
CS 189
Spring 2013

Introduction to
Machine Learning Final

• You have 3 hours for the exam.

• The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

• For true/false questions, fill in the True/False bubble.

• For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be
more than one). For a question with p points and k choices, every false positive wil incur a penalty of p/(k−1)
points.

• For short answer questions, unnecessarily long explanations and extraneous data will be penalized.
Please try to be terse and precise and do the side calculations on the scratch papers provided.

• Please draw a bounding box around your answer in the Short Answers section. A missed answer without
a bounding box will not be regraded.

First name

Last name

SID

For staff use only:
Q1. True/False /23
Q2. Multiple Choice Questions /36
Q3. Short Answers /26

Total /85
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Q1. [23 pts] True/False
(a) [1 pt] Solving a non linear separation problem with a hard margin Kernelized SVM (Gaussian RBF Kernel)

might lead to overfitting.

(b) [1 pt] In SVMs, the sum of the Lagrange multipliers corresponding to the positive examples is equal to the sum
of the Lagrange multipliers corresponding to the negative examples.

(c) [1 pt] SVMs directly give us the posterior probabilities P (y = 1|x) and P (y = −1|x).

(d) [1 pt] V (X) = E[X]2 − E[X2]

(e) [1 pt] In the discriminative approach to solving classification problems, we model the conditional probability
of the labels given the observations.

(f) [1 pt] In a two class classification problem, a point on the Bayes optimal decision boundary x∗ always satisfies
P (y = 1|x∗) = P (y = 0|x∗).

(g) [1 pt] Any linear combination of the components of a multivariate Gaussian is a univariate Gaussian.

(h) [1 pt] For any two random variables X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2), X + Y ∼ N (µ1 + µ2, σ

2
1 + σ2

2).

(i) [1 pt] Stanford and Berkeley students are trying to solve the same logistic regression problem for a dataset.
The Stanford group claims that their initialization point will lead to a much better optimum than Berkeley’s
initialization point. Stanford is correct.

(j) [1 pt] In logistic regression, we model the odds ratio ( p
1−p ) as a linear function.

(k) [1 pt] Random forests can be used to classify infinite dimensional data.

(l) [1 pt] In boosting we start with a Gaussian weight distribution over the training samples.

(m) [1 pt] In Adaboost, the error of each hypothesis is calculated by the ratio of misclassified examples to the total
number of examples.

(n) [1 pt] When k = 1 and N →∞, the kNN classification rate is bounded above by twice the Bayes error rate.

(o) [1 pt] A single layer neural network with a sigmoid activation for binary classification with the cross entropy
loss is exactly equivalent to logistic regression.
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(p) [1 pt] The loss function for LeNet5 (the convolutional neural network by LeCun et al.) is convex.

(q) [1 pt] Convolution is a linear operation i.e. (αf1 + βf2) ∗ g = αf1 ∗ g + βf2 ∗ g.

(r) [1 pt] The k-means algorithm does coordinate descent on a non-convex objective function.

(s) [1 pt] A 1-NN classifier has higher variance than a 3-NN classifier.

(t) [1 pt] The single link agglomerative clustering algorithm groups two clusters on the basis of the maximum
distance between points in the two clusters.

(u) [1 pt] The largest eigenvector of the covariance matrix is the direction of minimum variance in the data.

(v) [1 pt] The eigenvectors of AAT and ATA are the same.

(w) [1 pt] The non-zero eigenvalues of AAT and ATA are the same.
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Q2. [36 pts] Multiple Choice Questions
(a) [4 pts] In linear regression, we model P (y|x) ∼ N (wTx + w0, σ

2). The irreducible error in this model is
.

 σ2

 E[(y − E[y|x])2|x]

© E[(y − E[y|x])|x]

© E[y|x]

(b) [4 pts] Let S1 and S2 be the set of support vectors and w1 and w2 be the learnt weight vectors for a linearly
separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?

© S1 ⊂ S2

© w1 = w2

 S1 may not be a subset of S2

 w1 may not be equal to w2.

(c) [4 pts] Ordinary least-squares regression is equivalent to assuming that each data point is generated according
to a linear function of the input plus zero-mean, constant-variance Gaussian noise. In many systems, however,
the noise variance is itself a positive linear function of the input (which is assumed to be non-negative, i.e.,
x ≥ 0). Which of the following families of probability models correctly describes this situation in the univariate
case?

 P (y|x) = 1
σ
√
2πx

exp(− (y−(w0+w1x))
2

2xσ2 )

© P (y|x) = 1
σ
√
2π

exp(− (y−(w0+w1x))
2

2σ2 )

© P (y|x) = 1
σ
√
2πx

exp(− (y−(w0+(w1+σ
2)x))2

2σ2 )

© P (y|x) = 1
σx
√
2π

exp(− (y−(w0+w1x))
2

2x2σ2 )

(d) [3 pts] The left singular vectors of a matrix A can be found in .

 Eigenvectors of AAT

© Eigenvectors of ATA

© Eigenvectors of A2

© Eigenvalues of AAT

(e) [3 pts] Averaging the output of multiple decision trees helps .

© Increase bias

© Decrease bias

© Increase variance

 Decrease variance

(f) [4 pts] Let A be a symmetric matrix and S be the matrix containing its eigenvectors as column vectors, and D
a diagonal matrix containing the corresponding eigenvalues on the diagonal. Which of the following are true:

 AS = SD

© AS = DS

© SA = DS

© AS = DST

(g) [4 pts] Consider the following dataset: A = (0, 2), B = (0, 1) and C = (1, 0). The k-means algorithm is
initialized with centers at A and B. Upon convergence, the two centers will be at

© A and C

 A and the midpoint of BC

© C and the midpoint of AB

© A and B
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(h) [3 pts] Which of the following loss functions are convex?

© Misclassification loss

 Logistic loss

 Hinge loss

 Exponential Loss (e(−yf(x)))

(i) [3 pts] Consider T1, a decision stump (tree of depth 2) and T2, a decision tree that is grown till a maximum
depth of 4. Which of the following is/are correct?

© Bias(T1) < Bias(T2)

 Bias(T1) > Bias(T2)

 V ariance(T1) < V ariance(T2)

© V ariance(T1) > V ariance(T2)

(j) [4 pts] Consider the problem of building decision trees with k-ary splits (split one node intok nodes) and
you are deciding k for each node by calculating the entropy impurity for different values of k and optimizing
simultaneously over the splitting threshold(s) and k. Which of the following is/are true?

© The algorithm will always choose k = 2

 The algorithm will prefer high values of k

 There will be k−1 thresholds for a k-ary split

© This model is strictly more powerful than a
binary decision tree.
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Q3. [26 pts] Short Answers

(a) [5 pts] Given that (x1, x2) are jointly normally distributed with µ =
[ µ1
µ2

]
and Σ =

[ σ2
1 σ12

σ21 σ2
2

]
(σ21 = σ12), give

an expression for the mean of the conditional distribution p(x1|x2 = a).

(b) [4 pts] The logistic function is given by σ(x) = 1
1+e−x . Show that σ′(x) = σ(x)(1− σ(x)).

(c) Let X have a uniform distribution

p(x; θ) =

{
1
θ 0 ≤ x ≤ θ
0 otherwise

Suppose that n samples x1, . . . , xn are drawn independently according to p(x; θ).

(i) [5 pts] The maximum likelihood estimate of θ is x(n) = max(x1, x2, . . . , xn). Show that this estimate of θ
is biased.

(ii) [2 pts] Give an expression for an unbiased estimator of θ.
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(d) [5 pts] Consider the problem of fitting the following function to a dataset of 100 points {(xi, yi)}, i = 1 . . . 100:

y = αcos(x) + βsin(x) + γ

This problem can be solved using the least squares method with a solution of the form:αβ
γ

 = (XTX)−1XTY

What are X and Y ?

X = Y =

(e) [5 pts] Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimen-
sional features (X1, X2) and the categorical class conditional distributions in the tables below. The entries in
the tables correspond to P (X1 = x1|Ci) and P (X2 = x2|Ci) respectively. The two classes are equally likely.

PPPPPPPPX1 =
Class

C1 C2

−1 0.2 0.3
0 0.4 0.6
1 0.4 0.1

PPPPPPPPX2 =
Class

C1 C2

−1 0.4 0.1
0 0.5 0.3
1 0.1 0.6

Given a data point (−1, 1), calculate the following posterior probabilities:

P (C1|X1 = −1, X2 = 1) =

P (C2|X1 = −1, X2 = 1) = 

7



Scratch paper
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Scratch paper
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