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Abstract

We introduce a new statistical model for patterns of Linkage Disequilibrium (LD) among multiple
SNPs in a population sample. The model overcomes limitations of existing approaches to under-
standing, summarizing, and interpreting LD by (i) relating patterns of LD directly to the underlying
recombination process; (ii) considering all loci simultaneously, rather than pairwise; (iii) avoiding
the assumption that LD necessarily has a “block-like” structure; and (iv) being computationally
tractable for huge genomic regions (up to complete chromosomes). We examine in detail one nat-
ural application of the model: estimation of underlying recombination rates from population data.
Using simulation, we show that in the case where recombination is assumed constant across the
region of interest, recombination rate estimates based on our model are competitive with the very
best of current available methods. More importantly, we demonstrate, on real and simulated data,
the potential of the model to help identify and quantify fine-scale variation in recombination rate
from population data. We also outline how the model could be useful in other contexts, such as in
the development of more efficient haplotype-based methods for LD mapping.
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1 Introduction

Linkage disequilibrium (LD) is the non-independence, at a population level, of the alleles carried
at different positions in the genome. The patterns of LD observed in natural populations are the
result of a complex interplay between genetic factors, and the population’s demographic history.
In particular, recombination plays a key role in shaping patterns of LD in a population. When
a recombination occurs between two loci, it tends to reduce the dependence between the alleles
carried at those loci, and thus reduce LD. Although recombination events in a single meiosis are
relatively rare over small regions, the large total number of meioses that occur each generation in
a population have a substantial cumulative effect on patterns of LD, and so molecular data from
population samples contain valuable information on fine-scale variations in recombination rate.

Despite the undoubted importance of understanding patterns of LD across the genome, most
obviously because of its potential impact on the design and analysis of studies to map disease genes
in humans, most current methods for interpreting and analyzing patterns of LD suffer from at least
one of the following limitations:

1. They are based on computing some measure of LD defined only forpairsof sites, rather than
considering all sites simultaneously.

2. They assume a “block-like” structure for patterns of LD, which may not be appropriate at all
loci.

3. They do not directly relate patterns of LD to biological mechanisms of interest, such as the
underlying recombination rate.

As an example of the limitations of current methods, consider Figure 1, which shows a graphical
display of pairwise LD measures for six simulated data sets, simulated under various models for
heterogeneity in the underlying recombination rate. The reader is invited to speculate on what the
underlying models are in each case — the answer appears in the caption to Figure 8. In each of
the six figures one could identify by eye, or by some quantitative criteria (e.g.DALY et al. 2001,
OLIVIER et al.2001,WANG et al.2002), “blocks” of sites, such that LD tends to be high among
markers within a block. In some cases there might also be little LD between markers in different
“blocks”, which might be interpreted as evidence for variation in local recombination rates: low
recombination rates within the blocks, and higher rates between the blocks. Indeed,JEFFREYS

et al.(2001) have shown, using sperm-typing, that in the class II region of MHC, variations in local
recombination rate are indeed responsible for block-like patterns of LD. However, without this type
of experimental confirmation, which is currently technically challenging and time consuming, it
is difficult to distinguish between blocks that arise due to recombination rate heterogeneity, and
blocks that arise due to chance, perhaps through chance clustering of recombination events in the
ancestry of the particular sample being considered (WANG et al.2002). The ability to distinguish
between these cases would of course be interesting from a basic science standpoint — for example,
in helping to identify sequence characteristics associated with recombination hotspots. In addition,
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Figure 1: Plots of LD measurement,|D′|, (lower right triangle) andp-value for Fisher’s exact
test (upper right triangle) for every pair of sites with minor allele frequency> 0.15, in data sets
simulated under varying assumptions about variation in the local recombination rate. Details of
the models used to simulate each data set appear in the caption to Figure 8, which is based on the
same six data sets.

it would have important implications for the design and analysis of LD mapping studies. For
example, it would help in predicting patterns of variation at sites that have not been genotyped
(perhaps sites influencing susceptibility to a disease), and it would provide some indication of
whether block structures observed in one sample are likely to be replicated in other samples —
a crucial requirement for being able to select representative “tag” SNPs (JOHNSON et al. 2001)
based on LD patterns observed in some reference sample.

In this paper we introduce a statistical model for LD that overcomes the limitations of existing
approaches by relating genetic variation in a population sample to the underlying recombination
rate. We examine in detail one natural application of the model: estimation of underlying recombi-
nation rates from population data. Using simulation, we show that in the case where recombination
is assumed constant across the region of interest, recombination rate estimates based on our model
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are competitive with the very best of current available methods. More importantly, we demonstrate,
on real and simulated data, the potential of the model to help identify and quantify fine-scale vari-
ation in recombination rate (including “recombination hotspots”) from population data.

Although we focus here on estimating recombination rates, we view the model as being useful
more broadly, in interpreting and analyzing patterns of LD across multiple loci. In particular, as
we outline in our discussion, the model could be helpful in the development of more efficient
haplotype-based methods for LD mapping, along the lines of, for example,MCPEEK andSTRAHS

(1999),MORRISet al. (2000), andL IU et al. (2001).

2 Models

2.1 Background

The most successful current approaches to constructing statistical models relating genetic variation
to the underlying recombination rate (and to other genetic and demographic factors) are based on
the coalescent (K INGMAN 1982), and its generalization to include recombination (HUDSON1983).
Although these approaches are based on rather simplistic assumptions about the demographic his-
tory of the population from which individuals were sampled, and about the evolutionary processes
acting on the genetic region being studied, they have nonetheless proven useful in a variety of ap-
plications. In particular, they provide a helpful simulation tool (e.g. software described inHUDSON

2002), allowing more realistic data to be generated under various assumptions about underlying
biology and demography, and hence aid exploration of what patterns of LD might be expected
under different scenarios (KRUGLYAK 1999;PRITCHARD andPRZEWORSKI2001).

Despite the ease with which coalescent models can besimulatedfrom, using these models
for inferenceremains extremely challenging. For example, consider the problem of estimating
the underlying recombination rate in a region, using data from a random population sample. It
follows from coalescent theory that population samples contain information on the value of the
product of the recombination ratec, and the effective (diploid) population sizeN, but not onc and
N separately. It has therefore become standard to attempt to estimate the compound parameter
ρ = 4Nc, and several methods have been proposed. Some (e.g.GRIFFITHSandMARJORAM 1996,
NIELSEN 2000,KUHNER et al.2000,FEARNHEAD andDONNELLY 2001) try to make use of the
full molecular data available. However, although such methods have been applied successfully
to small regions and non-recombining parts of the genome (HARDING et al. 1997; HAMMER

et al. 1998;NIELSEN 2000;KUHNER et al. 2000;FEARNHEAD andDONNELLY 2001), for even
moderate-sized autosomal regions (e.g. a few kilobases in humans) they become computationally
impractical (FEARNHEAD andDONNELLY 2001). Other methods, many of which are considered
by WALL (2000), make use of only summaries of the data, substantially reducing computational
requirements at the expense of some loss in efficiency.

More recently,HUDSON (2001) andFEARNHEAD and DONNELLY (2002) proposed “com-
posite likelihood” methods for estimatingρ over moderate to large genomic regions. Hudson’s
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method is based on multiplying together likelihoods for every pair of sites genotyped, where these
pairwise likelihoods are computed via simulation, assuming an “infinite-sites” mutation model
(i.e. no repeat mutation). This method has been modified byMCVEAN et al. (2002) to allow for
repeat mutation. Fearnhead and Donnelly’s method is based on dividing data on a large region
into smaller regions, and multiplying likelihoods obtained for each smaller region. These meth-
ods, together with the best of the summary-statistic-based methods ofWALL (2000), appear to
be the most accurate of existing methods for estimating recombination rates from patterns of LD
over moderate to large genomic regions. None of these methods, as currently implemented, allows
explicitly for variation in recombination rate along the region under study.

2.2 A New Model

Here we describe a new model for LD, which enjoys many of the advantages of coalescent-based
methods (e.g. it directly relates LD patterns to the underlying recombination rate) while remaining
computationally tractable for huge genomic regions, up to entire chromosomes. Our model relates
the distribution of sampled haplotypes to the underlying recombination rate, by exploiting the
identity

Pr(h1, . . . ,hn|ρ) = Pr(h1|ρ)Pr(h2|h1;ρ) . . .Pr(hn|h1, . . . ,hn−1;ρ), (1)

whereh1, . . . ,hn denote then sampled haplotypes, andρ denotes the recombination parameter
(which may be a vector of parameters if the recombination rate is allowed to vary along the region).
This identity expresses the unknown probability distribution on the left as a product of conditional
distributions on the right. For simplicity we will often use the notationπ to denote these conditional
distributions. While the conditional distributions are not computationally tractable for models of
interest, they are amenable to approximation, as we describe below. Our strategy is to substitute an
approximation for these conditional distributions (π̂ say) into the right hand side of (1), to obtain
an approximation to the distribution of the haplotypesh givenρ :

Pr(h1, . . . ,hn|ρ)≈ π̂(h1|ρ)π̂(h2|h1;ρ) . . . π̂(hn|h1, . . . ,hn−1;ρ). (2)

We refer to this model as a “Product of Approximate Conditionals” (PAC) model, and to the cor-
responding likelihood as a PAC likelihood, which we denoteLPAC. Explicitly

LPAC(ρ) = π̂(h1|ρ)π̂(h2|h1;ρ) . . . π̂(hn|h1, . . . ,hn−1;ρ). (3)

Similarly, we will refer to the value ofρ that maximizesLPAC as amaximum PAC likelihood
estimatefor ρ , and denote it bŷρPAC.

The utility of the model (3) will naturally depend on the use of an appropriate approximation
for the conditional distributionπ. This approximation should be designed to answer the following
question: if, at a particular locus, in a random sample ofk chromosomes from a population, we
observe genetic typesh1, . . . ,hk, what is the conditional distribution of the type of the next sam-
pled chromosome,Pr(hk+1|h1, . . . ,hk)? We are aware of three forms forπ in the literature, each
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of which attempts to answer this question under different assumptions for the genetic model un-
derlying the loci being studied. The first and best-known comes from theEwens sampling formula
(EWENS 1972). This arises from considering a neutral locus in a randomly-mating population,
evolving with constant (diploid) sizeN and mutation rateµ per generation, and assuming an “infi-
nite alleles” mutation model, where each mutation creates a novel (previously unseen) haplotype.
Under these idealized conditions, if we letθ = 4Nµ, then with probabilityk/(k+ θ) thek+ 1st
haplotype is an exact copy of one of the firstk haplotypes chosen at random, otherwise it is a novel
haplotype. Although the assumptions underlying this formula will never hold in practice, it does
capture the following properties that we would expect to hold more generally:

(i) the next haplotype is more likely to match a haplotype that has already been observed many
times than one that has been observed less frequently.

(ii) the probability of seeing a novel haplotype decreases ask increases.

(iii) the probability of seeing a novel haplotype increases asθ increases.

However, for modern molecular data, and for sequence data and SNP data in particular, it fails to
capture the two following properties:

(iv) if the next haplotype is not exactly the same as an existing (i.e. previously-seen) haplotype,
it will tend to differ by a small number of mutations from an existing haplotype, rather than
to be completely different from all existing haplotypes.

(v) due to recombination, the next haplotype will tend to look somewhat similar to existing
haplotypes over contiguous genomic regions, the average physical length of these regions
being larger in areas of the genome where the local rate of recombination is low.

STEPHENSandDONNELLY (2000) suggested a form forπ that captures properties (i)-(iv) above.
In their suggested form forπ, the next haplotype differs byM mutations from a randomly-chosen
existing haplotype, whereM has a geometric distribution withPr(M = 0) = k/(k+ θ) (so that it
reproduces the Ewens sampling formula in the special case of the infinite alleles mutation model).
Thus the next haplotype is a (possibly imperfect) “copy” of a randomly-chosen existing haplotype.
FEARNHEAD and DONNELLY (2001) (henceforth FD) extended this form forπ to also capture
property (v) above. In FD’s approximation, thek+ 1st haplotype is made up of an imperfect
mosaic of the firstk haplotypes, with the size of the mosaic fragments being smaller for higher
values of the recombination rate.

Here we use two new forms forπ that also capture properties (i)-(v) above. The first, described
in detail in Appendix A and illustrated in Figure 2, and which we denoteπA, is a simplification of
FD’s approximation that is easier to understand and slightly quicker to compute. (Dr. N. Patter-
son, personal communication, has independently suggested a similar simplification.) The second,
which we describe in detail in Appendix B and denoteπB, is a slight modification ofπA, developed
using empirical results from Section 3.1 to produce a likelihoodLPAC that gives more accurate
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estimates ofρ. Where necessary, we denote the PAC likelihoods and maximum PAC likelihood
estimates corresponding toπA (respectivelyπB) by LPAC−A andρ̂PAC−A (respectivelyLPAC−B and
ρ̂PAC−B).

A key property of bothπA andπB is that they are easy and fast to compute. Unlike the Ewens
sampling formula, but like the approximations ofSTEPHENSandDONNELLY (2000) and FD, nei-
ther corresponds exactly to the actual conditional distribution under explicit assumptions about
population demography and the evolutionary forces on the locus under consideration. Indeed,
no closed-form expressions forπ, based on such explicit assumptions, and capturing (iv) or (v),
are known. However, the suggested forms forπ were motivated by considering both the Ewens
sampling formula, and the underlying genealogy (or, in the case with recombination, genealo-
gies) relating a random sample of haplotypes from a neutrally-evolving, constant-sized panmictic
population. As such, it may be helpful to view them as approximations to the (unknown) true con-
ditional distribution under these assumptions. In particular, there are certain aspects of many real
populations (e.g. population expansion, or population structure), and biological factors (e.g. gene
conversion, selection) that these forms forπ do not attempt to capture. For some applications this
may not matter very much. For others it may be necessary to develop forms forπ that do capture
these aspects — a point we return to in the discussion.

An unwelcome feature of the PAC likelihoods corresponding to our choices ofπ — and indeed
the forms forπ from STEPHENSandDONNELLY (2000) and FD — is that they depend on the order
in which the haplotypes are considered. In other words, although these likelihoods each correspond
to a valid probability distribution on the haplotypes, these probability distributions do not enjoy the
property of exchangeability that we would expect to be satisfied by the true (unknown) distribution.
Practical experience, and theory inSTEPHENSandDONNELLY (2000) (their Proposition 1, part
d) suggests that this problem cannot be rectified by making a simple modification toπ. Although
in principle the dependence on ordering could be removed by averaging the PAC likelihood over
all possible orderings of the haplotypes, in practice this would require a sum overn! terms, which
is infeasible even for rather small values ofn. Instead, as a pragmatic alternative solution, we
propose to averageLPAC over several random orders of the haplotypes. Unless otherwise stated,
all results reported here were obtained by averaging over 20 random orders. In our experience,
the performance of the method is not especially sensitive to the number of random orders used —
results based on 100 random orders gave qualitatively similar results, and results based on a single
random order were often not much worse (data not shown) . It is, however, important that when
comparing likelihoods for different values ofρ, the same set of random orders should be used for
each value ofρ.

3 Estimating constant recombination rate

In this section we consider estimating the recombination rate when it is assumed to be constant
across the region of interest. More precisely, we assume that crossovers in a single meiosis occur
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Figure 2: Illustration of howπA(hk+1|h1, . . . ,hk) buildshk+1 as an imperfect mosaic ofh1, . . . ,hk.
The figure illustrates the casek = 3, and shows two possible values (h4A andh4B) for h4, given
h1,h2,h3. Each of the possibleh4s can be thought of as having been created by “copying” (imper-
fectly) parts ofh1,h2 andh3. The shading in each case shows which haplotype was “copied” at
each position along the chromosome. Intuitively we think ofh4 as having recent shared ancestry
with the haplotype that it copied in each segment. We assume that the copying process is Markov
along the chromosome, with jumps (i.e. changes in the shading) occuring at rateρ/k per physical
distance. Thus the more frequent jumps inh4B suggest a higher value ofρ than the less frequent
jumps inh4A. Note that for very large numbers ofρ the loci become independent, as they should.
Each column of circles represents a SNP locus, with black and white representing the two alleles.
The imperfect nature of the copying process is exemplified at the third locus, where each ofh4A

andh4B have the black allele, although they “copied”h2, which has the white allele. In practice, of
course, the shading is not observed, and so to compute the probability of observing a particularh4

we must sum over all possible shadings. The Markov assumption allows us to do this efficiently
using standard methods for Hidden Markov Models, as described in Appendix A.
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as a Poisson process of constant ratec per unit (physical) distance, and consider estimating the
scalar parameterρ = 4Nc. We first use simulated data to examine the properties of the estimator
ρ̂PAC−A, corresponding to the conditional distributionπA described in Appendix A, under what we
will call the “standard coalescent model”: constant-sized, panmictic population, with an infinite-
sites mutation model. We show that, although quite accurate,ρ̂PAC−A exhibits a systematic bias.
We use the empirical results to develop a modified conditional distributionπB (described in detail
in Appendix B), whose corresponding estimatorρ̂PAC−B exhibits considerably less bias, and is
more accurate. We compare the performance of models based on bothπA andπB with results from
other methods.

3.1 Properties of the point estimateρ̂PAC

We used the programmksample (HUDSON 2002) to simulate data sets consisting of samples of
SNP haplotypes from the standard coalescent model, for various values of

1. the numbern of haplotypes in the sample.

2. the numberSof markers typed.

3. the value ofρ (we measure physical distance so that the total physical length of each simu-
lated haplotype equals 1.0. Thus the value ofρ is also the total value ofρ across the region.)

For each data set we foundρ̂PAC−A by numerically maximizing the PAC likelihood (using a golden
bisection search method,PRESSet al. 1992), and compared it with the true value ofρ used to
generate the data.

It seems natural to measure the error in estimates forρ on a relative, rather than an absolute,
scale. For example,WALL (2000) reported the frequency with which different methods for esti-
matingρ gave estimates within a factor of 2 of the true value, and both FD andHUDSON (2001)
examine the distribution of the ratiôρ/ρ for their estimateŝρ, and the deviation of this ratio from
the “optimal” value of 1. A problem with working with this ratio directly is that it tends to penalize
over-estimation more heavily than under-estimation. For example, overestimatingρ by a factor of
10 gives a larger deviation from 1 than underestimatingρ by a factor of 10. To avoid this problem,
we quantify the relative error of an estimateρ̂ for ρ by Err(ρ, ρ̂) = log10(ρ̂/ρ). This gives, for
example, an error 0 if̂ρ = ρ , an error of 1 ifρ̂ overestimatesρ by a factor of 10, and an error of
-1 if ρ̂ underestimatesρ by a factor of 10.

We note thatErr(ρ , ρ̂) can also be viewed as the error (on an absolute scale) in estimating
log10(ρ) by log10(ρ̂). Thus, if the usual asymptotic theory for maximum likelihood estimation
applies for estimation oflog10(ρ) in this setting (which, as discussed in FD, it may not) then for
the actual MLEρ̂MLE of ρ, Err(ρ, ρ̂MLE) would be asymptotically normally distributed, centered
on 0. Optimistically, we might therefore hope that for sufficiently-large data sets (large in terms of
the number of haplotypes, the number of markers, or both)Err(ρ, ρ̂PAC−A) might be approximately
normally distributed, centered on 0. In our simulations, we found that for some combinations of
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n, Sandρ this did indeed appear to be the case (e.g. Figure 3(b)), but that for other combinations,
although the distribution often appeared close to normal, it was centered around some non-zero
value (e.g. Figure 3(a),(c)), indicating a systematic tendency forρ̂PAC−A to over- or under-estimate
ρ. We will refer to the median ofErr as the “bias” (oflog(ρ̂PAC−A) in estimatinglog(ρ)). Although
bias is usually defined as ameanerror, this is not particularly helpful here since the mean is often
heavily influenced by a small number of very large values, and may even be infinite in some
cases (see also FD). We therefore follow previous authors, includingHUDSON (2001) and FD, in
concentrating on the behavior of the median, rather than the mean, of the error.

Despite the biases evident in Figure 3(a) and (c),ρ̂PAC−A gives reasonably accurate estimates of
ρ . For example, even in the right-hand panel (c) of Figure 3, which shows one of the most extreme
biases we observed in our simulations, the bias corresponds to underestimatingρ by approximately
a factor of 2, and̂ρPAC−A is within a factor of 2 of the true value ofρ in 68% of cases. Although
in many statistical applications estimates within a factor of 2 of the truth would not be considered
particularly helpful or impressive, in this setting this kind of accuracy is often not easy to achieve
(see for exampleWALL 2000).

We performed extensive simulations to better characterize the bias noted above, and found that
although the bias depends on all 3 variables (n, S, andρ), it is especially dependent on the average
spacing between sites. More specifically, for fixednandSwe observed a striking linear relationship
between the bias, and the log of the average marker spacing (Figure 4). This linear relationship was
also apparent for data simulated under an assumption of population expansion (data not shown).
The slope of the linear relationship is negative in each case, indicating a tendency forρ̂PAC−A to
overestimateρ when the markers are very closely spaced and underestimateρ when the markers
are far apart. As the number of sampled haplotypes increases, both the slope and intercept of the
line appear to get closer to 0 (Table 1). Based on these empirical results we can modifyπA to
reduce the bias of the point estimates (see Appendix B for details). The improved performance of
this modified conditional distribution, which we denoteπB, is illustrated in the next section.

Figure 4 also illustrates the effect of varying parameter values on the variability of point es-
timates. As might be expected, the variance of the error reduces with increased sample size, and
increased number of sites, with the latter providing the more substantial decrease. For example,
doubling the number of sites from 50 to 100 roughly halved the variance of the error in most cases,
while doubling the number of individuals from 50 to 100 resulted in much smaller decreases. For
a fixed sample size, and number of sites, the variance of the error decreases as the spacing between
sites grows. This may be due to the fact that for larger spacings more recombination events occur,
increasing the relative accuracy with whichρ can be estimated — although we would not expect
this pattern to continue indefinitely as the marker spacing is increased beyond the range considered
here.
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Figure 3: Histograms of the errorErr(ρ, ρ̂PAC−A) = log10(ρ̂PAC−A/ρ), each based on 100 data
sets simulated from the standard coalescent model withn = 50haplotypes andS= 50segregating
sites. The values ofρ are a)ρ = 5, b) ρ = 25, and c)ρ = 500. Superposed curves are normal
densities with the same mean and standard deviation as the 100 values making up the histogram.
These results, as well as those in Figure 4 and Table 1 are based on averaging the likelihoods over
10 random orders of the haplotypes.

Intercept Slope
n\S 20 50 100 20 50 100
20 −0.16 −0.12 −0.09 −0.18 −0.21 −0.26
50 −0.12 −0.07 −0.06 −0.16 −0.21 −0.24
100 −0.12 −0.06 −0.04 −0.09 −0.17 −0.21
200 −0.10 −0.05 −0.02 −0.06 −0.14 −0.17

Table 1: The intercepts and slopes of the linear relationship betweenlog10(ρ̂PAC/ρ) and
log10(spacing) (see also Figure 4).
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Figure 4: Box plots showing the relationship of the bias to the average marker spacing. For each
combination of parameters, 100 data sets each were simulated under the standard coalescent model.
The parameters involved are: the number of haplotypes in each samplen = 20,50,100,200; the
number of segregating sitesS= 20,50,100; the average marker spacingρ/S= 0.1,0.5,1.0,5.0
and10.0. In humans a marker spacing ofρ/S= 0.5 corresponds to roughly 1kb between markers.
The unlabeled tick marks on they-axis correspond tôρPAC−A =±2ρ.
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3.2 Comparison of point estimates with other methods

HUDSON (2001) introduced a composite likelihood method for estimatingρ, based on multiply-
ing together the likelihood computed for every pair of SNPs. He compared the performance of
this method with others in the literature (HUDSON andKAPLAN 1985;HUDSON 1987;HEY and
WAKELEY 1997;WAKELEY 1997;WALL 2000), under the standard coalescent model, and found
it to be as good as, or better than, the best of these. We compared the results reported byHUD-
SON (2001) for his maximum composite likelihood estimate,ρ̂CL, with the results for̂ρPAC−A and
ρ̂PAC−B on data sets simulated under the same conditions (Figure 5). For data sets with small num-
bers of SNPs (≤∼ 12) ρ̂CL provides the most accurate estimates ofρ, although all three methods
struggle to produce reliable estimates. For larger numbers of SNPs bothρ̂PAC−A andρ̂PAC−B tend,
desirably, to exhibit less variability than̂ρCL. Further,ρ̂PAC−B exhibits little or none of the bias
present inρ̂PAC−A, and provides the most accurate estimates ofρ.

The superior performance of the pairwise composite likelihood method for datasets with small
numbers of SNPs is perhaps not surprising — indeed, for data sets with only 2 SNPsρ̂CL is pre-
cisely the maximum likelihood estimate forρ . However, we note that almost all of the improve-
ment in accuracy comes from the increase in the 10th percentile of the estimator towards the true
value, rather than a decrease in the 90th percentile. One possible explanation for this is thatρ̂CL

uses a likelihood based on an infinite-sites mutation model (i.e. assumes no repeat mutation), and
so is able essentially to rule out very small values forρ if there is even one pair of sites at which all
four gametes are present. (The effect of this may be compounded by the fact thatρ̂CL was found
by maximizing over a grid of possible values, which forces all non-zero estimates ofρ to be above
some threshold.) Our estimator does not make the infinite-sites assumption, and so will be more
inclined to estimate very small values ofρ, possibly leading to occasional substantial underesti-
mates. Since in real data it will typically be unclear whether or not the infinite-sites assumption
holds, the advantage ofρ̂CL for even small numbers of sites is perhaps less clear-cut than it appears
in Figure 5.

We used the same simulated data to examine the accuracy of estimates ofρ obtained by the
methods described byKUHNER et al.(2000) and FD, both of which use computationally-intensive
Monte-Carlo procedures to attempt to approximate the full coalescent likelihood. The computa-
tional complexity of these approaches increases with what might be called “the total value ofρ
across the region”, or “per-locusρ”, which we denoteρ̃ (more precisely, in our notatioñρ = ρL
whereL is the physical length of the region). Results from FD suggest that even for small values
of ρ̃ (< 3 say), the approximate likelihood curves obtained by these methods may be poor approx-
imations to the actual likelihood curve, and so it seems unlikely that the curves will be accurate for
largerρ̃. However, point estimates based on these methods could still be accurate, if the maximum
of the approximate likelihood curve occurs in about the right place. To investigate this possibil-
ity, we applied both methods, using approximately one day of CPU time per method per dataset
(compared with roughly 30 seconds per dataset forρ̂PAC−B), to 10 of the data sets simulated with
ρ̃ = 40. Computational considerations make a more comprehensive simulation study inconvenient.
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Figure 5: Comparison of̂ρPAC−A and ρ̂PAC−B with Hudson’s pairwise composite likelihood
estimatorρ̂CL (HUDSON 2001), on data sets ofn = 50 haplotypes simulated from the neu-
tral infinite-sites model. The datasets were simulated with haplotypes of physical lengthL =
4,8,12,16,20,24,28,32,36,40,44 and48 units, withρ = 1 per unit physical length, andθ = 1/4
per unit physical length. (With these parameters the expected number of SNPs in each dataset
is approximately equal to the physical length of the haplotypes.) The results forρ̂CL come from
(HUDSON 2001), and were kindly provided by R. Hudson. The results forρ̂PAC−A and ρ̂PAC−B

are based on 1000 datasets we simulated for each set of parameters using the programmksam-
ple (HUDSON 2002). (We discarded the few simulated datasets that had only one SNP.) The
panels are: (a)̂ρCL; (b) ρ̂PAC−A; (c) ρ̂PAC−B. In each panel, the solid line is the median of
Err(ρ̂,ρ) = log10(ρ̂/ρ) and the dashed lines are the 10% and 90% quantiles.

Each of the methods was run withθ fixed at the value used to simulate the data, giving them some
advantage over how they could be used in practice. Nevertheless, neither method produced point
estimates of̃ρ as accurate as those from̂ρPAC−B (Table 2). Of the two full likelihood schemes,
the maximum of the likelihood curve obtained byinfs was consistently closer to the true value
of ρ̃ than the maximum of the likelihood curve obtained byRecombine . Indeed, the estimates
obtained fromRecombine were often close to an order of magnitude smaller than the true value
of ρ̃, which raises a danger that when the method is applied to real data (for which the value ofρ̃
is of course not known) the user might be mislead into thinking that the value ofρ̃ is small enough
for the method to produce reliable results. Results from longer runs ofinfs taking roughly five
days of CPU time each, produced improved results, competitive withρ̂PAC−B (data not shown).
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Data Set Recombine infs ρ̂PAC−B

1 13 26 57
2 9 21 24
3 24 27 30
4 10 29 26
5 10 27 34
6 5 33 42
7 4 25 45
8 8 23 38
9 7 53 50
10 12 27 29
Median 10 27 36
Median|Err(ρ̂,ρ)| 0.62 0.17 0.11

Table 2: Comparison of̂ρPAC−B with estimates of̃ρ from Recombine andinfs , for 10 datasets
simulated withρ̃ = 40, θ = 10, n = 50. Both infs andRecombine were run withθ fixed at
its true value.infs was run for 20,000 iterations with 5 driving values forρ̃ (10, 30, 40, 50, 60).
The ESS at the MLE is always less than 4, indicating thatinfs had very little confidence in its
estimated likelihood curve (and the estimated 95% CIs failed to include the trueρ̃ in all but one
case).Recombine was run with five short runs of 20000 iterations and one long run of 1 million
iterations, using three heating temperatures, initializing the runs at the true value ofρ̃, with θ fixed
as 10. The CPU time (on an 800MHz Pentium III processor) for data set 8 was about 30 hours for
infs andRecombine , and 30 seconds for̂ρPAC−B.
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Figure 6: Empirical coverage properties of confidence intervals produced using two different meth-
ods described in text. Each number in the table is based on analysis of 1000 datasets, and shows
the proportion of cases in which the CI contained the true value ofρ used to generate the data. The
datasets used are the same as those used to produce Figure 5(c).

3.3 Properties of PAC likelihood curves

3.3.1 Construction of confidence intervals

We examined the coverage properties of confidence intervals (CIs) constructed from the PAC like-
lihood curve in two ways:

I: include all values ofρ for which loge(LPAC−B(ρ)) is within 2 of the maximum.

II: include all values ofloge(ρ) within±1.96σ of ρ̂PAC−B, whereσ is the square root of the in-
verse of minus the second derivative (found numerically) of the log of the PAC-B likelihood
curve (as a function ofloge(ρ)) evaluated at atρ = ρ̂PAC−B.

The rationale for looking at such CIs is that, under standard asymptotic theory for likelihood es-
timation, CIs constructed in this way using thetrue likelihood curve would include the true value
of ρ approximately 95% of the time. (For I this follows from the asymptoticχ2 distribution of the
log likelihood ratio statistic; for II it follows from asymptotic normal distribution of the MLE).

Figure 6 shows the coverage properties for CIs produced using the two methods (i.e. the pro-
portion of times that CIs formed using each method contained the true value ofρ), for the data
sets used to obtain Figure 5(c). For moderate sequence length both methods produce CIs that are
slightly anti-conservative, with coverage properties that approach∼ 0.91, compared with the ex-
pectation of∼ 0.95under asymptotic theory. Based on these results we speculate that the curvature
of the PAC-B likelihood curve does not deviate grossly from that of the true likelihood curve. We
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note that the coverage properties are also closer to asymptotic expectations than those reported by
(FEARNHEAD andDONNELLY 2002) for their composite likelihood using the same methods of CI
construction.

3.3.2 Comparison with other methods

We compared theLPAC−B likelihood curves with likelihood curves obtained from three other meth-
ods: the full-data coalescent method of FD (implemented in the computer programinfs ), and the
pairwise composite-likelihood methods ofHUDSON(2001) (implemented by one of us (NL), using
tables available from R. Hudson’s website) andMCVEAN et al. (2002) (implemented in the com-
puter programLDhat ). Figure 7 shows likelihood curves obtained using each method for the 20
data sets considered byWALL (2000), which were simulated under the standard coalescent model
with ρ = θ = 3.0 across a region of physical length 1, and were kindly supplied by J. D. Wall.
(These likelihood curves are plotted withρ on thex-axis, rather thanlog(ρ), becauseinfs and
LDhat output likelihood curves for evenly-spaced values ofρ.)

Interpreting the results of this comparison is slightly tricky. Unlike the other three methods we
consider, the full-data coalescent method can, in principle, provides a fully accurate representation
of the true likelihood curve. As such it is tempting to treat this as a “gold-standard” against which
to compare the other methods. However, as mentioned previously, even for the rather small value
of ρ = 3 used to generate these data, accurate approximation of the true likelihood curve may
be computationally impractical. Indeed, the estimated effective sample sizes (ESSs) obtained for
these data sets, shown above each panel in the figure, suggest that we should not place much
confidence in the accuracy of many of the curves. Our attempts to obtain more accurate likelihood
curves by performing longer runs for some of the data sets (numbers 15 and 16) actually produced
smallerestimated ESSs, suggesting that the effective sample sizes quoted for the other data sets are
optimistic (see FD for further discussion of this problem). A further complication in comparing
the methods is that both our method, and that ofMCVEAN et al. (2002), allow (implicitly, and
explicitly, respectively) for the possibility of multiple mutations, and thus the likelihoods from
these methods are in some sense not directly comparable with those from the other two methods.
Finally, we note that the methods deal in different ways with the unknown mutation parameter
θ : the likelihood curves shown frominfs are profile likelihoods forρ at the true value ofθ ;
Hudson’s method and our method avoid explicitly estimatingθ ; LDhat estimatesθ using an
analogue of Watterson’s estimate, but allowing for multiple mutations.

Notwithstanding these issues, we attempt to draw some general conclusions:

1. In general, the likelihood curves produced by the 4 methods seem to agree rather more
closely than might have been expected. (Compare, for example, the variability here with the
variability observed for different runs of a single method in FD). However, the closeness of
the agreement between the methods differs appreciably across datasets. Dataset 12 consists
of only 4 sites, three of which are singletons, and so the differences in the curves for this
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dataset seem not to be particularly interesting. We were unable to discern a systematic reason
for the larger differences among methods observed in some of the other datasets (e.g., 16).

2. The two pairwise composite-likelihood methods tend to produce likelihood curves that are
slightly more peaked than the other two methods. This might be expected since, as pointed
out by MCVEAN et al. (2002), pairwise composite-likelihood curves are typically more
peaked than the true likelihood curve because they treat each pair of sites as independent,
when in fact many pairs are highly dependent.

3. The method implemented inLDhat , which allows for multiple mutations, tends to achieve
its maximum at larger values ofρ than Hudson’s method, which does not allow for multiple
mutations. This is surprising; indeed, the opposite might have been expected, since multiple
mutations could be used in place of recombination events to explain certain patterns of LD.
One possible explanation is that the run lengths we used for computing the likelihood in
LDhat might be insufficient (we used the default values).

4. Different orderings of the haplotypes can give PAC likelihood curves that differ appreciably
from one another. In addition, the maximum of the likelihood curve based on the average
over several orderings tends to be towards the left end of the distribution of maxima obtained
from different orderings. This is because, although not shown on the figure, the curves with
maxima at smaller values ofρ tend to be larger (in absolute value) than those with maxima at
larger values ofρ (presumably because they correspond to orderings of the haplotypes that,
in some sense, require fewer recombination events to explain them), and thus contribute
more to the average. Although this dependence on ordering is bothersome, in simulation
studies (results not shown) we have found that the variability in the position of the maxima
of the PAC likelihood over different orderings of the haplotypes is typically small compared
with the uncertainty in estimation ofρ.

4 Variable recombination rate.

4.1 Models for variation in recombination rate

One of our main motivations for developing this model is to explore fine-scale variation in re-
combination rates. A simple (no interference) model for variation in recombination rates is that
crossovers in a single meiosis occur as an inhomogeneous Poisson process, of ratec(x) at position
x. Here we consider two specific cases of this general model:

1. A simple single-hotspot model, where

c(x) =

{
λ c̄ for a≤ x≤ b,

c̄ otherwise.
(4)
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Figure 7: Comparison of the relative PAC likelihood curves, with coalescent-based and pairwise
composite relative likelihood curves, for the first 20 data sets inWALL (2000). In each case the
relative likelihood is obtained by normalizing each likelihood curve to have a maximum of 1. The
light gray lines show 20 PAC likelihood curves, each from a different random order of the haplo-
types, and the solid dark line is based on the PAC likelihood averaged over the 20 random orders.
The other lines correspond to likelihood curves computed using the methods of: FD, implemented
in the computer programinfs (red dashed line);MCVEAN et al.(2002), implemented inLDhat
(blue dotted line);HUDSON (2001), using the table generated by programeh written by Hudson
(cyan dot-dashed line). The effective sample sizes (ESS) forinfs at the MLE is given for each
data set above the graph, and is a measure of the confidenceinfs has in its estimated likelihood
curve (the larger the better). Results forinfs for all data sets except numbers 15 and 16 were
kindly provided to us by P. Fearnhead, and were obtained using between 50,000 and 5,000,000
iterations. Results for datasets 15 and 16, were obtained by ourselves using 10,000,000 iterations.
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Herec̄ represents the background rate of crossover,a andb represent the left and right ends
of the hotspot region, andλ (> 1) quantifies the magnitude of the recombination hotspot.
The PAC likelihood for this model is a function of four parameters:a, b, λ , andρ̄ = 4Nc̄.

2. A more general model, where ifx is a position between markersj and j +1 then

c(x) = λ j c̄. (5)

Here c̄ represents the background rate of crossover, andλ j is a multiplier controlling how
the crossover rate between markersj and j +1 deviates from the background rate. The PAC
likelihood for this model is a function of the parametersλ1, . . .λS−1 (whereS is the number
of SNPs), and̄ρ = 4Nc̄.

For the simple single-hotspot model it is straightforward to obtain numerically the maximum
PAC likelihood estimates for all 4 parameters simultaneously, although in the examples we con-
sider we assume thata andb are known, and maximize the PAC likelihood in terms ofλ andρ̄.
The evidence for the presence of a hotspot can be summarized by the log likelihood ratio (LLR)
for the null hypothesis of no hotspot,H0 : λ = 1, versus the alternativeH1 : λ > 1. If ρ̄0 denotes
the value ofρ̄ that maximizesLPAC−B underH0, andρ̄1 andλ1 denote the values of̄ρ andλ that
maximizeLPAC−B underH1, then

LLR = logeLPAC−B(ρ̄1,λ1)/LPAC−B(ρ̄0,λ = 1), (6)

and large values of LLR represent evidence for the existence of a hotspot. Under standard asymp-
totic theory, 2 times LLR would have (asymptotically) a chi-square distribution on 1 degree of
freedom, and so rejectingH0 if LLR > 1.92 would give a hypothesis test with a type I error rate
of 0.05. Although it seems unlikely that standard asymptotic theory will apply here, we found that
for data sets simulated under the null hypothesis, rejectingH0 for LLR > 1.92gave empirical type
I error rates close to 0.05 (Table 3), which provides some guidance as to what might be considered
a “large” value of LLR.

For the second, more general model, obtaining maximum PAC likelihood estimates for the
parameters creates problems. First, the maximum likelihood estimates are not unique (indeed
there are infinitely many of them), because multiplying all theλ j by any constant, and dividinḡρ
by the same constant, gives exactly the same likelihood. (In technical terms, the parameters are
said to beunidentifiable.) Second, even if the identifiability problem is solved (for example by first
obtaining an estimate for̄ρ assuming that there is no hotspot, and then fixing this when estimating
the other parameters) there is the practical problem that the likelihood curve for someλ j will often
be very flat, resulting in estimates for manyλ j being very close to (or equal to) either 0 or infinity.
This seems undesirable: if the likelihood for a particularλ j is very flat, this indicates that there
is little information about the recombination rate in that marker interval, in which case it seems
sensible to estimate that the recombination rate is close to the background rate (i.e.λ j ≈ 1), rather
than (close to) infinitely bigger or smaller!
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To solve both these problems, we assume a “prior” distribution for theλ js: specifically that
theλ js are independent, and identically distributed, withlog10(λ j) ∼N (0,0.52). This prior was
chosen to allow occasional deviations from the background rate of recombination by a factor of
10 or more (with probability approximately95%, λ j lies in the range0.1− 10). This choice of
prior could be motivated from a Bayesian viewpoint as reflecting our prior beliefs about theλ js,
but it also has the more pragmatic justification that identifying variations of this kind of magnitude
seems both interesting and, perhaps, attainable. We consider alternative prior specifications in the
discussion.

In principle, given the prior distribution for theλ js described above, we could also place a
prior distribution onρ̄ , and obtain an approximation to the posterior distribution of all parameters,
using Markov chain Monte Carlo for example. Although this would be our preferred approach,
for simplicity we avoid this here, and instead use the followingad hoctwo-stage approach: first
obtain point estimates for̄ρ andλ by jointly maximizing the product ofLPAC(ρ̄,λ ) and the prior
density ofλ ; second obtain a “posterior distribution” for eachλ j , by fixing all other parameters
at their estimated values, discretizing the prior onλ j (truncated atλ j = ±3), and computing the
corresponding discretized posterior distribution as being proportional to the prior times the PAC
likelihood. For data sets with large number of sites the first stage (optimization overρ̄ ,λ ) can be
very time-consuming, requiring large numbers of evaluations of the likelihood function. Further, it
seems unlikely that the simple optimization method we used will reliably find the global maximum
of the likelihood surface. Both these problems could be alleviated by exploiting the fact that the
derivatives of the PAC likelihood can be computed efficiently, but we do not pursue this here.

4.2 Power to detect recombination hotspots, and robustness

In this section we assume that there is a single recombination hotspot (model 1 above), whose
putative position is known, and examine the power of our model to detect the hotspot under various
assumptions about the population demography, and SNP marker ascertainment. Although the
assumptions made here (in particular, that there is a single hotspot with known putative position)
are unrealistic, they provide a convenient framework within which to examine quantitatively the
power of our approach, and how it is affected by population demographic history, and marker
ascertainment schemes.

We consider the following scenarios:

1. constant-size randomly-mating population, all markers.

2. constant-size randomly-mating population, only markers at frequency> 0.1.

3. exponentially expanding population, with expansion startingt = 500generations ago.

4. exponentially expanding population, with expansion startingt = 5000generations ago.
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5. haplotypes sampled from a structured population, consisting of two islands exchanging mi-
grants at a rate of one per generation (scaled migration parameter4Nm= 4).

6. haplotypes sampled from only one of the islands in the structured population described
above.

These last four models are the same as those considered inPRITCHARD andPRZEWORSKI(2001).
In the two expanding-population scenarios, the population was assumed constant-sized untilt gen-
erations ago, when it started to expand exponentially, continuing until the present. The current
population sizeN0 is set to be105 and the population growth rate is chosen, as a function oft, to
match the expected diversity in a population of constant size104. (The necessary growth rates of
α = 1960,350for t = 500,5000were kindly provided by M. Przeworski.)

For each scenario we simulated data sets under the simple single-hotspot model described
above, usingmksample , and the postprocessing algorithm described in Appendix C. For the first
two scenarios each data set was simulated to have about 50 segregating sites and 60 chromosomes,
with a= 0.4, b= 0.5, ρ̄ = 20, andλ = 10(these values were chosen to approximately match values
for the TAP2 data fromJEFFREYSet al. (2000) considered in Section 4.3.2). For the expanding
population scenarios we set̄ρ = 4N0c = 200, and for the structured scenariosρ̄ = 20 within each
population. For each scenario we also simulated data sets under the same conditions, but with no
hotspot (i.e.λ = 1).

We applied the likelihood-ratio test to each data set to test the null hypothesisH0 : λ = 1,
against the alternativeH1 : λ > 1 (Table 3). For the scenarios not involving population expansion,
the test gave type I error rates of approximately 0.05 when applied to data without a hotspot,
and a power of approximately 0.90 when applied to data simulated with a hotspot, although the
test based on just the common SNPs had a slightly reduced power. The two scenarios involving
population expansion gave either a substantial reduction in power, or an inflated type I error rate
(which is in some sense equivalent to a reduction in power). This might be due to a reduction in the
number of “common” SNPs under these scenarios, as common SNPs tend to be most informative
for estimating recombination rates.

We also examined the robustness of estimates ofλ under the various scenarios (Table 3). As
noted by FD, the recombination ratēρ = 4Nc depends on how the effective population sizeN is
defined. In contrast, the definition of the parameterλ doesnot depend on how the effective popu-
lation size is defined, and so we might hope that estimation ofλ will be robust to departures from
the assumption of a constant-sized panmictic population. For the levels of population structure we
used in our simulations this does indeed appear to be the case – in both cases estimates were more
accurate than for the sample from a single random-mating population, perhaps because population
structure makes recombinants easier to “spot”. As might be expected, estimates based only on
common SNPs were less accurate than those based on all SNPs. A drop in accuracy is also evi-
dent for the scenarios simulated under population expansion, probably again due to a reduction in
the number of “common” SNPs under these scenarios. Some of the scenarios also resulted in an
upward bias for estimates ofλ , notably one of the expansion scenarios in which the median of the
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a) λ = 10 b) λ = 1
Power Medλ̂ Med |Err| Type I Error Medλ̂ Med |Err|

All Sites 0.90 13.02 0.19 0.04 0.95 0.45
Common Sites (f > 0.1) 0.81 16.57 0.29 0.05 1.13 0.57
Island (mixed) 0.92 11.35 0.18 0.07 0.90 0.33
Island (single) 0.94 10.24 0.16 0.07 1.01 0.31
Expansion (t = 500) 0.94 24.29 0.40 0.13 1.41 0.56
Expansion (t = 5000) 0.53 11.66 0.36 0.07 1.23 0.70

Table 3: Performance of the simple single-hotspot model, for data sets simulated under various
demographic scenarios, a) with a hotspot of magnitudeλ = 10, and b) with no hotspot (i.e.λ = 1).
In each case, the first column shows the proportion of “significant” LR tests (LLR> 1.92) for
testing the null hypothesis of no hotspot, the second column shows the median estimate ofλ , and
the third column shows the median of|Err(λ̂ ,λ )|. Each number in the table is based on results for
200 simulated data sets.

estimates was almost 2.5 times the true value.

4.3 Estimating recombination rates along a region

4.3.1 Simulated Data

We fitted the more general varying recombination rate model to the simulated data used to produce
the pairwise LD plots in Figure 1; the results are shown in Figure 8. From the latter figure we might
conclude, correctly, that the data sets corresponding to the top left and bottom middle panels had
recombination hotspots somewhere in the region 0.4-0.6. We might also conclude that the other
data sets had no hotspots, which would be correct except in the case of the bottom left figure, which
was actually generated from data with a hotspot between 0.4 and 0.5. One possible reason that the
hotspot shows up less well in this case is that there are fewer sites at high frequency (> 0.15)
in this data set. Despite the fact that we might have been mislead in 1 case out of 6, we view
Figure 8 as considerably more informative than Figure 1, from which we find it difficult to draw
any conclusions.

4.3.2 TAP2 Data

JEFFREYSet al. (2000) used patterns of LD (measured by haplotype diversity) in a population
sample to refine the location of a putative recombination hotspot in the human TAP2 gene, and
provided a more detailed characterization of its properties through sperm typing. The popula-
tion sample consists of 30 individuals from UK typed at 47 polymorphisms (45 SNPs, 2 inser-
tion/deletions) across 9.7kb, with haplotypes determined by allele-specific PCR. Through analysis
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Figure 8: Estimates of variation from background recombination rate within each marker interval,
for the same simulated data sets that were used to produce Figure 1. The panels top-left, bottom-
left, and bottom-middle correspond to data sets simulated with a single hotspot of magnitudeλ =
10 between positions 0.4 and 0.5. The other panels correspond to data simulated with constant
recombination rate across the region.
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of sperm crossover eventsJEFFREYSet al. (2000) identified a region of increased crossover inten-
sity, located approximately in the interval from 4 to 5.2kb.

We fitted the simple single-hotspot model to the haplotype data (kindly provided in convenient
electronic format by A. Jeffreys), assuming a hotspot between 4 and 5.2 kb, and obtained estimates
of ρ̄ = 1.3 per kb, andλ = 12 (95% CI [6,21]), with a LLR of 12, indicating strong evidence for
the presence of the hotspot. Our estimate for the average magnitude of the hotspot beingλ = 12
times the background rate agrees well with the sperm-typing results fromJEFFREYSet al. (2000).
In particular,JEFFREYSet al. (2000) (their Fig 4) observed 128 crossovers within the interval 4
to 5.2 kb, in 2.4 million progenitor molecules, giving an average rate of 4.4 cM/Mb, which is 11
times the approximate background rate (for males) they quote, of 0.4 cM/Mb (although they warn
that this estimate of the background rate should be “treated with caution”). Since our estimate
is based on a population sample, it is actually an estimate of the magnitude of the hotspot in the
sex-average crossover rates.JEFFREYSet al. (2000) point out that the crossover rate in this region
appears to be substantially higher in females than in males, and so the sex-average crossover rates
are likely to be dominated by the female crossover process. Our results therefore suggest that the
crossover rate within the 1.2 kb hotspot in female meioses is roughly an order of magnitude higher
than the (female) background rate.

JEFFREYSet al. (2000) found that if one assumes that the sex-average background recombina-
tion rate is equal to the male background recombination rate of≈ 0.4 cM/Mb (a figure that we again
emphasise they suggest should be treated with caution) then the observed patterns of LD in the pop-
ulation sample appear consistent with an effective population size ofN = 100,000, which contrasts
with the more commonly-quoted figure for humans ofN = 10,000. Our estimate of̄ρ = 1.3 per
kb supports their analysis, as it corresponds toN ≈ 84,000if the background sex-average recom-
bination rate is assumed to be 0.4cM/Mb. As pointed out byJEFFREYSet al. (2000), one possible
explanation for this is differences between male and female recombination rates — in particular a
sex-average background rate across the 9.7kb region of 3.4 cM/Mb would giveN ≈ 10,000. An
alternative (or additional) explanation, suggested to us by M.Przeworski (personal communica-
tion), is that gene conversion events not detected by the sperm typing experiments could partially
account for the unusually large estimated effective population size.

Figure 9 shows the estimates ofλ j and posterior quantiles obtained by fitting the more general
model for recombination rate variation to the TAP2 haplotype data. The hotspot in the region 4-5.2
kb is fairly clear, with some suggestion that it may extend slightly further to the right than 5.2 kb.
The peak of the recombination hot spot is estimated as being about 14 times the background rate.
In the interval corresponding to this peak the posterior probability thatλ j is greater than 7 is 75%
(compared with a prior probability of less than 5%). However, the large number of parameters
estimated within this more general model results in generally poor precision for the estimate of
eachλ j . In particular, confidence in the estimates is probably not sufficient to conclude that the
three subpeaks present in the figure, within the hotspot, correspond to actual variation in the hotspot
intensity.
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Population ρ̄ per kb λ̂ CI LLR
Jackson 7.5 2.7 [1.3 , 4.8] 3
Rochester 0.74 12 [5.0 , 25] 8
Finland 0.15 104 [55 , 183] 22
Combined 7.0 6.5 [4.1 , 8.5] 23

Table 4: Results of fitting the simple single-hotspot model to the LPL data, to each subpopulation
sample individually, and to the combined sample. The first two columns show estimated values
for ρ̄ andλ assuming a hotspot between 3 and 5 kb along the sequence. The column CI gives the
range of values ofλ whose log likelihood is within 1.92 of the log likelihood atλ̂ (for ρ̄ fixed at
its estimated value). The column headed LLR gives the value of the log likelihood ratio for testing
the null hypothesis ofλ = 1.

4.3.3 Lipoprotein Lipase Data

The LPL data (NICKERSONet al.1998;CLARK et al.1998) consists of 9.7 kb of genomic DNA se-
quence from human lipoprotein lipase gene from 71 individuals from Jackson (n = 24), Rochester
(n = 23) and North Karelia, Finland (n = 24). In the published data, the haplotypic phase for
69 sites was either determined by experiment or estimated by Clark’s algorithm (CLARK 1990).
Although the use of a statistical method to infer some of the phases means that there is some pos-
sibility that not all the published haplotypes are completely correct, the majority seem likely to
be accurate, and in this analysis we assume them to be known without error. Based on patterns
of LD, and on the results of phylogenetic-based methods that attempt to infer ancestral recombi-
nation events,TEMPLETON et al. (2000) suggested the existence of a putative recombination hot
spot between[2987,4872].

Table 4 shows the results of fitting the simple single-hotspot model to the whole dataset, and to
the data from each subpopulation individually, assuming a hotspot from 3 to 5 kb. Figure 10 shows
the results for fitting the more general model for recombination rate variation. Overall, these results
seem to support the existence of the putative hotspot, although there is considerable variation in the
strength of the evidence (as measured by the LLR), and of the estimated magnitude of the hotspot,
in different subpopulations. We note that the apparent magnitude of the hotspot in the Finnish
population is smaller in Figure 10 than in Table 4, due the affect of the prior. There is also tentative
evidence, mostly from the Jackson sample, for a smaller-magnitude hotspot between 8 and 9kb.
Although no interval in that region produces a very large estimate forλi , the clustering together of
three intervals with moderateλi provides stronger evidence than any one of these estimates taken
separately.

Our results are consistent with those fromFEARNHEAD andDONNELLY (2002), who found
evidence for the[2987,4872] hotspot in the samples from Rochester and Finland, but not in those
from Jackson. In addition both we andFEARNHEAD and DONNELLY (2002) found that the
Rochester and Finland samples give much smaller estimates forρ̄ than the Jackson sample, prob-
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ably reflecting smaller effective population sizes as a result of a recent bottleneck. One general
advantage of the approach we take here, over the method of considering segments of the chromo-
some separately as doFEARNHEAD andDONNELLY (2002), is that it uses the patterns of LD not
only between markerswithin the hotspot, but also between markerseither sideof the hotspot, to
estimate the magnitude of the hotspot. This may explain why we detected a signal (albeit a modest
one) for a[2987,4872] hotspot in the Jackson sample, whereFEARNHEAD andDONNELLY (2002)
did not.

The large differences among estimates forλ from the three separate population samples are
surprising. To examine whether this might be simply due to poor precision for these estimates in
one or more of the populations (due for example to too much or too little diversity), we constructed
approximate95%confidence intervals forλ using an analogue of method I in section 3.3.1 (column
headed CI in Table 4). Although the coverage probabilities for these CIs are unlikely to be95%,
they give some indication of the curvature of the likelihood surface, and the fact that none of the
three intervals overlaps with either of the others suggests that the hotspot intensity may indeed vary
among the three populations. Additional simulation results (not shown) suggest that the larger
effective population size of the Jackson population should actuallyincreasepower to detect the
hotspot compared with the Finnish population, and so differences in effective population sizes
do not appear to explain our results. An alternative explanation is the bias we observed for our
estimates ofλ under certain expansion scenarios (Table 3), which might partially explain the large
estimate ofλ in the Finnish population for example, although it is unclear whether this is enough to
account for the fact that the estimatedλ is almost 40 times greater than in the Jackson population.
Biological mechanisms that could lead to different patterns of recombination rate heterogeneity in
different populations are known to exist (e.g.JEFFREYSandNEUMANN 2002), and the kinds of
method we introduce here should be helpful in determining how often this occurs in practice.

5 Discussion

In this paper we have introduced a new statistical model relating patterns of LD at multiple loci to
the underlying recombination rate, and examined its effectiveness for inferring the underlying rate
of recombination. Another potential application of our model is to methods for LD (association)
mapping in “case-control” studies, where chromosomes have been collected and typed for both
case and control individuals. Several authors, includingMCPEEK andSTRAHS (1999),MORRIS

et al. (2000), andL IU et al. (2001) have developed methods to use genetic types at multiple loci
to perform association mapping for case-control studies. These methods aim to improve on other
common methods — which typically test small groups of markers, one group at a time, for as-
sociation with a trait — by considering data at many SNP markers simultaneously. Although the
methods differ in details, broadly speaking they all pursue a strategy of assuming that (subsets of)
the case chromosomes share some region identical by descent about a causal mutation, and as a
result will be more similar than would be expected by chance. The challenge then is to identify
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regions where (subsets of) the case chromosomes are more similar than would be expected by
chance. Models of LD play a key role here, because what would be expected “by chance” depends
critically on the amount of LD among loci. In particular, correlations among loci will cause chro-
mosomes to tend to be more similar by chance than if the loci were independent.MCPEEK and
STRAHS (1999) use a first-order Markov chain to model LD, so that the probability of observing
types(x1, . . . ,xL) at L loci along a chromosome isPr(x1)Pr(x2|x1)Pr(x3|x2) . . .Pr(xL|xL−1), where
the conditional probabilitiesPr(xr |xr−1) are estimated using the control chromosomes. This model
was also adopted byMORRISet al.(2000). While the first-order Markov assumption is better than
assuming that the loci are independent, and may suffice if there is little LD among markers, it seems
not to be a good model for LD in general. In particular, it fails to capture the fact that markers may
be in weak LD with neighboring markers, but in strong LD with more distant markers. Although
MCPEEK andSTRAHS (1999) mention that higher order Markov models might better model LD,
such models seem unlikely to be helpful in practice because of the difficulty of estimating all the
necessary parameters. The model we have introduced here provides a parsimonious method for
modeling LD: even the more general model for varying recombination rates has fewer parameters
than the first order Markov model used previously. Further, in these kinds of applications, where
estimation of underlying recombination rates may be of only indirect interest, the usefulness of
our model will depend only on whetherPr(h1, . . . ,hn | ρ) is a sensible distribution forh1, . . . ,hn

for somevalue of the parametersρ, even if thisρ does not correspond precisely to the background
recombination rate scaled by the effective population size. Under these circumstances our two
approximationsπA andπB should perform almost identically, and soπA might be preferred on the
grounds that it is simpler to understand and implement, and is more amenable to theoretical study.

Another model for LD across multiple sites, introduced byDALY et al. (2001), is based on
the empirical observation that in some regions of the genome LD exhibits a “block-like” structure.
DALY et al.(2001) model each observed haplotype as a mosaic of “ancestral haplotypes”, with the
transition rates among these ancestral states (representing the “historical recombination frequency”
between each pair of consecutive markers) being estimated by maximum likelihood. The ancestral
haplotypes are identified by an initial scan for regions of low haplotype diversity, although in
principle they could instead be treated as parameters in the model.DALY et al. (2001) used this
model to produce a summary of patterns of LD that illustrates the haplotype structure in their
data more clearly, and in more detail, than would plots of pairwise LD measures. However, it is
currently unclear to what extent this model might be helpful for applications involving statistical
inference, or prediction, particularly in regions where patterns of LD are less “block-like”.

There are several challenges that might arise in applying our method to real data that we have
ignored here. In particular, we have assumed in our examples that haplotypes are known, and
that there are no missing genotypes or genotyping errors. A new version of the software package
PHASE(STEPHENSet al. 2001) is under development, which will deal with these problems by
incorporating the PAC likelihood into a Markov chain Monte Carlo (MCMC) algorithm to jointly
estimate the recombination rate parameters, haplotypes, missing genotypes, and potential loca-
tions of genotyping errors. This algorithm also produces a method for estimating haplotypes that
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takes account of decay of LD along chromosomes. Preliminary results for simulated data suggest
that these ideas result in slightly more accurate haplotype estimates than the method described in
STEPHENSet al. (2001).

There are also biological aspects of real data that we have not accounted for here, including
for example gene conversion, whose affect on patterns of LD in humans has been the subject of
considerable recent interest (seeFRISSEet al. 2001 for example). The effect that the presence of
gene conversion will have on our method will vary, depending on how the tract length — about
which little is known in humans — compares with the marker density. Gene conversion events
with very small tract-lengths compared to the marker density will only rarely involve a typed
marker, and so will tend to have a small effect on our method unless such events are extremely
common. Conversely, gene conversion events with longer tract lengths — comparable to the typical
distance between markers — will often affect one or more markers, and will tend to look like
double crossover events to our method. The presence of gene conversion with this kind of tract
length will thus elevate our estimates of recombination rate, perhaps substantially, and regions with
elevated rates of such gene conversion may appear as recombination hotspots in our method. In
principle the PAC model could be extended to account explicitly for gene conversion, by suitable
modification of the conditional distributionπ. A concrete suggestion for how to achieve this would
be to augment the space of the hidden Markov Model for the mosaic process (described in detail in
appendix A) to include both the current and previous “copied” chromosome, and then to modify the
Markov jump process to make jumps back to the previously-copied chromosome more likely than
jumps to other chromosomes. However, this would greatly increase the computational expense of
the model, making it unappealing in practice. A more attractive possibility would be to settle for
modeling only those gene conversion events that affect a single marker (which, depending on tract
length and marker density, may be the vast majority of gene conversion events affecting patterns
of LD). This would require only a simple modification of the conditional distribution (it could be
handled similarly to the way that mutations are currently handled), with essentially no increase in
the computation required.

Another aspect of real data that we have not accounted for explicitly is population struc-
ture. Our simulation results in Table 3 suggest that for the purposes of identifying recombination
hotspots our method is robust to a certain amount of population structure. Nevertheless, modeling
population structure explicitly might prove helpful in some settings. For example, it could be used
to extend methods for detecting population structure from unlinked markers (e.g.PRITCHARD

et al.2000) to allow them to be applied to sets of tightly-linked markers. Again, a natural approach
is to modify the conditional distributionπ to account explicitly for population structure. One sug-
gestion is to modify the copying process in thek+ 1st chromosome (see Appendix A) so that,
rather than being equally likely to copy allr existing chromosomes, it is more likely to copy chro-
mosomes from the same population than chromosomes from a different population. This would
effectively model population structure by increasing the probability of seeing similar chromosomes
in the same population, compared with in different populations. We are currently investigating the
effectiveness of a similar idea for LD mapping in case-control studies: treating cases and controls
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as separate populations, and examining whether there appears to be evidence in some regions for
the case chromosomes to be more similar to other case chromosomes than to control chromosomes.

While we have concentrated here on models for biallelic loci, the ideas we have introduced
could also be used to model LD among multi-allelic loci such as micro-satellites. There is a
natural analogue ofπA for loci with K alleles (see also the conditional distribution forK-allele loci
suggested in FD), and this could form a starting point for further investigation.

To deal with the problem that the PAC likelihood depends on the order in which the haplotypes
are considered, we have chosen to average the likelihood over several random orders. One possible
alternative would have been to use the pseudo-likelihood (BESAG 1974) based on our conditional
distribution:

Lpseudo(ρ) =
n

∏
k=1

π(hk|H−k), (7)

whereH−k denotes the set of all haplotypes excludinghk. The pseudo-likelihood, by definition,
does not depend on the ordering of the haplotypes. This idea is more along the lines of the way that
these conditional distributions are used inSTEPHENSet al.(2001). However, in preliminary studies
we found that this pseudo-likelihood performed poorly for estimatingρ. Our intuitive explanation
for this is that the pseudo-likelihood in effect contains only information on the recombination that
is occurring in the tips of the trees, and not on the structure of the tree as a whole. (Interestingly,
under our approximation the first two haplotypes contain no information onρ, so in some sense
the information onρ is coming from intermediate haplotypes.) Nonetheless, it is possible that the
pseudo-likelihood may prove useful in settings where estimatingρ is not of direct interest.

We have introduced here two models for variation in recombination rate: a simple single-
hotspot model, and a more general model that allows recombination rates to vary along the chro-
mosome. Each of these models has weaknesses. The simple single-hotspot model makes some
unrealistic assumptions: the background recombination is unlikely to be constant, and neither is
the recombination rate within the hotspot; furthermore, there could be more than one hotspot. The
more general model makes few assumptions, and allows more flexible investigation of patterns of
recombination rate variation along a region. However, this extra flexibility comes at the expense
of the introduction of extra parameters, which can result in a reduction in the precision with which
parameters can be estimated. When using the model as a general model for LD, rather than for
parameter estimation as we have concentrated on here, the precision of parameter estimates may
be unimportant, and the few assumptions make by the more general model make it particularly
attractive in this situation. When estimation of recombination rates is the main goal, the more
general model may be viewed as most suited to exploratory data analysis, identifying plausible
positions for hotspots, whose magnitudes might be estimated by a more parsimonious model. In
this situation it might prove fruitful to consider modifying the more general model by putting a
more informative prior on theλ js. In particular a prior in which theλ js are correlated along the
chromosome (e.g. an autoregressive prior) would reduce the variance of parameter estimates, at
the expense of assuming that changes in recombination rate occur more or less smoothly along the
chromosome (which may or may not be the case).
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In assessing our model as a method for estimating recombination rates from sequence data over
moderate genomic regions, perhaps the most natural comparisons to make are with the composite
likelihood methods ofHUDSON (2001) andFEARNHEAD andDONNELLY (2002). (While some
other methods based on summaries of the data might be competitive with these approaches when
the recombination rate is assumed constant, they seem likely to suffer from loss of information
when fitting models with more parameters, such as either of our models for recombination rate
variation.) Of the two composite likelihood methods, although both are tractable for estimatingρ
over large genomic regions, only Hudson’s method is comparable with our own in terms of com-
putational expense: our method and Hudson’s method typically takes seconds, or less, to compute
a likelihood, while Fearnhead and Donnelly’s method can take hours per likelihood computation.
Although the time and effort expended in collecting these kinds of data make it not unreasonable to
wait hours or days for the results of analysis, the extra computational burden may make Fearnhead
and Donnelly’s method difficult to extend to more general settings involving missing genotype
data, genotyping error, and/or unknown haplotypic phase for example. The approach of splitting
the sequence data into contiguous segments also has the disadvantage noted earlier, of estimating
recombination rates in a region only on the basis of sites within the region, and not sites either
side of the region, resulting in potential loss of information. Our limited comparisons with Hud-
son’s method suggest that it performs similarly to our method for estimating the recombination rate
when it is assumed constant across the region. In principle Hudson’s method could also be applied
to fit models of varying recombination rate along the sequence, and the existence of more than
one method to fit such models would be welcome. Both approaches seem to offer considerable
advantages over other available methods for modelling LD and inferring patterns of recombination
rate heterogeneity.

6 Software

The methods discussed in this paper have been implemented in a C++ package,Hotspotter ,
which is freely available for download athttp://stat.washington.edu/stephens/
hotspotter.html .
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Appendices

A The conditional distribution πA

Here we give a formal description ofπA. We also provide some additional motivation for the form
of this approximation, and describe briefly some of the variations on this form that we have also
experimented with.

A.1 Formal description of πA

Let h1, . . . ,hn denote then sampled haplotypes typed atSbiallelic loci (SNPs). Typicallyh1, . . . ,hn

would come from a sample ofn haploid individuals, orn/2 diploid individuals. We assume that the
distribution of the first haplotype is independent ofρ (e.g. all2S possible haplotypes are equally
likely, so πA(h1) = 1/2S). Consider now the conditional distribution ofhk+1 givenh1, . . . ,hk, for
k≥ 1. Recall (Figure 2) thathk+1 is an imperfect mosaic ofh1, . . . ,hk. That is, fork≥ 1, at each
SNP,hk+1 is a (possibly imperfect) copy of one ofh1, . . . ,hk at that position. LetXj denote which
haplotypehk+1 copies at sitej (soXj ∈ {1,2, . . . ,k}). For example, for haplotypeh4A in Figure 2,
(X1,X2,X3,X4,X5) = (3,3,2,2,2). To mimic the effects of recombination, we model theXj as a
Markov chain on{1, . . . ,k}, with Pr(X1 = x) = 1/k (x∈ {1, . . . ,k}), and

Pr(Xj+1 = x′|Xj = x) =

{
exp(−ρ jd j/k)+(1−exp(−ρ jd j/k))(1/k) if x′ = x;

(1−exp(−ρ jd j/k))(1/k) otherwise,
(A1)

whered j is the physical distance between markersj and j +1 (assumed known); andρ j = 4Ncj ,
whereN is the effective (diploid) population size, andc j is the average rate of crossover per
unit physical distance, per meiosis, between sitesj and j + 1 (so thatc jd j is the genetic distance
between sitesj and j + 1). This transition matrix captures the idea that, if sitesj and j + 1 are
a small genetic distance apart (i.e.c jd j is small) then they are highly likely to “copy” the same
chromosome (i.e.Xj+1 = Xj ). We note the following special cases used in this paper:

1. Constant recombination rate (Section 3):c j = c̄ for all j.

2. Simple single-hotspot model (Section 4.2):c j = c̄ if markers j and j +1 are both outside the
hotspot, andc j = λ c̄ if markers j and j +1 are both inside the hotspot. (For brevity we omit
details of the more tedious, though straightforward, case where one marker is in the hotspot,
and the other outside the hotspot.)

3. General variable recombination rate model (Section 4.3):c j = λ j c̄.

To mimic the effects of mutation the copying process may be imperfect: with probabilityk/(k+
θ̃) the copy is exact, while with probabilitỹθ/(k+ θ̃) a “mutation” will be applied to the copied
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haplotype. Specifically, ifhi, j denotes the allele (0 or 1) at sitej in haplotypei, then given the
copying processX1, . . . ,XS the alleleshk+1,1, hk+1,2, . . ., hk+1,S are independent, with

Pr(hk+1, j = a|Xj = x,h1, . . . ,hk) =

{
k/(k+ θ̃)+(1/2)× θ̃/(k+ θ̃), hx, j = a

(1/2)× θ̃/(k+ θ̃), hx, j 6= a.
(A2)

(The factor of (1/2) appears in both cases, so that asθ̃ −→ ∞ both alleles become equally likely.)
We fix the value ofθ̃ to be

θ̃ =

(
n−1

∑
m=1

1
m

)−1

, (A3)

wheren is the total number of sampled haplotypes. (See the section on motivation below for more
discussion.)

A.2 Computation

ComputingπA(hk+1|h1, . . . ,hk) requires a sum over all possible values of theXj , which can be
done efficiently using the forward part of the Forward–Backward algorithm for hidden Markov
Models (HMMs) (e.g.RABINER 1989). Specifically, lethk+1,≤ j denote the types of the firstj sites
of haplotypehk+1, and letα j(x) = Pr(hk+1,≤ j ,Xj = x). Thenα1(x) can be computed directly for
x = 1, . . .k, andα2(x), . . . ,αS(x) can be computed recursively using

α j+1(x) = γ j+1(x)
k

∑
x′=1

α j(x′)Pr(Xj+1 = x|Xj = x′) (A4)

= γ j+1(x)

(
p jα j(x)+(1− p j)

1
k

k

∑
x′=1

α j(x′)

)
, (A5)

whereγ j+1(x) = Pr(hk+1, j+1|Xj+1 = x,h1, . . . ,hk) is given in (A2), andp j = exp(−ρ jd j/k). The
value ofπA(hk+1|h1, . . . ,hk) can then be computed using

πA(hk+1|h1, . . . ,hk) =
k

∑
x=1

αS(x). (A6)

The second term in the parenthesis of (A5) does not depend onx and needs to be computed
only once for eachj (as noted in FD). Thus the computational complexity ofπA(hk+1|h1, . . . ,hk)
increases linearly in the number of SNPs and linearly ink. As a result the computation ofLPAC−A

is linear in the number of SNPs, and quadratic in the number of chromosomes in the sample.
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A.3 Motivation and variations

Although it seems intuitively sensible that the transition matrix in (A1) should have the property
that the rate at which jumps occur in the copying process should increase withρ, and decrease
with the number of previous sampled chromosomesk, it is perhaps not so obvious why we chose
the rateρ/k. Indeed, the empirical results in Figure 4 suggest that this rate is not quite ideal, and
Appendix B describes a corrected rate, based on these empirical results. However, we can get some
idea of whyρ/n is a sensible starting point for the rate parameter, from the following informal
argument. Assume thath1, . . . ,hk+1 are a random sample of haplotypes from a neutrally-evolving,
randomly-mating, constant-sized population, and consider the unknown genealogical tree relating
h1, . . . ,hk+1 at a single site. It follows from the Ewens sampling formula that in this tree, the
probability thathk+1 is separated by at least one mutation from each ofh1, . . . ,hk (unconditional on
the actual values ofh1, . . . ,hk) is θ/(k+θ), whereθ = 4Nµ , andµ is the probability of mutation
per meiosis at that site. Similarly, if we consider marking on the tree recombination events that
occur between this site and the next site, the probability that there will be at least one such event
separatinghk+1 from each ofh1, . . . ,hk is ρ/(k+ ρ), whereρ = 4Nc andc is the probability of
recombination between two adjacent sites per meiosis. Sinceρ is smallρ/(k+ ρ) ≈ ρ/k, giving
the rate that we used. (We emphasize that this is not intended to be a formal argument, and that in
particular that it is unclear how our mosaic process relates formally to the genealogical tree relating
the haplotypes. It is merely intended to provide additional motivation for the use of this rate, and
perhaps to stimulate research into a more formal connection.)

The reason for our choice of̃θ is thatθ̃ = ∑n−1
m=1

1
m is the expected number of mutation events

at a single site on the genealogical tree relating a random sample ofn chromosomes, so (A3) gives
a priori an expected number of mutation events at each site of 1 (although it does not force the
number of mutations to be exactly 1, and so our method should be somewhat robust to the presence
of multiple mutations at some sites).

We performed simulation experiments along the lines of those used to produce Figure 4 to see
whether variations on the conditional distributionπA described above might eliminate the bias we
observed forπA. In particular, we tried: using values forθ̃ that were up to 4 times bigger or smaller
than that in (A3); estimating̃θ from the data; replacing the transition probability in (A1) with a
transition probability ofρdi/(k+ ρdi), as in FD; and making use of the more complex mutation
mechanism (involving Gaussian quadrature) used inSTEPHENSandDONNELLY (2000) and in FD.
Although these different variations gave different quantitative results, they all produced similar
qualitative patterns, and in particular the bias we observed forπA remained in every variation that
we tried. We therefore resorted to the empirical correction described in Appendix B below.

B πB: a bias-corrected version ofπA.

To correct the bias observed in the results forρ̂PAC−A, we modified the transition matrix in (A1) by
replacingρ j by δ jρ j , whereδ j = exp(a+blog10ρ j). The intercepta and slopeb are interpolated
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based on the number of haplotypesn and segregating sitesS in the data (Table 1) using tensor
product interpolation with natural cubic splines first in the direction of varyingn, and then in the
direction of varyingS(UEBERHUBER1997).

C Simulating data with a recombination hotspot.

We use the following algorithm to postprocess the output frommksample (HUDSON 2002) to
simulate data under the simple single-hotspot model for recombination variation. Suppose we
would like to simulate a sample with approximatelySsegregating sites. The background recombi-
nation rate isρ . A hotspot of widthw= (b−a) lies between positionsa andb, with recombination
rateλρ whereλ > 1. We follow these steps:

1. Simulate samples withS′ = (1+ w(λ −1))S segregating sites and constant recombination
rateρ ′ = (1+w(λ −1))ρ .

2. Multiply the position of each site by a factor of1+w(λ −1) so that the total length of the
haplotypes is1+w(λ −1) instead of 1 (and the background recombination rate isρ).

3. For sites withina anda+wλ , randomly delete them with probability1−1/λ .

4. For the remaining sites withina anda+wλ , shrink the distance of adjacent sites by a factor
of λ .

5. Shift the positions of the sites to the right of the hotspot (subtractw(λ −1)) so that the total
length is again 1.

Shrinking the distance between sites in the hotspot produces the effect of elevated recombina-
tion rate. Deleting some sites keeps the mutation rate constant over the region.
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