
CS 189/289A
Spring 2024

Introduction to Machine Learning
Jonathan Shewchuk Final

• Please do not open the exam before you are instructed to do so. Fill out the blanks below now.

• Electronic devices are forbidden on your person, including phones, laptops, tablet computers, headphones, and calcu-
lators. Turn your cell phone off and leave all electronics at the front of the room, or risk getting a zero on the exam.
Exceptions are made for car keys and devices needed because of disabilities.

• When you start, the first thing you should do is check that you have all 12 pages and all 6 questions. The second
thing is to please write your initials at the top right of every page after this one (e.g., write “JS” if you are Jonathan
Shewchuk).

• The exam is closed book, closed notes except your two cheat sheets.

• You have 180 minutes. (If you are in the Disabled Students’ Program program and have an allowance of 150% or 200%
time, that comes to 270 minutes or 360 minutes, respectively.)

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets. If you run out of space for
an answer, write a note that your answer is continued on page 5.

• The total number of points is 150. There are 18 multiple choice questions worth 4 points each, and 5 written questions
worth a total of 78 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices. There may be more than one correct choice,
but there is always at least one correct choice. Partial credit rules: For questions with one correct bullet, 2/4 partial credit
if you check the correct bullet plus exactly one other (wrong) bullet. For questions with two correct bullets: 2/4 partial
credit if you have any 3 out of 4 bullets correct. For questions with three correct bullets: 2/4 partial credit if you check
2 out of 3 correct bullets but do not check the incorrect one. For questions with four correct bullets: 2/4 partial credit if
you check 3 of the 4 bullets.

First name

Last name

SID

Name and SID of student to your left

Name and SID of student to your right

1

Q1. [72 pts] Multiple Answer
Fill in the bubbles for ALL correct choices. There may be more than one correct choice, but there is always at least one correct
choice. Partial credit rules: For questions with one correct bullet, 2/4 partial credit if you check the correct bullet plus exactly
one other (wrong) bullet. For questions with two correct bullets: 2/4 partial credit if you have any 3 out of 4 bullets correct. For
questions with three correct bullets: 2/4 partial credit if you check 2 out of 3 correct bullets but do not check the incorrect one.
For questions with four correct bullets: 2/4 partial credit if you check 3 of the 4 bullets.

(a) [4 pts] Why do we usually choose splits that maximize the information gain—equivalently, minimize the weighted

average of entropies Hafter =
|S l|H(S l) + |S r |H(S r)

|S l| + |S r |
after the split—instead of computing the number of misclassified

points in each child and using the weighted average of those as a cost function?

⃝ A: The misclassified points cost function penalizes
balanced splits (where the two children have roughly
equal numbers of training points) more than the en-
tropy cost function does.

 B: The misclassified points cost function often
assigns the same weighted average cost to several dif-
ferent splits.

 C: The entropy cost is strictly concave, so if the
children have different distributions of classes (and
are nonempty), the information gain is positive.

 D: The misclassified points cost is not strictly con-
cave, so we encounter more circumstances where the
weighted average of the children’s costs is equal to
the parent’s cost.

• A: False. Information gain does not heavily penalize large node size imbalances.

• B: True. Relying on misclassification does not give insight into the node composition after the split and doesn’t distin-
guish as well between different options.

• C: True. We can only get zero information gain if teh child sets probabilities are the exact same.

• D: True. Misclassification is not strictly concave; it looks like an updside down absolute value graph, so there are quite a
few splits along the same line.

(b) [4 pts] Select the true statements about decision trees.

⃝ A: Decision trees are grown from the bottom up,
meaning that we start at the leaves and repeatedly fuse
them until we reach the root node.

⃝ B: Pruning improves both training and validation
accuracy.

 C: They can guarantee 100% training accuracy
on any training set where no two identical points have
different labels.

⃝ D: Decision trees are used for classification only,
not regression.

• A: False. We build them top-down, starting with the entire training set and dividing it at each step.

• B: False. Pruning improves validation accuracy but decreases training accuracy.

• C: True, if you don’t impose any max depth condition or use pruning.

• D: Just false.

(c) [4 pts] Select the true statements about random forests.

⃝ A: Restricting the trees to be shallow decreases the
bias.

 B: A random forest decreases the variance (com-

pared to a single decision tree).

 C: We restrict which features can be used for split-
ting in each treenode to decrease the correlation be-

2

tween the trees’ predictions. D: In a typical tree in the forest, some training
points are not used.

Choice A is the opposite of what is true. Choice B is the primary purpose of random forests. Choice C is true since taking
random features helps trees be more independent of one another. Choice D is true since we are using bootstrapping where we
sample with replacement.

(d) [4 pts] Select the valid reasons why you might choose not to use bagging on a particular training set.

⃝ A: Your model has low bias and high variance.

 B: Your model has high bias and low variance.

 C: You want your model to be interpretable.

⃝ D: You are solving a regression problem.

One of the main advantages of bagging is to reduce variance, but it does not improve bias, so A is incorrect and B is correct.
Bagging also reduces the interpretability of your model, so choice C is correct. Finally, you can use bagging even if you are
doing regression, so D is incorrect.

(e) [4 pts] Select the true statements about k-nearest neighbor classification.

 A: As k increases, the decision boundary tends to look smoother.

⃝ B: In 3-class classification, choosing k to be prime ensures there will never be a tie between classes.

 C: Even the slow, Θ(nd)-time exhaustive nearest neighbor algorithm is often used in practice.

 D: As the number of neighbors grows as k → ∞ and the number of training points grows even faster, so
n/k → ∞, the k-nearest neighbor error rate converges to the Bayes risk.

• A: True. When we consider more neighbors, the labels fluctuate less for small changes in features.

• B: False. For example, you could have ⌊ k
2 ⌋ of class A, ⌊ k

2 ⌋ of class B, and one of class C.

• C: True. In many cases, it’s the first algorithm you should try. Then optimize if it’s not fast enough or good enough.

• D: True. This is Fix & Hodges’ Theorem from 1951.

(f) [4 pts] Select the valid reasons that ReLUs may be preferred over sigmoids (logistic functions) as activation functions
for the hidden layers of a neural network.

 A: The forward and backward passes are compu-
tationally cheaper with ReLUs than with sigmoids.

⃝ B: The cost function of a ReLU-based neural net-
work, trained with the squared-error loss, will be con-
vex because the ramp (ReLU) function is convex.

 C: ReLUs are less vulnerable to the vanishing gra-
dient problem than sigmoids.

⃝ D: The cost function of a ReLU-based neural net-
work is smooth with a gradient defined everywhere in
weight space, whereas the cost function of a sigmoid-
based neural network is not.

• A: True. The forward and backward passes of ReLU only require a single thresholding operation, but you need to
compute an exponential for a sigmoid.

• B: False. The composition of two or more convex functions need not be convex. ReLU network rarely have convex cost
functions.

• C: True. Empirically, ReLUs don’t get stuck as often as sigmoids, and this is one of the main reasons why ReLUs have
largely replaced sigmoids as hidden unit activation functions. (See lecture 18).

• D: False. It’s exactly the opposite of that.

(g) [4 pts] Which steps are customarily (usually) part of training a neural network’s weights with backpropagation?

3

⃝ A: Computing the partial derivatives of each
weight with respect to each weight in the previous
layer.

 B: Computing the partial derivatives of a cost
function or loss function with respect to each weight.

 C: Computing the partial derivatives of a cost
function or loss function with respect to each hidden
unit value.

⃝ D: Computing the partial derivatives of a cost func-
tion or loss function with respect to each input feature.

• A: False. Weights do not depend on each other.

• B: True. That’s what we need for gradient descent.

• C: True. These values are needed as intermediate results to obtain the gradients with respect to the weights.

• D: False. We can’t change the training points, so these derivatives are not useful.

(h) [4 pts] Select the true statements about principal components analysis (PCA).

 A: The first principal component is always orthog-
onal to the second principal component.

⃝ B: We use the subset of principal components as-
sociated with the smallest eigenvalues of the sample
covariance matrix.

⃝ C: PCA requires the training points to have labels.

 D: If the sample covariance matrix has an eigen-
value of zero, the corresponding eigenvector (prin-
cipal component) is orthogonal to a hyperplane that
passes through all the training points.

• A: True. All the principal components are pairwise orthogonal.

• B: False. The largest eigenvalues.

• C: False. PCA is unsupervised learning.

• D: True. It indicates a principal component direction with zero variance.

(i) [4 pts] Select the true statements about the objective of principal components analysis (PCA).

 A: We want to find a subspace that minimizes the
mean of the squared projection distances.

⃝ B: We want to find a subspace that maximizes the
mean of the squared projection distances.

⃝ C: We want to find a subspace that minimizes the
sample variance of the projected sample points.

 D: We want to find a subspace that maximizes the
sample variance of the projected sample points.

We want to minimize mean squared projection distance and maximize sample variance of data, directly from lecture notes.

(j) [4 pts] Suppose that Ẋ ∈ Rn×d is a centered design matrix. Recall that its singular value decomposition (SVD) is written
Ẋ = UDV⊤. Select the true statements about principal components analysis (PCA) and the SVD.

 A: The principal components are columns of V .

 B: When k is much less than d, we can find k
principal components faster by computing a partial
SVD than we can by computing the eigenvectors of
the sample covariance matrix.

⃝ C: The principal coordinates for sample point Ẋi

appear in row i of V .

⃝ D: The diagonal entries of D are the eigenvalues
that correspond to the principal components.

The principal components are the columns of V , since vi is an eigenvector of Ẋ⊤Ẋ = VD2V⊤, and we compute the eigenvectors
of Ẋ⊤Ẋ in the original PCA algorithm.
SVD is faster, it takes O(ndk) time vs. O(nd2) to compute Ẋ⊤Ẋ alone in the original PCA algorithm.
The principal coordinates of the data are given by the rows of UD, since ẊV represents the principal coordinates, and ẊV =
UDV⊤V = UD.
The diagonal entries of D are the singular values; they must be squared to get the eigenvalues.

4

(k) [4 pts] While training your spam classifier in Homework 1, you observe that your soft-margin support vector machine’s
training accuracy is only 58% and the validation accuracy is 54%. Which interventions have a significant chance of
making it possible to obtain test accuracy on Kaggle of 80% or higher?

⃝ A: Try smaller values of the hyperparameter C.

⃝ B: Delete features with poor predictive power.

⃝ C: Obtain more training data.

 D: None of the above.

Poor training accuracy is a problem with underfitting/bias, which cannot be fixed by reducing C, deleting features, or adding
training data. Even if these measures decrease the variance, they won’t improve the training accuracy, and the validation/test
accuracy is (almost) never better than the training accuracy.

(l) [4 pts] Suppose we have two classes, A and B, and we wish to train a classifier to recognize them.

⃝ A: If we want to use decision theory (risk mini-
mization) to create a generative model, the two classes
must each have a normal distribution.

⃝ B: If the classes are not linearly separable and we
want to use a soft-margin support vector machine, we
must create added features or the training algorithm
will fail to output a classifier.

 C: If we have only one training point for class A
and only one training point (at a different location) for
class B, the centroid method classifier obtains 100%
training accuracy.

 D: If all the training points are at distinct loca-
tions, the 1-nearest neighbor algorithm obtains 100%
training accuracy.

A: No, decision theory works with many different distributions. For example, see Question 4 on this exam. B: No, a soft-margin
SVM can be directly trained on points that aren’t linearly separable. (By contrast, a hard-margin SVM will fail.) C: Yes; the
centroid classifier will always separate the two points. D: Yes.

(m) [4 pts] Consider a least squares problem where we have a design matrix X ∈ Rn×d (we don’t use a bias term) and a vector
of labels y ∈ Rn. We wish to learn a weight vector w ∈ Rd that minimizes RSS(w) = ∥Xw − y∥2. If X is invertible, the
least-squares solution is ŵ = (X⊤X)−1X⊤y. Select the true statements.

 A: n ≥ d is a necessary condition for X⊤X to be
invertible.

⃝ B: n ≥ d is a sufficient condition for X⊤X to be
invertible.

 C: If X is invertible, then there is a solution w∗

such that RSS(w∗) = 0.

 D: If we instead use ridge regression with a pos-
itive λ, then ridge regression always has a unique so-
lution regardless of the invertibility of X⊤X.

• Yes, if n < d, then r(X⊤X) = r(X) <= n < d, thus X⊤X cannot be full rank.

• No, X could still be singular. Consider a very long 0 matrix.

• Yes, the solution is w∗ = X−1y, thus Xw∗ = Iy = y.

• Yes, by the eigenshift property applied on (X⊤X + λI) and the fact that X⊤X is PSD.

(n) [4 pts] Select the true statements about AdaBoost.

⃝ A: AdaBoost is an ensemble method designed ex-
pressly to reduce the variance of decision trees.

⃝ B: After enough iterations, AdaBoost can always
obtain 100% training accuracy, regardless of what
classifier it uses.

 C: AdaBoost with decision trees typically uses
different criteria/hyperparameters to build the trees
than random forests do.

⃝ D: AdaBoost adjusts the weights of misclassified
training points to increase their information gain.

5

A. False; that’s random forests. AdaBoost is designed to reduce the bias, but it does not reliably reduce the variance. B.
False. In Discussion 9 we saw that an ensemble of stumps can’t compute XOR. More trivially, consider a classifier that always
returns 1, regardless of the input. C. True. AdaBoost is usually used with short trees, whereas random forests usually use deep
and often pure trees, because AdaBoost is a method for reducing the bias, whereas random forests are a technique for reducing
the variance. D. False. AdaBoost has nothing to do with information gain.

(o) [4 pts] Select the true statements about Lasso.

⃝ A: The Lasso regression coefficients have a closed-
form solution that can be computed by solving a linear
system of equations.

 B: Lasso becomes least-squares linear regression
when λ = 0.

⃝ C: The isocontours of the ℓ1-regularization term
are hypercubes (high-dimensional cubes).

 D: The main motivation of Lasso is that it tends
to select weights of zero for weakly predictive fea-
tures, which may reduce overfitting and improve in-
terpretability.

A. False, Lasso has no closed-form solution.
B. True. C. False, they’re cross-polytopes, which are not the same. (But the isocontours of ℓ∞-regularization are hypercubes.)
D. Yes, that’s the motivation!

(p) [4 pts] In a convolutional neural network, which of the following changes to network parameters will decrease the size
(number of units) of a hidden layer of the network?

 A: Increasing the size of the filters (masks) in
a convolutional layer. (Assume we do not use any
padding nor “periodic boundaries.”)

⃝ B: Increasing the number of filters (masks) in a
convolutional layer.

 C: Changing a pooling layer to use a 4× 4 sliding
window with stride 4 instead of a 2×2 sliding window
with stride 2.

⃝ D: Decreasing the size of the mini-batch used for
stochastic gradient descent.

A is correct because larger filters cut more off the edges of an image, yielding a smaller hidden layer. B is incorrect because
more filters require more hidden units. C is correct because the larger sliding window and stride means fewer hidden units after
pooling. D is incorrect because it’s comic relief.

(q) [4 pts] Consider a matrix X ∈ Rn×d with a singular value decomposition (SVD) X = UDV⊤. Which of the following
formulae are equal to the Moore–Penrose pseudoinverse X+? (Check a box only if it works for every X.)

⃝ A: VD−1U⊤

 B: VD+U⊤

 C: VD+DD+U⊤

 D: VV⊤VD+U⊤UU⊤

B is a good working definition of Moore–Penrose pseudoinverse. A is flawed because D might not be invertible. D is equivalent
to B because V⊤V = I and U⊤U = I. C is equivalent to B because D+DD+ = D+.

(r) [4 pts] Below are four examples where we have written a line of pseudocode from a primal, unfeaturized learning
algorithm followed by the equivalent line in a dualized, featurized, kernelized version of the same learning algorithm.
The primal algorithm computes the weight vector w ∈ Rd, and the kernelized algorithm computes the dual weight
vector a ∈ Rn. The inputs are the design matrix X ∈ Rn×d and a vector of labels y ∈ Rn. The kernel matrix is K ∈ Rn×n

and the kernel function is k(·, ·). Select the cases where the kernelized version correctly duplicates the effect of the
primal version.

 A: primal: w← w + X⊤v
kernelized: a← a + v

 B: primal: h(z)← s(w⊤z)

kernelized: h(z)← s

 n∑
i=1

ai k(Xi, z)

 C: primal: w← w + ϵ X⊤ (y − s(X w))
kernelized: a← a + ϵ (y − s(Ka))

⃝ D: primal: τ← ∥w∥2

kernelized: τ← a⊤K2a

6

B and C are taken directly from the primal/featurized and dual/kernelized logistic regression algorithms presented in lecture. A
is a simpler transformation similar to C. But D is wrong because Ka produces Xw, not w.

Extra space: if you need extra space for your answer to a written problem on pages 6–12, you may write here. Be sure to write
“see page 5” under the unfinished answer!

7

Q2. [18 pts] Decision Tree Construction
You’re investigating the habits of UC Berkeley students. You collect data about whether students climb, drink coffee, and are
night owls. You want to use those habits and a decision tree to predict if students are taking CS 189. Each training student is
labeled with one of two classes: 189 or MissingOut (not taking 189). Here is the training data you’ve gathered. (Note that the
student numbers are not features and you can’t split on them.)

Climbs Drinks Coffee Night Owl Taking CS 189 (label)
Student 1 Yes Yes No 189
Student 2 No No Yes 189
Student 3 Yes No Yes MissingOut
Student 4 No No No MissingOut
Student 5 No No Yes 189
Student 6 No Yes Yes 189
Student 7 Yes No Yes MissingOut
Student 8 Yes Yes No 189

(a) [4 pts] What is the entropy H at the root of the tree? Your expression can contain logarithms and fractions.

There are 8 people, 5 of whom are taking 189 and 3 of whom are losers.

H = −
5
8

log2
5
8
−

3
8

log2
3
8
≈ 0.9544.

(The decimal approximation is not required.)

(b) [6 pts] Which feature should you split on at the root to maximize the information gain? Write an expression for
the information gain of the best split. Your expression can contain logarithms and fractions, but simplify the fractions
as much as possible. Show your work.

The best split is on whether or not a person drinks coffee. This split gives us a pure leaf node with 3 people in it.

Before calculating any entropies, we consider what happens if we choose to split on each feature. If we split on coffee, the Yes
subtree is pure with 3 189 students, and the No subtree has a 2-3 split. If we split on being a night owl, the No subtree has a
2-1 split and the Yes subtree has a 3-2 split. If we split on climbing, the Yes subtree has a 2-1 split and the No subtree has a 3-2
split. All three cases have one child with a 3-2 split, but only coffee can deliver a pure leaf node (zero entropy) right away.

Recall that the entropy after a split is Hafter =
|S l|H(S l) + |S r |H(S r)

|S l| + |S r |
. We split on coffee, so the information gain is

Hbefore − Hafter =

(
−

5
8

log2
5
8
−

3
8

log2
3
8

)
−

(
3
8

(−1 log2 1) +
5
8

(
−

2
5

log2
2
5
−

3
5

log2
3
5

))
= −

5
8

log2
5
8
−

3
8

log2
3
8
+

1
4

log2
2
5
+

3
8

log2
3
5
≈ 0.348.

Students are not expected to show the information gain for other splits, but we include it below (it’s the same for climbing and
night owls) as proof that coffee is the best split.

Hbefore − Hafter =

(
−

5
8

log2
5
8
−

3
8

log2
3
8

)
−

(
3
8

(
−

1
3

log2
1
3
−

2
3

log2
2
3

)
+

5
8

(
−

2
5

log2
2
5
−

3
5

log2
3
5

))
≈ 0.003.

8

(c) [4 pts] Draw the complete decision tree that maximizes the information gain at each split. In each leaf, write

– what class is assigned (189 or MissingOut) and
– which training points reach that leaf (numbered 1–8).

For each internal treenode, write

– the splitting feature and
– which child is “Yes” and which child is “No.”

Split until all the leaves are pure. Do not write any entropies or information gains.

Drinks coffee?

Yes: 189 (1, 6, 8) No→ Climbs?

Yes: MissingOut (3, 7) No→ Night Owl?

Yes: 189 (2, 5) No: MissingOut (4)

(d) [4 pts] Suppose that we are building a random forest with this training set, but we do not use bagging and every tree
receives the full training set; the only randomization we use is randomized selection of features at each treenode (in the
usual way taught in class). After training the forest, you discover that the first tree in your ensemble classifies a test point
in which all three features are “Yes” as MissingOut. By contrast, your tree in part (c) (if it’s correct) predicts 189.

Explain what must have happened during training that led to the tree in the random forest making a different prediction
than your tree from part (c).

When the root was split, the feature “Drinks Coffee” was not available because of the randomized choice of features to split on.

9

Q3. [20 pts] Backpropagation
Consider a fully-connected neural network with d units in the input layer, one hidden layer of k units with ReLU activations, and
a single output unit with a sigmoid activation. (Hence there are two layers of weight connections.) We are using the network for
two-class classification; we predict in-class for z > 0.5 or out-of-class for z ≤ 0.5. Each training point Xi ∈ R

d is accompanied
by a ground truth label yi equal to either 1 (in class) or 0 (not in class). We train our model with stochastic gradient descent
(one training point at a time; no batches or mini-batches) and the logistic loss L(z, y) (for prediction z and label y).

Let V ∈ Rk×d be the weight matrix associated with the first layer of connections. As there is only one output unit, we represent
the weights in the second layer of connections as a vector w ∈ Rk. For simplicity, we do not use bias terms. Here is pseudocode
for the forward pass with training point x ∈ Rd, label y ∈ {0, 1}, hidden layer h ∈ Rk, and output z ∈ R.

h ← r(V x) hidden units; r is the ramp function (a ReLU) applied element-wise to the vector V x
z ← s(w⊤h) z is the output unit; s(γ) = 1/(1 + e−γ) is the sigmoid/logistic function
L ← −y ln z − (1 − y) ln(1 − z) compute the logistic loss

Work out the equations for backpropagation in this neural network. The derivatives and gradients we ask you to derive may
include x, h, z, w, V , y, and/or components of those vectors and matrix. Your final formulae may not include s nor s′; express
derivatives related to the sigmoid function in terms of x, h, z, w, V , and/or y. All vectors and gradients are column vectors.

(a) [2 pts] Write the derivative r′ of the ramp function r(γ) (where γ is a scalar real value). To make backpropagation
work, choose a reasonable value for r′ at γ = 0 (rather than the actual derivative).

r′(γ) =
{

1, γ ≥ 0,
0, γ < 0.

At γ = 0, any value in [0, 1] will do.

(b) [3 pts] Derive
∂L
∂z

.

∂L
∂z
= −

y
z
+

1 − y
1 − z

.

(c) [3 pts] Derive
∂L
∂hi

as a function of
∂L
∂z

, as well as x, h, z, w, and/or V . (Do not substitute your expression from part (b)

yet; you’ll do that in part (d).) Show your work. We want to see s′ in an intermediate step, but not in your final answer.

∂L
∂hi
=
∂L
∂z
∂z
∂hi
=
∂L
∂z

s′(w⊤h)wi =
∂L
∂z

s(w⊤h)(1 − s(w⊤h))wi =
∂L
∂z

z(1 − z)wi.

(d) [3 pts] Substitute your expression for
∂L
∂z

from part (b) into your expression for
∂L
∂hi

from part (c) and simplify as much

as possible. Show your work. Hint: there should be no need for a fraction in your final answer.

∂L
∂hi
=

(
−

y
z
+

1 − y
1 − z

)
z(1 − z)wi = (−y(1 − z) + (1 − y)z)wi = (z − y)wi.

10

(e) [2 pts] Derive ∇wL as a function of
∂L
∂z

. Then substitute in your expression for
∂L
∂z

from part (b) and simplify as

much as possible. Again, do not have s′ in your final answer. (There’s no need to show your work this time.)

∇wL =
∂L
∂z
∇wz =

∂L
∂z

z(1 − z)h = (z − y)h.

(f) [2 pts] Let V⊤i denote the ith row of V (so Vi is a column vector). Derive ∇Vi L as a function of
∂L
∂hi

, as well as x, h, z, w,

and/or V . Your final answer may have r′ in it.

∇Vi L =
∂L
∂hi
∇Vi hi =

∂L
∂hi

r′(V⊤i x)x.

(g) [3 pts] Write pseudocode to perform a pass of backpropagation (following the forward pass we wrote above) and
a step of stochastic gradient descent with learning rate (step size) ϵ, given a single training point x and a label y. Do not
directly compute ∂L

∂z , as we want to take advantage of the simplifications in parts (d) and (e).

∇wL← (z − y)h
∂L
∂hi
← (z − y)wi for all i ∈ [1, k]

∇Vi L←
∂L
∂hi

r′(V⊤i x)x for all i ∈ [1, k]

w← w − ϵ∇wL

Vi ← Vi − ϵ∇Vi L for all i ∈ [1, k]

Grading note: make sure w is not updated before ∂L/∂hi is computed!

It is also acceptable to write w← w − ϵ(z − y)h and Vi ← Vi − ϵ
∂L
∂hi

r′(V⊤i x)x.

(h) [2 pts] Suppose we run batch gradient descent to convergence with this neural network, so V and w are at a local
minimum of the cost function, which is the mean of the training points’ loss functions. After the network is trained,
let Hi ∈ R

k be the value of the vector of hidden units when the training point Xi is presented at the inputs of the neural
network. Suppose we run logistic regression with no bias term (no α) on the points H1,H2, . . . ,Hn with the labels
y1, y2, . . . , yn, obtaining a weight vector wlogreg. What is the relationship between the final neural network weights V
and w and the final logistic regression weights wlogreg?

w = wlogreg. (The last stage of the neural network is doing logistic regression on the hidden unit values.)

11

Q4. [14 pts] The Bayes Classifier
We have a distribution D of real numbers with class labels. When we draw a random point-and-label (X,Y) ∼ D, There is
a 40% chance that the label Y is class A, in which case X is a random real number drawn from a uniform distribution on the
interval [−1, 1]. There is a 60% chance that the label Y is class B, in which case X is a random real number drawn from a
distribution on [−1, 1] with the probability density function (PDF) fX|Y=B(x) = 1 − |x|. We will use the 0-1 loss function.

(a) [6 pts] What is the Bayes optimal decision boundary? Show your work. (Hint: it might help you to draw a plot.)

For points in class A, the PDF is fX|Y=A(x) = 0.5 (on the domain [−1, 1]) and the posterior probability is

P(Y = A|X = x) =
fX|Y=A(x)P(Y = A)

f (x)
=

0.2
f (x)
.

For points in class B, the posterior probability is

P(Y = B|X = x) =
fX|Y=B(x)P(Y = B)

f (x)
=

0.6(1 − |x|)
f (x)

.

The Bayes optimal decision boundary consists of the two points where P(Y = A|X = x) = P(Y = B|X = x), or equivalently
0.2 = 0.6(1 − |x|), so the two points are x = ±2/3.

(b) [4 pts] What is the Bayes decision rule r∗(x)? (Over the domain [−1, 1]; don’t worry about points outside that range.)

The Bayes decision rule r∗(x) returns class B for x ∈ (−2/3, 2/3) and class A for x < −2/3 or x > 2/3. (If x is one of the two
points on the decision boundary, r∗ can return either A or B; we don’t really care which.)

(c) [4 pts] What is the Bayes risk R(r∗)? Show your work and express your answer as an exact fraction. (If you drew a
plot, it should help you here too.)

R(r∗) =

∫ 1

−1
min

y
fX|Y=y(x) P(Y = y) dx

=

∫ −2/3

−1
fX|Y=B(x) P(Y = B) dx +

∫ 2/3

−2/3
fX|Y=A(x) P(Y = A) dx +

∫ 1

2/3
fX|Y=B(x) P(Y = B) dx

=

∫ −2/3

−1
0.6(1 + x) dx +

∫ 2/3

−2/3
0.2 dx +

∫ 1

2/3
0.6(1 − x) dx

= 0.1/3 + 0.8/3 + 0.1/3
= 1/3.

12

Q5. [12 pts] CS 189/289A Art School
(a) [6 pts] Consider a range space (R2,H) where H is the set of all lines in the plane. (Not halfplanes; lines! Not line

segments; infinite lines! A point x ∈ R2 is in class C if x lies precisely on the line; otherwise it’s not in class C. Yes, it’s
not a very useful classifier.)

Consider a set X of three collinear (but distinct) points in the plane. (Collinear means they all lie on a common line.)
How many dichotomies of X can you obtain with the hypothesis class H? Draw all of the dichotomies: for each
dichotomy, draw the three points and a hypothesis that generates the dichotomy.

There are five.

(b) [6 pts] Let’s do hierarchical clustering in one dimension. Specifically, we will do agglomerative clustering with complete
linkage (which you might think of as the “max” linkage) on the numbers listed below. Draw the dendrogram for the
points {0, 5, 8, 9, 11, 15, 18}. The distance function for two individual points p and q is d(p, q) = |p − q|. Make sure you
draw the horizontal bars at the correct heights! We have included two copies of the figure in case your first drawing is
wrong and you need to start over, but you only need to draw one.

0 5 8 9 11 15 18

1

18

10

5

13

Q6. [14 pts] Random Projection
Recall the method of random projection, where we project every sample point x ∈ Rd onto a randomly chosen k-dimensional
subspace S ⊂ Rd, where k < d. Let’s consider a closely related method for dimensionality reduction that also approximately
preserves distances between points (with high probability).

(a) [4 pts] Recall from our discussion of principal components analysis (PCA) that, if two conditions hold, we can orthog-
onally project a point x ∈ Rd onto the subspace spanned by the vectors v1, . . . , vk with the formula x̃ =

∑k
i=1(x · vi) vi.

What two conditions must v1, . . . , vk satisfy for this formula to be correct?

The vectors v1, . . . , vk must have unit length and be pairwise orthogonal to each other.

(b) [5 pts] Consider a random matrix G ∈ Rk×d, with k < d. Every component of G is a random real number Gi j ∼ N(0, 1/d);
that is, every component is drawn from a univariate normal distribution with mean zero and variance 1/d. These compo-
nents are all independent of each other. Consider a (not random) vector x ∈ Rd. Show that the expected squared ℓ2-norm
of Gx is

E
[
∥Gx∥2

]
=

k
d
∥x∥2.

∥Gx∥2 =
k∑

i=1

d∑
j=1

(
Gi jx j

)2
.

As x is not random,

E[∥Gx∥2] =
k∑

i=1

d∑
j=1

E[G2
i j]x2

j .

E[G2
i j] is the variance of Gi j, which is 1/d. So

E[∥Gx∥2] =
k∑

i=1

d∑
j=1

1
d

x2
j =

k
d
∥x∥2.

(c) [5 pts] The result in part (b) suggests that if we choose a random G as described in part (b) and replace the sample points
X1, X2, . . . , Xn ∈ R

d with the k-dimensional points

X̃1 =

√
d
k

GX1, X̃2 =

√
d
k

GX2, . . . , X̃n =

√
d
k

GXn,

the distance between two points might not “change much”; that is, ∥X̃i − X̃ j∥ is an approximation of ∥Xi − X j∥. This is
similar to computing an orthogonal projection onto a randomly chosen k-dimensional subspace, but not quite the same.

In the limit as d → ∞ (with k fixed), why does this method become functionally the same as the method of random
projection? Hint: what two counterintuitive properties of vectors in high-dimensional spaces are relevant, and which
vectors should we apply them to? (A written answer suffices; no math is necessary.)

In high-dimensional spaces, random vectors from a normal distribution are approximately the same length and approximately
orthogonal to each other. We apply these properties to the rows of G.

In the limit as d → ∞, the length of every row of G approaches 1 and the dot product of every pair of distinct rows of G
approaches zero. Hence, in the limit Gx approaches an orthogonal projection of x onto the subspace spanned by G’s rows.

14

