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Abstract 
We present a new, real-time method for rendering diffuse and 
glossy objects in low-frequency lighting environments that cap-
tures soft shadows, interreflections, and caustics.  As a preprocess, 
a novel global transport simulator creates functions over the 
object’s surface representing transfer of arbitrary, low-frequency 
incident lighting into transferred radiance which includes global 
effects like shadows and interreflections from the object onto 
itself.  At run-time, these transfer functions are applied to actual 
incident lighting.  Dynamic, local lighting is handled by sampling 
it close to the object every frame; the object can also be rigidly 
rotated with respect to the lighting and vice versa.  Lighting and 
transfer functions are represented using low-order spherical 
harmonics. This avoids aliasing and evaluates efficiently on 
graphics hardware by reducing the shading integral to a dot 
product of 9 to 25 element vectors for diffuse receivers.  Glossy 
objects are handled using matrices rather than vectors.  We further 
introduce functions for radiance transfer from a dynamic lighting 
environment through a preprocessed object to neighboring points 
in space.  These allow soft shadows and caustics from rigidly 
moving objects to be cast onto arbitrary, dynamic receivers.  We 
demonstrate real-time global lighting effects with this approach. 
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1. Introduction 

Lighting from area sources, soft shadows, and interreflections are 
important effects in realistic image synthesis.  Unfortunately, 
general methods for integrating over large-scale lighting environ-
ments [8], including Monte Carlo ray tracing [7][21][25], rad-
iosity [6], or multi-pass rendering that sums over multiple point 
light sources [17][27][36], are impractical for real-time rendering.   

Real-time, realistic global illumination encounters three difficul-
ties – it must model the complex, spatially-varying BRDFs of real 
materials (BRDF complexity), it requires integration over the 
hemisphere of lighting directions at each point (light integration), 
and it must account for bouncing/occlusion effects, like shadows, 
due to intervening matter along light paths from sources to receiv-
ers (light transport complexity).  Much research has focused on 
extending BRDF complexity (e.g., glossy and anisotropic reflec-
tions), solving the light integration problem by representing 
incident lighting as a sum of directions or points.  Light integra-
tion thus tractably reduces to sampling an analytic or tabulated 
BRDF at a few points, but becomes intractable for large light 
sources.   A second line of research samples radiance and pre-
convolves it with kernels of various sizes [5][14][19][24][34].  
This solves the light integration problem but ignores light trans-
port complexities like shadows since the convolution assumes the 
incident radiance is unoccluded and unscattered.  Finally, clever 
techniques exist to simulate more complex light transport, espe-
cially shadows.  Light integration becomes the problem; these 
techniques are impractical for very large light sources.   

Our goal is to better account for light integration and light trans-
port complexity in real-time.  Our compromise is to focus on low-

frequency lighting environments, using a low-order spherical 
harmonic (SH) basis to represent such environments efficiently 
without aliasing.  The main idea is to represent how an object 
scatters this light onto itself or its neighboring space. 

To describe our technique, assume initially we have a convex, 
diffuse object lit by an infinitely distant environment map.  The 
object’s shaded “response” to its environment can be viewed as a 
transfer function, mapping incoming to outgoing radiance, which 
in this case simply performs a cosine-weighted integral.  A more 
complex integral captures how a concave object shadows itself, 
where the integrand is multiplied by an additional transport factor 
representing visibility along each direction.   

Our approach is to precompute for a given object the expensive 
transport simulation required by complex transfer functions like 
shadowing.  The resulting transfer functions are represented as a 
dense set of vectors or matrices over its surface.  Meanwhile, 
incident radiance need not be precomputed.  The graphics hard-
ware can dynamically sample incident radiance at a number of 
points.  Analytic models, such as skylight models [33] or simple 
geometries like circles, can also be used.   

By representing both incident radiance and transfer functions in a 
linear basis (in our case, SH), we exploit the linearity of light 
transport to reduce the light integral to a simple dot product 
between their coefficient vectors (diffuse receivers) or a simple 
linear transform of the lighting coefficient vector through a small 
transfer matrix (glossy receivers).  Low-frequency lighting envi-
ronments require few coefficients (9-25), enabling graphics 
hardware to compute the result in a single pass (Figure 1, right).  
Unlike Monte-Carlo and multi-pass light integration methods, our 
run-time computation stays constant no matter how many or how 
big the light sources, and in fact relies on large-scale, smooth 
lighting to limit the number of SH coefficients necessary.  

We represent complex transport effects like interreflections and 
caustics in the transfer function.  Since these are simulated as a 
preprocess, only the transfer function’s basis coefficients are 
affected, not the run-time computation.  Our approach handles 
both surface and volume-based geometry.   With more SH coeffi-
cients, we can even handle glossy (but not highly specular) 
receivers as well as diffuse, including interreflection.  25 coeffi-
cients suffice for useful glossy effects.   In addition to transfer 
from a rigid object to itself, called self-transfer, we generalize the 
technique to neighborhood-transfer from a rigid object to its 
neighboring space, allowing cast soft shadows, glossy reflections, 
and caustics on dynamic receivers, see Figure 7.  

  
Figure 1: Precomputed, unshadowed irradiance from [34] (left) vs. our 
precomputed transfer (right).  The right model can be rendered at 129Hz 
with self-shadowing and self-interreflection in any lighting environment. 

 


