensional Gaussian distributions representing two different classes. Which of the
following conditions will result in a linear decision boundary:

© Same mean for both classes

© Same covariance matrix for both classes

© Different covariance matrix for each class

© Linearly separable data

(e) [3 pts] The normal equations can be derived from:

© Minimizing empirical risk

© Assuming that Y = βTx+ ε, where ε ∼ N(0, σ2).

© Assuming that the P (Y |X = x) is distributed normally with mean βᵀx and variance σ2

© Finding a linear combination of the rows of the design matrix that minimizes the distance to our
vector of labels Y

(f) [3 pts] Logistic regression can be motivated from:

© Generative models with uniform class condi-
tionals

© Generative models with Gaussian class con-
ditionals

© Log odds being equated to an affine function
of x

© None of the above

(g) [3 pts] The perceptron algorithm will converge:

© If the data is linearly separable

© Even if the data is linearly inseparable

© As long as you initialize θ to all 0’s

© Always
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(h) [3 pts] Which of the following is true:

© Newton’s Method typically is more expensive to calculate than gradient descent, per iteration

© For quadratic equations, Newton’s Method typically requires fewer iterations than gradient descent

© Gradient descent can be viewed as iteratively reweighted least squares

© None of the above

(i) [3 pts] Which of the following statements about duality and SVMs is (are) true?

© Complementary slackness implies that every training point that is misclassified by a soft-margin SVM
is a support vector.

© When we solve the SVM with the dual problem, we need only the dot product of xi, xj for all i, j,
and no other information about the xi.

© We use Lagrange multipliers in an optimization problem with inequality (≤) constraints.

© None of the above

(j) [3 pts] Which of the following distance metrics can be computed exclusively with inner products, assuming
Φ(x) and Φ(y) are feature mappings of x and y, respectively?

© Φ(x)− Φ(y)

© ‖Φ(x)− Φ(y)‖1

© ‖Φ(x)− Φ(y)‖22.

© None of the above

(k) [3 pts] Strong duality holds for:

© Hard Margin SVM

© Soft Margin SVM

© Constrained optimization problems in general

© None of the above

(l) [3 pts] Which the following facts about the ’C’ in SVMs is (are) true?

© As C approaches 0, the soft margin SVM is
equal to the hard margin SVM

© C can be negative, as long as each of the slack
variables are nonnegative

© A larger C tends to create a larger margin

© None of the above
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Q3. [10 pts] Parameter Estimation
In this problem, we have n trials with k possible types of outcomes {1, 2, ..., k}. Suppose we observe X1, ..., Xk where
each Xi is the number of outcomes of type i. If pi refers to the probability that a trial has outcome i, then (X1, ..., Xk)
is said to have a multinomial distribution with parameters p1, ..., pk, denoted (X1, ..., Xk) ∼ Multinomial(p1, ..., pk).
It may be useful to know that the probability mass function of the multinomial distribution is given as follows.

P (X1 = x1, ..., Xk = xk) =
n!

x1!x2! . . . xk!
px1
1 . . . pxk

k

We want to find the maximum likelihood estimators for p1, ..., pk. You may assume that pi > 0 for all i.

(a) [4 pts] What is the log-likelihood function, l(p1, ..., pk|X1, ..., Xk)?

(b) [6 pts] You might notice that unconstrained maximization of this function leads to an answer in which we set
each pi =∞. But this is wrong. We must add a constraint such that the probabilities sum up to 1. Now, we
have the following optimization problem.

max
p1,...,pk

l(p1, ..., pk|X1, ..., Xk)

s.t.

k∑
i=1

pi = 1

Recall that we can use the method of Lagrange multipliers to solve an optimization problem with equality
constraints. Using this method, find the maximum likelihood estimators for p1, ..., pk.

5



Q4. [8 pts] Dual Solution for Ridge Regression
Recall that ridge regression minimizes the objective function:

L(w) = ‖Xw − y‖22 + λ‖w‖22

where X is an n-by-d design matrix, w is a d-dimensional vector and y is a n-dimensional vector. We already know
that the function L(w) is minimized by

w∗ = (XTX + λI)−1XT y.

Alternatively, the minimizer can be represented by a linear combination of the design matrix rows. That is, there
exists a n-dimensional vector α∗ such that the objective function L(w) is minimized by w∗ = XTα∗. The vector α∗

is called the dual solution to the linear regression problem.

(a) [2 pts] Using the relation w = XTα, define the objective function L in terms of α.

(b) [3 pts] Show that α∗ = (XXT + λI)−1y is a dual solution.

(c) [3 pts] To make the solution in question (b) well-defined, the matrix XXT +λI has to be an invertible matrix.
Assuming λ > 0, show that XXT + λI is an invertible matrix. (Hint: positive definite matrices are invertible)
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Q5. [8 pts] Regularization and Priors for Linear Regression
Linear regression is a model of the form P (y|x) ∼ N (wTx, σ2), where w is a d-dimensional vector. Recall that in
ridge regression, we add an `2 regularization term to our least squares objective function to prevent overfitting, so
that our loss function becomes:

J(w) =

n∑
i=1

(Yi −wTXi)
2 + λwTw (*)

We can arrive at the same objective function in a Bayesian setting, if we consider a MAP (maximum a posteriori
probability) estimate, where w has the prior distribution N (0, f(λ, σ)I).

(a) [3 pts] What is the conditional density of w given the data?

(b) [5 pts] What f(λ, σ) makes this MAP estimate the same as the solution to (*)?
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