CS 189 Introduction to Spring 2013 Machine Learning

- You have 3 hours for the exam.
- The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.
- Please use non-programmable calculators only.
- Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a *brief* explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- For true/false questions, fill in the *True/False* bubble.
- For multiple-choice questions, fill in the bubbles for **ALL** CORRECT CHOICES (in some cases, there may be more than one). For a question with p points and k choices, every false positive will incur a penalty of p/(k-1) points.
- For short answer questions, **unnecessarily long explanations and extraneous data will be penalized**. Please try to be terse and precise and do the side calculations on the scratch papers provided.
- Please **draw a bounding box around your answer** in the Short Answers section. A missed answer without a bounding box will not be regraded.

First name	
Last name	
SID	

For stan use only:		
Q1.	True/False	/23
Q2.	Multiple Choice Questions	/36
Q3.	Short Answers	/26
	Total	/85

Q1. [23 pts] True/False

- (a) [1 pt] Solving a non linear separation problem with a hard margin Kernelized SVM (Gaussian RBF Kernel) might lead to overfitting.
- (b) [1 pt] In SVMs, the sum of the Lagrange multipliers corresponding to the positive examples is equal to the sum of the Lagrange multipliers corresponding to the negative examples.
- (c) [1 pt] SVMs directly give us the posterior probabilities P(y=1|x) and P(y=-1|x).
- (d) [1 pt] $V(X) = E[X]^2 E[X^2]$
- (e) [1 pt] In the discriminative approach to solving classification problems, we model the conditional probability of the labels given the observations.
- (f) [1 pt] In a two class classification problem, a point on the Bayes optimal decision boundary x^* always satisfies $P(y=1|x^*) = P(y=0|x^*)$.
- (g) [1 pt] Any linear combination of the components of a multivariate Gaussian is a univariate Gaussian.
- (h) [1 pt] For any two random variables $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- (i) [1 pt] Stanford and Berkeley students are trying to solve the same logistic regression problem for a dataset. The Stanford group claims that their initialization point will lead to a much better optimum than Berkeley's initialization point. Stanford is correct.
- (j) [1 pt] In logistic regression, we model the odds ratio $\left(\frac{p}{1-p}\right)$ as a linear function.
- (k) [1 pt] Random forests can be used to classify infinite dimensional data.
- (1) [1 pt] In boosting we start with a Gaussian weight distribution over the training samples.
- (m) [1 pt] In Adaboost, the error of each hypothesis is calculated by the ratio of misclassified examples to the total number of examples.
- (n) [1 pt] When k = 1 and $N \to \infty$, the kNN classification rate is bounded above by twice the Bayes error rate.
- (o) [1 pt] A single layer neural network with a sigmoid activation for binary classification with the cross entropy loss is exactly equivalent to logistic regression.

- (p) [1 pt] The loss function for LeNet5 (the convolutional neural network by LeCun et al.) is convex.
- (q) [1 pt] Convolution is a linear operation i.e. $(\alpha f_1 + \beta f_2) * g = \alpha f_1 * g + \beta f_2 * g$.
- (r) [1 pt] The k-means algorithm does coordinate descent on a non-convex objective function.
- (s) [1 pt] A 1-NN classifier has higher variance than a 3-NN classifier.
- (t) [1 pt] The single link agglomerative clustering algorithm groups two clusters on the basis of the maximum distance between points in the two clusters.
- (u) [1 pt] The largest eigenvector of the covariance matrix is the direction of minimum variance in the data.
- (v) [1 pt] The eigenvectors of AA^T and A^TA are the same.
- (w) [1 pt] The non-zero eigenvalues of AA^T and A^TA are the same.

Q2. [36 pts] Multiple Choice Questions

(a) [4 pts] In linear regression, we model $P(y|x) \sim \mathcal{N}(w^T x + w_0, \sigma^2)$. The irreducible error in this model is

$$\sigma^{2} \qquad \qquad E[(y - E[y|x])|x]$$
$$E[(y - E[y|x])^{2}|x] \qquad \qquad E[y|x]$$

(b) [4 pts] Let S_1 and S_2 be the set of support vectors and w_1 and w_2 be the learnt weight vectors for a linearly separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?

 $S_1 \subset S_2$ S_1 may not be a subset of S_2

$$w_1 = w_2$$
 w_1 may not be equal to w_2 .

(c) [4 pts] Ordinary least-squares regression is equivalent to assuming that each data point is generated according to a linear function of the input plus zero-mean, constant-variance Gaussian noise. In many systems, however, the noise variance is itself a positive linear function of the input (which is assumed to be non-negative, i.e., $x \ge 0$). Which of the following families of probability models correctly describes this situation in the univariate case?

$$P(y|x) = \frac{1}{\sigma\sqrt{2\pi x}} \exp\left(-\frac{(y - (w_0 + w_1 x))^2}{2x\sigma^2}\right) \qquad P(y|x) = \frac{1}{\sigma\sqrt{2\pi x}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + w_1 x))^2}{2\sigma^2}\right) \qquad P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \qquad P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + (w_1 + \sigma^2)x))^2}{2x^2\sigma^2}\right) \\ P(y|x) = \frac{1}{\sigma x\sqrt{2\pi}} \exp\left(-\frac{(y - (w_0 + (w_1 + (w_1$$

(d) [3 pts] The left singular vectors of a matrix A can be found in _____.

Eigenvectors of AA^T	Eigenvectors of A^2
Eigenvectors of $A^T A$	Eigenvalues of AA^T

(e) [3 pts] Averaging the output of multiple decision trees helps _____.

A and C

Increase bias	Increase variance		
Decrease bias	Decrease variance		

(f) [4 pts] Let A be a symmetric matrix and S be the matrix containing its eigenvectors as column vectors, and D a diagonal matrix containing the corresponding eigenvalues on the diagonal. Which of the following are true:

AS = SD	SA = DS
AS = DS	$AS = DS^T$

(g) [4 pts] Consider the following dataset: A = (0,2), B = (0,1) and C = (1,0). The k-means algorithm is initialized with centers at A and B. Upon convergence, the two centers will be at

C and the midpoint of AB

A and the midpoint of BC A and B

(h) [3 pts] Which of the following loss functions are convex?

Misclassification loss	Hinge loss
Logistic loss	Exponential Loss $(e^{(-yf(x))})$

(i) [3 pts] Consider T_1 , a decision stump (tree of depth 2) and T_2 , a decision tree that is grown till a maximum depth of 4. Which of the following is/are correct?

$Bias(T_1) < Bias(T_2)$	$Variance(T_1) < Variance(T_2)$
$Bias(T_1) > Bias(T_2)$	$Variance(T_1) > Variance(T_2)$

(j) [4 pts] Consider the problem of building decision trees with k-ary splits (split one node intok nodes) and you are deciding k for each node by calculating the entropy impurity for different values of k and optimizing simultaneously over the splitting threshold(s) and k. Which of the following is/are true?

The algorithm will always choose $k = 2$	There will be $k-1$ thresholds for a $k\mbox{-}{\rm ary}$ split
The algorithm will prefer high values of k	This model is strictly more powerful than a binary decision tree.

Q3. [26 pts] Short Answers

(a) [5 pts] Given that (x_1, x_2) are jointly normally distributed with $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$ $(\sigma_{21} = \sigma_{12})$, give an expression for the mean of the conditional distribution $p(x_1|x_2 = a)$.

- (b) [4 pts] The logistic function is given by $\sigma(x) = \frac{1}{1+e^{-x}}$. Show that $\sigma'(x) = \sigma(x)(1-\sigma(x))$.
- (c) Let X have a uniform distribution

$$p(x;\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta\\ 0 & \text{otherwise} \end{cases}$$

Suppose that n samples x_1, \ldots, x_n are drawn independently according to $p(x; \theta)$.

(i) [5 pts] The maximum likelihood estimate of θ is $x_{(n)} = \max(x_1, x_2, \dots, x_n)$. Show that this estimate of θ is biased.

(ii) [2 pts] Give an expression for an unbiased estimator of θ .

(d) [5 pts] Consider the problem of fitting the following function to a dataset of 100 points $\{(x_i, y_i)\}, i = 1...100$:

$$y = \alpha cos(x) + \beta sin(x) + \gamma$$

This problem can be solved using the least squares method with a solution of the form:

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = (X^T X)^{-1} X^T Y$$

What are X and Y?

$$X = Y =$$

(e) [5 pts] Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimensional features (X_1, X_2) and the categorical class conditional distributions in the tables below. The entries in the tables correspond to $P(X_1 = x_1|C_i)$ and $P(X_2 = x_2|C_i)$ respectively. The two classes are equally likely.

$X_1 =$	C_1	C_2	
-1	0.2	0.3	
0	0.4	0.6	
1	0.4	0.1	

$X_2 =$	C_1	C_2
-1	0.4	0.1
0	0.5	0.3
1	0.1	0.6

Given a data point (-1, 1), calculate the following posterior probabilities:

$$P(C_1|X_1 = -1, X_2 = 1) =$$

$$P(C_2|X_1 = -1, X_2 = 1) =$$

SCRATCH PAPER

SCRATCH PAPER