Tutorials and Reviews
Tutorials and Reviews
Bayesian nonparametric learning: Expressive priors for intelligent systems.
M. I. Jordan.
In R. Dechter, H. Geffner, and J. Halpern (Eds.),
Heuristics, Probability and Causality: A Tribute to Judea Pearl,
College Publications, 2010.
Hierarchical models, nested models and completely random measures.
M. I. Jordan.
In M.-H. Chen, D. Dey, P. Mueller, D. Sun, and K. Ye (Eds.),
Frontiers of Statistical Decision Making and Bayesian
Analysis: In Honor of James O. Berger,
New York: Springer, 2010.
Hierarchical Bayesian nonparametric models with applications.
Y. W. Teh and M. I. Jordan.
In N. Hjort, C. Holmes, P. Mueller, and S. Walker (Eds.),
Bayesian Nonparametrics: Principles and Practice,
Cambridge, UK: Cambridge University Press, 2010.
Graphical models, exponential families, and variational inference.
M. J. Wainwright and M. I. Jordan.
Foundations and Trends in Machine Learning, 1, 1-305, 2008.
[Substantially revised and expanded version of a 2003 technical report.]
Dirichlet processes, Chinese restaurant processes and all that.
M. I. Jordan. Tutorial presentation at the NIPS Conference, 2005.
A variational principle for graphical models.
M. J. Wainwright and M. I. Jordan.
New Directions in Statistical Signal Processing: From Systems to Brain.
Cambridge, MA: MIT Press, 2005.
Graphical models. M. I. Jordan.
Statistical Science (Special Issue on Bayesian Statistics),
19, 140-155, 2004.
An introduction to MCMC for machine learning.
C. Andrieu, N. de Freitas, A. Doucet and M. I. Jordan.
Machine Learning, 50, 5-43, 2003.
Graphical models: Probabilistic inference.
M. I. Jordan and Y. Weiss. In M. Arbib (Ed.),
The Handbook of Brain Theory and Neural Networks, 2nd edition.
Cambridge, MA: MIT Press, 2002.
Learning in modular and hierarchical systems.
M. I. Jordan and R. A. Jacobs. In M. Arbib (Ed.),
The Handbook of Brain Theory and Neural Networks, 2nd edition.
Cambridge, MA: MIT Press, 2002.
Discorsi sulle reti neurali e l'apprendimento.
C. Domeniconi and M. I. Jordan. Milan: Edizioni Franco Angeli, 2001.
An introduction to variational methods for graphical models.
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.
In M. I. Jordan (Ed.), Learning in Graphical Models,
Cambridge: MIT Press, 1999.
Computational motor control.
M. I. Jordan and D. M. Wolpert.
In M. Gazzaniga (Ed.), The Cognitive Neurosciences, 2nd edition,
Cambridge: MIT Press, 1999.
Neural networks.
M. I. Jordan and C. Bishop.
In Tucker, A. B. (Ed.), CRC Handbook of Computer Science,
Boca Raton, FL: CRC Press, 1997.
Probabilistic independence networks for hidden Markov probability
models.
P. Smyth, D. Heckerman, and M. I. Jordan.
Neural Computation, 9, 227-270, 1997.
Computational aspects of motor control and motor learning.
M. I. Jordan.
In H. Heuer and S. Keele (Eds.), Handbook of Perception and Action:
Motor Skills, New York: Academic Press, 1996.
Why the logistic function? A tutorial discussion on probabilities
and neural networks.
M. I. Jordan.
MIT Computational Cognitive Science Report 9503, August 1995.
Optimal control: A foundation for intelligent control.
D. A. White and M. I. Jordan.
In D. A. White, and D. A. Sofge (Eds.), Handbook of Intelligent Control,
Amsterdam: Van Nostrand, 1992.
An introduction to linear algebra in parallel, distributed processing.
M. I. Jordan.
In D. E. Rumelhart and J. L. McClelland, (Eds.),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Cambridge, MA: MIT Press, 1986.