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Abstract

We propose a more efficient version of the slice sampler for Dirichlet process

mixture models described by Walker (2007). This sampler allows the fitting of

infinite mixture models with a wide–range of prior specification. To illustrate

this flexiblity we develop a new nonparametric prior for mixture models by

normalizing an infinite sequence of independent positive random variables and

show how the slice sampler can be applied to make inference in this model. Two

submodels are studied in detail. The first one assumes that the positive random

variables are Gamma distributed and the second assumes that they are inverse–

Gaussian distributed. Both priors have two hyperparameters and we consider

their effect on the prior distribution of the number of occupied clusters in a

sample. Extensive computational comparisons with alternative ”conditional”

simulation techniques for mixture models using the standard Dirichlet process

prior and our new prior are made. The properties of the new prior are illus-

trated on a density estimation problem.
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1 Introduction

The well known and widely used mixture of Dirichlet process (MDP) model was first

introduced by Lo (1984). The MDP model, with Gaussian kernel, is given by

fP (y) =

∫
K(y; φ) dP (φ)

with K(y; φ) being a normal kernel and P ∼ D(M, P0) . We write P ∼ D(M, P0) to

denote that P is a Dirichlet process (Ferguson, 1973) with parameters M > 0, the

scale parameter, and P0, a distribution on the real line and φ = (µ, σ2) with µ to

represent the mean and σ2 the variance of the normal component. Since the advent

of Markov chain Monte Carlo methods within the mainstream statistics literature

(Smith and Roberts, 1993), and the specific application to the MDP model (Escobar,

1988; Escobar, 1994; Escobar and West, 1995), the model has become one of the

most popular in Bayesian nonparametrics since it is possible to integrate P from the

posterior defined by this model.

Variations of the original algorithm of Escobar (1988) have been numerous; for

example, MacEachern (1994); Müller and MacEachern (1998); Neal (2000). All of

these algorithms rely on integrating out the random distribution function from the

model, removing the infinite dimensional problem. These are usually referred to as

“marginal” methods. Recent ideas have left the infinite dimensional distribution in

the model and found ways of sampling a sufficient but finite number of variables

at each iteration of a Markov chain with the correct stationary distribution. See

Papaspiliopoulos and Roberts (2008) and Walker (2007); the latter paper using slice

sampling ideas. These define so–called “conditional” methods.

There has recently been interest in defining nonparametric priors for P that move

beyond the Dirichlet process (see e.g. Lijoi et al (2007)) in infinite mixture models.

These alternative priors allow more control over the prior cluster structure than would

be possible with the Dirichlet process. The availability of computational methods for

posterior inference,that do not integrate out P , allows us to implement these priors.

The purpose of this paper is two fold: 1) to develop an efficient version of the

slice sampling algorithm for MDP models proposed by Walker (2007) and to extend

it to more general nonparametric priors such as general stick–breaking processes and

normalised weights priors and 2) to develop a new class of nonparametric prior for

infinite mixture models by normalizing an infinite sequence of positive random vari-

ables, which will be termed a Normalized Weights prior. The lay–out of the paper is
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as follows. In Section 2 we describe the slice–efficient sampler for the MDP model.

Section 3 describes the normalized weights prior and discusses constructing a slice

sampler for infinite mixture models with this prior. Section 4 discusses an applica-

tion of the normalized weights prior to modelling the hazard in survival analysis and

Section 5 contains numerical illustrations and an application of the normalized weight

prior to density estimation. Finally, Section 6 contains conclusions and a discussion.

2 The slice–efficient sampler for the MDP

It is well known that P ∼ D(M, P0) has a stick–breaking representation (Sethuraman,

1994) given by

P =
∞∑

j=1

wj δφj
,

where the {φj} are independent and identically distributed from P0 and

w1 = z1, wj = zj

∏

l<j

(1 − zl)

with the {zj} being independent and identically distributed from beta(1, M). It is

possible to integrate P from the posterior defined by the MDP model. However, the

stick–breaking representation is essential to estimation via the non–marginal methods

of Papaspiliopoulos and Roberts (2008) and Walker (2007). The idea is that we can

write

fz,φ(y) =
∞∑

j=1

wj K(y; φj)

and the key is to find exactly which (finite number of) variables need to be sampled

to produce a valid Markov chain with correct stationary distribution.

The details of the slice sampler algorithm are given in Walker (2007), but we briefly

describe the basis for the algorithm here and note an improvement, also noticed by

Papaspiliopoulos (2008). The joint density

fz,φ(y, u) =
∞∑

j=1

1(u < wj) K(y; φj)

is the starting point. Given the latent variable u, the number of mixtures is finite,

the indices being Au = {k : wk > u}. One has

fz,φ(y|u) = N−1
u

∑

j∈Au

K(y; φj),
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and the size of Au is Nu =
∑∞

j=1 1(wj > u).

One can then introduce a further latent variable, d, which indicates which of these

finite number of mixtures provides the observation to give the joint density

fz,φ(y, u, d) = 1(u < wd) K(y; φd).

Hence, a complete likelihood function for (z, φ) is available as a simple product of

terms and crucially d is finite. Without u, d can take an infinite number of values

which would make the implementation of a Markov chain Monte Carlo algorithm

problematic.

We briefly describe the simulation algorithm, but only provide the sampling pro-

cedure without derivation since this has appeared elsewhere (Walker, 2007). How-

ever, as mentioned earlier, we do sample one of the full conditionals in a different

and more efficient manner. We sample π(z, u| · · · ) as a block and this involves sam-

pling π(z| · · · exclude u) and then π(u|z, · · · ), where π(z| · · · exclude u) is obtained

by integrating out u from π(z, u| · · · ). The distribution π(z| · · · exclude u) will be

the standard full conditional for a stick–breaking process (see Ishwaran and James

(2001)). Standard MCMC theory on blocking suggests that this should lead to a

more efficient sampler.

Recall that we have the model

f(y) =

∞∑

j=1

wj K(y; φj),

where the {φj} are independent and identically distributed from P0, the {wj} have a

stick–breaking process based on the Dirichlet process, described earlier in this section.

The variables that need to be sampled at each sweep of a Gibbs sampler are

{(φj, zj), j = 1, 2, . . . ; (di, ui), i = 1, . . . , n}.

1. π(φj| · · · ) ∝ p0(φj)
∏

di=j K(yi; φj).

2. π(zj | · · · exclude u) ∝ beta(zj ; aj, bj), where

aj = 1 +

n∑

i=1

1(di = j)

and

bj = M +

n∑

i=1

1(di > j).
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3. π(ui| · · · ) ∝ 1(0 < ui < wdi
).

4. P(di = k| · · · ) ∝ 1(k : wk > ui) K(yi; φk).

Obviously, we can not sample all of the (φj , zj). But it is not required to in order

to proceed with the chain. We only need to sample up to the integer N for which

we have found all the appropriate wk in order to do step 4 exactly. Since the weights

sum to 1 if we find Ni such that
∑Ni

k=1 wk > 1 − ui then it is not possible for any of

the wk, for k > Ni, to be greater than ui.

There are some important points to make here. First, it is a trivial extension to

consider more general stick–breaking processes for which zj ∼ beta(αj, βj) indepen-

dently. Then, in this case, we would have

aj = αj +
n∑

i=1

1(di = j)

and

bj = βj +
n∑

i=1

1(di > j).

This easy extension to more general priors is not a feature of alternative, marginal

sampling algorithms. Secondly, the algorithm is remarkably simple to implement; all

full conditionals are standard.

Later, for the illustrations and comparison, we will consider two types of slice

sampler. The “slice–efficient” which is the one described above and the “slice” which

is the original algorithm appearing in Walker (2007) and is noted by the fact that the

v is sampled conditional on u in this case.

The retrospective sampler (Papaspiliopoulos and Roberts 2008) is an alternative,

conditional method. The following argument gives some understanding for the dif-

ference between retrospective sampling (which uses Metropolis sampling) and slice

sampling. Suppose we wish to sample from f(x) ∝ l(x)π(x) using Metropolis sam-

pling and use π(x) as the proposal density. Let xc be the current sample and x∗ ∼ π(x)

and u ∼ Un(0, 1), so the new sample xn is x∗ if u < l(x∗)/l(xc) or else is xc.

On the other hand, the slice sampler would work by considering f(x, u) ∝ 1(u <

l(x))π(x) and so a move from xc to xn would work by sampling xn from π(x) restricted

to {x : l(x)/l(xc) > u} where u ∼ Un(0, 1). So the two sampling strategies are

using the same variables but in a fundamentally different way, which allows the slice

sampling version to always move.
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This illustration is obviously demonstrated on a simple level, but we believe the

principle applies to the difference between the retrospective sampler and the slice

sampler for the mixture of Dirichlet process model.

3 Mixtures Based on Normalized Weights

3.1 Definition and Properties

The slice sampling idea can be extended to mixture models with weights obtained

via normalization. The Dirichlet process has been the dominant prior in nonpara-

metrics but the definition of alternative nonparametric priors has been a recent area

of interest. For example, Lijoi et al (2007) define nonparametric priors through the

normalization of the generalized Gamma process. We discuss an alternative form of

normalization. We consider

f(y) =
∞∑

j=1

wj K(y; φj)

where wj = λj/Λ and Λ =
∑∞

j=1 λj . We will also use Λm =
∑∞

j=m+1 λj. Here the {λj}
are positive and will be assigned independent prior distributions, say λj ∼ πj(λj).

These must be constructed so as to ensure that
∑∞

j=1 λj < +∞ a.s. We suggest

defining specific priors by defining E[λj ] = ξqj where ξ > 0 and qj = P (X = j) where

X is a random variable whose distribution is discrete on the positive integers. For

example, we could assume that X = Y + 1 where Y follows a geometric distribution.

Then

qj = (1 − θ)θj−1.

The parameter θ controls the rate at which E[λ1], E[λ2], E[λ2], . . . tends to zero. We

have defined a nonparametric prior with two parameters θ and ξ. As we will see

in the following examples, the choice of the distributions π1, π2, π3, . . . controls the

properties of the process. Many other families of nonparametric prior distribution can

be generated by different choices of X. For example, we could assume that X = Y +1

where Y follows a Poisson distribution.

Example 1: Gamma distribution.

Here we take the {λj} to be independent gamma distributions, say λj ∼ Ga(γj, 1).

To ensure that Λ < +∞ a.s. we take
∑∞

j=1 γj < +∞. Clearly, wj has expectation
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Figure 1: Prior distribution of the number of clusters from 30 observations with the

infinite Dirichlet prior

qj and variance qj(1 − qj)/(ξ + 1) and we can interpret ξ as a mass parameter.

We will refer to this model as an infinite Dirichlet prior since if we have a finite

number of unnormalized weights λ1, λ2, . . . , λN then w1, w2, . . . , wN would be Dirichlet

distributed. In infinite mixture models, the prior distribution on the number of

clusters from n observations is important. Figure 1 shows this distribution for n = 30.

Larger values of θ for fixed ξ place more mass on larger numbers of clusters (as we

would expect since the weights decay increasingly slowly with larger θ). The mass

parameter ξ also plays an important role. Larger values of ξ lead to more dispersed

distributions with a larger median value.

Stick–breaking priors were introduced to Bayesian nonparametrics by Ishwaran

and James (2001). They are defined by two infinite vectors of parameters. Clearly,

there is a need to develop priors within this class that have a few hyperparameters to

allow easy prior specification. The Dirichlet process and Poisson-Dirichlet process are

two such priors and the infinite Dirichlet prior represents another. The stick-breaking

representation of the infinite Dirichlet prior takes αj = ξqj and βj = ξ
(
1 −

∑j
i=1 qi

)
.
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Example 2: Inverse–Gaussian distribution

The inverse–Gaussian distribution, IG(γ, η), has a density function given by

π(λ) =
γ√
2π

λ−3/2 exp

{
−1

2

(
γ2

λ
+ η2λ

)
+ ηγ

}
,

where γ and η can be interpreted as a shape and a scale parameter, respectively. We

take λj to follow independent IG(γj , 1) distributions. Then Λm =
∑∞

j=m+1 λj is dis-
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Figure 2: Prior distribution of the number of clusters for infinite normalized inverse–

Gaussian prior

tributed as IG(
∑∞

j=m+1 γj, 1) and the normalization is well–defined if
∑∞

j=1 γj < +∞
which implies that Λ is almost surely finite. The finite dimensional normalized distri-

bution (λ1/Λ, λ2/Λ, . . . , λm/Λ) has been studied by Lijoi et al. (2005) as the normal-

ized inverse–Gaussian distribution. We again define γj = ξqj and it follows directly

from their results that wi has expectation qi and variance qi(1−qi)ξ
2 exp{ξ}Γ(−2, ξ).

This prior will be referred to as the infinite normalized inverse–Gaussian prior. Fig-

ure 2 shows the prior distribution of the number of clusters in 30 observations. The

effects of ξ and θ follow the same pattern as the infinite Dirichlet case discussed above.

However, the effect of ξ is less marked for small ξ. In the infinite Dirichlet case for

ξ = 0.1, the distributions are almost indistinguishable for different values of θ but in
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this case it is clear that the location of the distribution is increasing with θ. This

allows easier prior specification for the infinite normalized–inverse Gaussian prior

3.2 Slice sampler

The model can be fitted using an extension of the slice sampler developed in section 2.

We will assume that the distribution of Λm has a known form for all m, which we will

denote by π?
m(Λm). The introduction of a normalizing constant, Λ, makes MCMC

trickier. Simpler updating is possible when we introduce the additional latent variable

v, and consider the joint density

f(y, v, u, d) = exp(−vΛ) 1(u < λd) K(y; φd).

Clearly the marginal density

f(y, d) =
λd

Λ
K(y; φd),

as required. The likelihood function based on a sample of size n is given by

n∏

i=1

exp(−viΛ) 1(ui < λdi
) K(yi; φdi

).

We will only consider those conditional distributions which are not immediately triv-

ial; those that are completely trivial being ui, vi and φj. The distribution of di is

trivial but as before we need to find the number of λj’s (and also φj ’s) to be sampled

in order to implement the sampling of di.

Hence, the non–trivial aspect to the algorithm is the sampling of the sufficient

number of {λj} and Λ. We will, as before, work on the conditional distribution

of the ({λj}, Λ) excluding the {ui}. We simulate λ1, . . . , λm, Λm (where m is the

number of atoms given in the previous iteration) in a block from their full conditional

distribution which is proportional to

exp{−V Λm}π?
m(Λm)

m∏

j=1

exp{−V λj}λnj

j πj(λj),

where nj =
∑n

i=1 1(di = j) and V =
∑n

i=1 vi. We need to find the smallest value of

m′ for which Λm′ < mini{ui} so that we can evaluate the full conditional distribution

of di. This value can be found by sequentially simulating [λj , Λj|Λj−1] for j = m +

1, . . . , m′. The conditional distribution of [λj = x, Λj = Λj−1 − x|Λj−1] is given by

f(x) ∝ πj(x)π?
j (Λj−1 − x), 0 < x < Λj−1.
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In some cases simulation from the distribution will be straightforward. If not, generic

univariate simulation methods such as Adaptive Rejection Metropolis Sampling (Gilks

et al. 1995) can be employed. We now consider a couple of examples.

Example 1: Gamma distribution

It is easy to see that

π(λ1/Λ, . . . , λm/Λ|Λ, · · · , exclude u) = Dir

(
γ1 + n1, . . . , γm + nm,

∞∑

l=m+1

γl

)

and

Λm ∼ Ga

(
∞∑

j=m+1

γj, 1 + V

)
.

The conditional distribution of λj/Λj is Be(γj,
∑∞

i=j+1 γi). This prior can also be

represented as a stick–breaking prior.

Example 2: Inverse–Gaussian distribution

The full conditional distribution of λj is given by

π(λj | · · · ) ∝ λ
nj−3/2
j exp

{
−1

2

(
γ2

j

λj

+ (1 + 2V )λj

)}
,

where nj is the number of observations allocated to component j. The full conditional

distribution of Λm is proportional to

Λ−3/2
m exp

{
−1

2

(
(
∑∞

i=m+1 γi)
2

λj

+ (1 + 2V )λj

)}
.

These are both generalized inverse–Gaussian distributions which can be simulated

directly; see e.g. Devroye (1986).

We can simulate from [λj+1, Λj+1|Λj] by defining λj+1 = xj+1Λj and Λj+1 =

(1 − xj+1)Λj where the density of xj+1 is given by

g(xj+1) ∝ x
−3/2
j+1 (1 − xj+1)

−3/2 exp

{
−1

2

[
γ2

j

Λjxj+1
+

(
∑∞

i=j+1 γi)
2

Λj(1 − xj+1)

]}
.

Unlike the gamma case, this conditional distribution depends on Λm. The distribution

of xj+1/(1−xj+1) can be identified as a two–mixture of generalized inverse–Gaussian

distributions and hence can be sampled easily (details are given in the Appendix).
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4 Hazard Functions

The normalized procedure can also be applied to the modeling of random hazard

functions. Suppose we model the unknown hazard function h(t), for t > 0, using a

set of known functions {hk(t)}∞k=1, via

h(t) =
∞∑

k=1

λk hk(t).

Here the {λk > 0} are the model parameters and can be assigned independent gamma

prior distributions; say λk ∼ Ga(ak, bk). Obviously we will need to select (ak, bk) to

ensure that h(t) < +∞ a.s. for all t < +∞. The corresponding density function is

given by

f(t) =
∞∑

k=1

λkhk(t) exp

{
−

∞∑

k=1

λkHk(t)

}
,

where Hk is the cumulative hazard corresponding to hk.

So with observations {ti}n
i=1, the likelihood function is given by

l(λ|t) ∝
n∏

i=1

[
∞∑

k=1

λkhk(ti) exp

{

−
∞∑

k=1

λkHk(ti)

}]

.

Our approach is based on the introduction of a latent variable, say u, so that we

consider the joint density with t given by

f(t, u) =
∞∑

k=1

1(u < λk) hk(t) exp

{
−

∞∑

k=1

λkHk(t)

}
.

A further latent variable d picks out the mixture component from which (t, u) come,

f(t, u, d) = 1(u < λd) hd(t) exp

{

−
∞∑

k=1

λkHk(t)

}

.

We will now introduce the key latent variables, one for each observation, and label

them (ui, di), into the likelihood, which is given by

l(λ|t, u, d) ∝
n∏

i=1

1(ui < λdi
) hdi

(ti) exp

{

−
∞∑

k=1

λkHk(ti)

}

.

The point is that the choice of di is finite. It is now clear that the sampling algorithm

for this model is basically the same now as for the normalized case. We could take
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the λj to be gamma with parameters aj +
∑

di=j 1 and bj +
∑

di=j Hj(ti) and we

would first sample up to M = maxi di. Then the ui are from Un(0, λdi
). In order to

sample the di we need to find all the λj greater than ui. We can do this by sampling

ΛM =
∑

j>M λj as a gamma distribution and then sampling [λM+1, . . . λNi
]|ΛM so

that Ni is the smallest integer for which
∑Ni

j=M+1 λj > ΛM −ui. Finally, once we have

found all the λj > ui, we can sample di from Pr(di = j) ∝ 1(λj > ui)hj(ti).

5 Illustration and Comparisons

In this section we carry out a comparison of the slice sampling algorithm with the

retrospective sampler using the Dirichlet process and the normalized weights prior.

The algorithms are compared using the normal kernel K(y|φ) with components φ =

(µ, ζ), and P0(µ, ζ) = N(µ|µ0, ξ
2) × G(ζ |γ, β). Here G(γ, β) denotes the gamma

distribution. We also consider inference for the commonly used galaxy data set with

the infinite Dirichlet and infinite normalized inverse–Gaussian priors.

For comparison purposes we consider two real data sets and two simulated data

sets. The real data sets are:

1. Galaxy data set which consists of the velocities of 82 distant galaxies diverging

from our own galaxy. This is the most commonly used data set in density

estimation studies, due to its mulimodality. We will also use it to illustrate the

effect of the prior choice on the posterior density in Section 5.3.

2. S & P 500 data set which consist of 2023 daily index returns. This is yet another

commonly used data set in density estimation and volatility studies of financial

asset returns; see, Jacquier, Polson, and Rossi (1994, 2004). This data set is

unimodal, not necessarily symmetric, around zero, and it is characterized by

heavy tails.

We chose these data sets because of their size, as we would like to study the

performance of the algorithms on both small and large data sets.

The simulated data sets are based on the models used in Green and Richardson

(2001) and consist of 100 draws from a bimodal and a leptokurtic mixture.

1. The bimodal mixture: 0.5N(−1, 0.52) + 0.5N(1, 0.52).

2. The leptokurtic mixture: 0.67N(0, 1) + 0.33N(0.3, 0.252).

12



Both of these simulated data sets were used in the algorithm comparison study

carried out in Papaspiliopoulos and Roberts (2008); since we are comparing our slice

sampler with the retrospective sampler, we decided to use these simulated data sets.

The parameters for our MDP mixture are also set according to Green and Richard-

son (2001). If R is the range of the data; then we take µ0 = R/2, ξ = R, γ = 2, and

β = 0.2R2. The precision parameter of the Dirichlet Process is set at M = 1. In the

comparison of the estimates of the statistics used, we took the Monte Carlo sample

size to be S = 250, 000 for each algorithm, with the initial 10, 000 used as a burn

in period. Density estimates using the retrospective and slice–efficient samplers are

shown in figure 3 for the Dirichlet process mixture model.

Bi–modal Leptokurtic S & P 500
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Figure 3: Predictive densities: (a) retrospective and (b) slice–efficient

5.1 Algorithmic performance

To monitor the performance of the algorithms we look at the convergence of two

quantities:

• The number of clusters: at each iteration there are j = 1, . . . , N clusters of

the i = 1, . . . , n data points with mj being the size of the j cluster, so that
∑N

j=1 mj = n.

• The deviance, D, of the estimated density, calculated as

D = −2
n∑

i=1

log

(
∑

j

mj

n
K(yi|φj)

)
.
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These variables have been used in the previous comparison studies of Papaspiliopoulos

and Roberts (2008), Green and Richardson (2001) and Neal (2000). Here D is one

of the most common functionals used in comparing algorithms, because it is seen as

a global function of all model parameters. Although we produce this variable and

study its algorithmic performance we are also concerned with the convergence of the

number of clusters.

The efficiency of the algorithms is summarized by computing an estimate τ̂ of the

integrated autocorrelation time, τ , for each of the variables. Integrated autocorrela-

tion time is defined in Sokal (1997) as

τ =
1

2
+

∞∑

l=1

ρl.

where ρl is the autocorrelation at lag l. An estimate of τ has been used in Pa-

paspiliopoulos and Roberts (2008), Green and Richardson (2001) and Neal (2000).

Integrated autocorrelation time is of interest as it controls the statistical error in

Monte Carlo measurements of a desired function f . To clarify this point, consider

the Monte Carlo sample mean,

f̄ ≡ 1

S

S∑

l=1

fj ,

where S is the number of iterations. The variance of f̄ according to Sokal (1997) is

Var(f̄) ≈ 1

S
2τ × V,

where V is the marginal variance. Sokal (1997) concludes that Var(f̄) is a factor

2τ larger than what it would be if the {fj} were statistically independent. In other

words, τ determines the statistical error of the Monte Carlo measurements of f once

equilibrium has been attained. Therefore a run of S iterations contains only S/(2τ)

“effectively independent data points”. This means that the algorithm with the smallest

estimated value of τ will be the most efficient. The problem with the calculation of τ

lies in accurately estimating the covariance between the states, which in turn is used

to calculate the autocorrelation ρl. It must be noted that in MCMC the covariance

and the autocorrelation are not single values but random variables. Based on Sokal

(1997) the estimator for τ is given by

τ̂ =
1

2
+

C−1∑

l=1

ρ̂l.
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where ρ̂l is the estimated autocorrelation at lag l (obtained via MatLab) and C is

a cut–off point, normally set by the researcher. In our comparisons we define, as is

commonly done,

C = min
{
l : |ρ̂l| < 2/

√
S
}

.

Then C is the smallest lag for which we would not reject the null hypothesis H0 :

ρl = 0. A similar approach has also been used in Papaspiliopoulos (2008). The issue

here, see Sokal (1997), is the cut off point C; it introduces bias equal to

Bias(τ̂) =
1

2

∑

|l|>C

ρl + o

(
1

S

)
.

On the other hand, the variance of τ̂ can be computed using

Var(τ̂ ) ≈ 2(2C − 1)

S
τ 2.

The choice of C will be a trade off between the bias and the variance of τ̂ , which

means that we really cannot say how “good” an algorithm is since the choice of C

point is left to the researcher. According to Sokal (1997), this approach works well

when a sufficient quantity of data is available which we can control by running the

sampler for a sufficient number of iterations.

5.2 Results

The following tables compare the estimated integrated autocorrelation time τ̂ of the

two variables of interest; the number of clusters and the deviance.

5.2.1 Dirichlet process

Looking at the estimates of τ̂ for the real data sets we come to the following conclu-

sions:

• For the galaxy data set there is little difference between the two samplers. Even

though the retrospective sampler performs marginally better, the slice–efficient

sampler is easier to use as simulating the z and k is carried out in an easy way,

as opposed to the complexity of the set up of the retrospective sampling steps.

• For the S&P data set which is large, unimodal, asymmetric and heavy–tailed,

it is the slice–efficient sampler that outperforms the retrospective sampler, in

terms of τ̂ for the number of clusters; τ̂ for the slice–efficient sampler is about

half that of the retrospective sampler.
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Galaxy data Leptokurtic data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice 31.5268 10.2683 157.0064 119.3368

Slice–efficient 10.2868 4.3849 33.0470 26.0547

Retrospective 6.7677 2.9857 13.6639 9.3014

Bimodal data S&P 500 data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice 167.4995 54.6059 142.6566 81.4236

Slice–efficient 26.8114 10.8374 4.1923 5.2390

Retrospective 14.7202 7.1603 7.1464 1.5779

Table 1: Estimates of the integrated autocorrelation times for the deviance (D) and

for the number of clusters with four data sets with the Dirichlet process mixture

model
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Figure 4: Autocorrelation of MCMC output for: slice sampler (red), efficient slice

sampler (blue) and retrospective sampler (green)

5.2.2 Mixtures based on normalized weights

We reject the slice sampler in favour of the slice–efficient sampler. We use the infinite

Dirichlet and infinite normalized inverse–Gaussian mixtures models with ξ = 1 and

θ = 0.5 on the four data sets. We find similar performance for the normalized weights

prior as for the Dirichlet process prior. The retrospective sampler is usually more

efficient than the slice sampler with a two times relative improvement on average.
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Galaxy data Leptokurtic data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice–efficient 25.50 12.21 115.36 79.70

Retrospective 27.12 7.08 48.32 29.13

Bimodal data S&P 500 data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice–efficient 64.19 17.03 21.69 11.99

Retrospective 44.05 8.64 14.17 3.22

Table 2: Estimates of the integrated autocorrelation times for the deviance (D) and

for the number of clusters with four data sets with the infinite Dirichlet distribution

mixture model

The improvement is typically larger for the simulated rather than the real data sets.

The effect is also more pronounced for the infinite Dirichlet distribution prior rather

than the infinite normalized inverse–Gaussian prior.

Galaxy data Leptokurtic data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice–efficient 22.41 8.89 41.95 31.64

Retrospective 16.91 4.75 27.63 21.52

Bimodal data S&P 500 data

τ̂ for ] clust τ̂ for D τ̂ for ] clust τ̂ for D

Slice–efficient 34.72 15.79 28.42 8.38

Retrospective 23.20 9.45 85.57 3.01

Table 3: Estimates of the integrated autocorrelation times for the deviance (D) and

for the number of clusters with four data sets with the infinite normalized inverse–

Gaussian distribution mixture model

These results are not surprising. The slice sampler introduces auxiliary variables

to help simulation which will slow convergence through over–conditioning. The slice–

efficient sampler reduces this effect by jointly updating u and λ (or V in the Dirichlet
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process case) in a block. The retrospective sampler will mix slowly when the proposal

distribution is a poor approximation to the full conditional distribution. Therefore it

is usually difficult to be sure about the ranking of the methods. In these illustrations,

we have seen examples where the slice–efficient sampler is more efficient than the

retrospective sampler.

5.3 Inference for the Normalized Weights Priors

The galaxy data has been a popular data set in Bayesian nonparametric modelling

and we will illustrate the infinite Dirichlet and infinite normalized inverse–Gaussian

priors on it. The posterior mean density estimates are shown in figure 5 for the in-

finite Dirichlet prior and figure 6 for the infinite normalized inverse–Gaussian prior.

The hyperparameters of the prior distributions have a clear effect on the posterior
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Figure 5: Posterior mean density estimates for the galaxy data using the infinite

Dirichlet prior with different values of M and θ

mean estimates. Prior distributions that places more mass on a small number of com-

ponents tend to find estimates with three clear modes. As the prior mean number

of components increases so do the number of modes in the estimate from 4 to 5 for
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the prior within each class that places most mass on a large number of components

(ξ = 10 and φ = 0.9). However, there are some clear differences between the two
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Figure 6: Posterior mean density estimates for the galaxy data using the infinite

normalized inverse–Gaussian prior with different values of ξ and θ

classes of prior. The effects of the two hyperparameters on the prior distribution

of the number of non–empty components were more clearly distinguishable in the

infinite normalized inverse–Gaussian prior than the infinite Dirichlet prior. In the

infinite normalized inverse–Gaussian prior θ controls the mean number of non–empty

components whereas ξ controls the dispersion around the mean. This property is car-

ried forward to the posterior mean density and the number of modes in the posterior

mean increases with θ. For example, when ξ = 0.1, there are three modes in the

posterior mean if θ = 0.4 whereas there are 4 when θ = 0.9. Similarly, larger values

of ξ are associated with larger variability in the prior mean and favour distributions

which uses a larger number of components. This suggests that infinite normalized

inverse–Gaussian distribution may be a more easily specified prior distribution than

the infinite Dirichlet prior.
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6 Conclusions and Discussion

This paper has shown how mixture models based on random probability measures, of

either the stick–breaking or normalized types, can be easily handled via the introduc-

tion of a key latent variable which makes finite the number of mixtures. The more

complicated of the two is the normalized type, which requires particular distributions

of the unnormalized weights in order to be able to make the simulation algorithm

work. Nevertheless, such distributions based on the gamma and inverse–Gaussian

distributions are popular choices anyway.

Further ideas which need to be worked out include the case when we can generate

weights which are decreasing. This for example would make the search for those

wj > u are far simpler exercise and would lead to more efficient algorithms.

In conclusion, concerning performance of slice–efficient and retrospective sam-

plers, we note that once running, both samplers are approximately the same in terms

of efficiency and performance. In terms of time efficiency we have found that for

large data sets, like the S&P 500 the slice–efficient sampler is more efficient than the

retrospective sampler, it takes approximately half the time to run than the retro-

spective sampler. The most notable savings of the slice–efficient sampler are in the

pre–running work where setting up a slice sampler is far easier than setting up a

retrospective sampler.

The slice sampler allows the Gibbs sampling step for a finite mixture model to

be used at each iteration and introduce a method for updating the truncation point

in each iteration. This allows standard methods for finite mixture models to be used

directly. For example, Van Gael et al (2008) fit an infinite hidden Markov model

using the forward–backward sampler for finite hidden Markov model using the slice

sampling idea. This would be difficult to implement in a retrospective framework

since the truncation point changes when updating the allocations.
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Appendix

Simulation for the Inverse–Gaussian model. We wish to simulate from the

density g(xj+1)

g(xj+1) ∝ x
−3/2
j+1 (1 − xj+1)

−3/2 exp

{

−1

2

[
γ2

j

Λjxj+1
+

(
∑∞

i=j+1 γi)
2

Λj(1 − xj+1)

]}

.

The transformation yj+1 =
xj+1

1−xj+1
has the density

g(yj+1) ∝ y
−3/2
j+1 (1 + yj+1) exp

{
−1

2

[
γ2

j

Λjyj+1
+

(
∑∞

i=j+1 γi)
2

Λj
yj+1

]}
.

which can be expressed as a mixture of two generalized inverse–Gaussian distributions

w GIG

(
−1/2, γj/Λj,

∞∑

i=j+1

γi/Λj

)
+ (1 − w) GIG

(
1/2, γj/Λj,

∞∑

i=j+1

γi/Λj

)

where

w =
γj∑∞

i=j+1 γi

and GIG(p, a, b) denotes a distribution with density

(b/a)p/2

2Kp

(√
ab
)x(p−1) exp{−(a/x + bx)/2}

where Kν denotes the modified Bessel function of the third kind with index ν.
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