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An Overview of Existing
Methods and Recent Advances
in Sequential Monte Carlo
These methods are capable of modeling nonlinear systems, such as those

for computer vision, and pollution monitoring, that cannot be

satisfactorily handled by classical techniques.

By Olivier Cappé, Simon J. Godsill, and Eric Moulines

ABSTRACT | It is now over a decade since the pioneering con-

tribution of Gordon et al. (1993), which is commonly regarded

as the first instance of modern sequential Monte Carlo (SMC)

approaches. Initially focussed on applications to tracking and

vision, these techniques are now very widespread and have

had a significant impact in virtually all areas of signal and image

processing concerned with Bayesian dynamical models. This

paper is intended to serve both as an introduction to SMC

algorithms for nonspecialists and as a reference to recent

contributions in domains where the techniques are still under

significant development, including smoothing, estimation of

fixed parameters and use of SMC methods beyond the standard

filtering contexts.
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I . INTRODUCTION

Consider the following generic nonlinear dynamic system

described in state-space form:

• system model

xt ¼ aðxt�1; utÞ $ fðxtjxt�1Þ
zfflfflfflfflffl}|fflfflfflfflffl{Transition Density

(1)

• measurement model

yt ¼ bðxt; vtÞ $ gð ytjxtÞ
zfflfflffl}|fflfflffl{Observation Density

: (2)

By these equations we mean that the hidden states xt and

data yt are assumed to be generated by nonlinear functions

að�Þ and bð�Þ, respectively, of the state and noise dis-

turbances ut and vt. The precise form of the functions and

the assumed probability distributions of the state ut and

the observation vt noises imply via a change of variables the

transition probability density function fðxtjxt�1Þ and the
observation probability density function gð ytjxtÞ. We make

the assumption that xt is Markovian, i.e., its conditional

probability density given the past states x0:t�1 ¼def

ðx0; . . . ; xt�1Þ depends only on xt�1 through the transition

density fðxtjxt�1Þ, and that the conditional probability

density of yt given the states x0:t and the past observations

y0:t�1 depends only upon xt through the conditional

likelihood gð ytjxtÞ. We further assume that the initial
state x0 is distributed according to a density function

�0ðx0Þ. Such nonlinear dynamic systems arise frequently

from many areas in science and engineering such as target

tracking, computer vision, terrain referenced navigation,

finance, pollution monitoring, communications, audio

engineering, to list but a few.

To give a concrete example of such a model consider

the following.

Example 1: Nonlinear time series model.

We consider here a simple nonlinear time series model

which has been used extensively in the literature for
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benchmarking numerical filtering techniques [1]–[3]. The
state-space equations are as follows:

xt ¼
xt�1

2
þ 25

xt�1

1 þ x2
t�1

þ 8 cosð1:2tÞ þ ut;

yt ¼
x2

t

20
þ vt

where ut 	 Nð0; �2
uÞ and vt 	 Nð0; �2

v Þ and here �2
u ¼ 10

and �2
v ¼1 are considered fixed and known; Nð�; �2Þ

denotes the normal distribution with mean � and variance

�2. The initial state distribution is x0 	 Nð0; 10Þ. The

representation in terms of densities fðxtjxt�1Þ and gð ytjxtÞ is

given by

fðxtjxt�1Þ¼N xt
xt�1

2
þ 25

xt�1

1 þ x 2
t�1

þ 8 cosð1:2tÞ; �2
u

����� �
gð ytjxtÞ¼N yt

x2
t

20
; �2

v

����� �
:

The form of these densities was straightforward to obtain in

this case. For more complex cases a Jacobian term might be

required when either xt or yt is a nonlinear function of ut or

vt, respectively. Note that we usually consider only
probability density functions pðxÞ but in some specific

cases, we will use the notation pðdxÞ to refer to the

associated probability measure.

A dynamical model of this sort may easily be simulated

owing to the Markovian assumptions on xt and yt, which

imply that the joint probability density of states and obser-

vations, denoted �0:T;0:Tðx0:T; y0:TÞ, may be factorized as

�0:T;0:Tðx0:T; y0:TÞ ¼ �0ðx0Þgð y0jx0Þ

�
YT

t¼1

fðxtjxt�1Þgð ytjxtÞ:

A graphical representation of the dependencies between

different states and observations is shown in Fig. 1.
In this model, states and data may be sampled one by

one by successively drawing random samples from the

transition and the observation densities as indicated in

Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model

Initialization: sample ~x0 	 �0ðx0Þ, ~y0 	 gð y0j~x0Þ.
for t ¼ 1; . . . ; T do

Sample ~xt 	 fðxtj~xt�1Þ.
Sample ~yt 	 gð ytj~xtÞ.

end for
ð~x0; . . . ; ~xT; ~y0; . . . ; ~yTÞ is a random draw from

�0:T;0:Tðx0:T; y0:TÞ.

The ability to simulate random states and to evaluate

the transition and observation densities (at least up to an

unknown normalizing constant) will be the chief compo-

nents of the particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic
system above involves computing the posterior distribution
of a collection of state variables xs:s0 ¼

def ðxs; . . . ; xs0 Þ condi-

tioned on a batch of observations, y0:t ¼ ð y0; . . . ; ytÞ, which

we denote �s:s0 j0:tðxs:s0 jy0:tÞ. Specific problems include

filtering, for s ¼ s0 ¼ t, fixed lag smoothing, when

s ¼ s0 ¼ t � L and fixed interval smoothing, if s ¼ 0 and

s0 ¼ t. Despite the apparent simplicity of the above prob-

lem, the posterior distribution can be computed in closed
form only in very specific cases, principally, the linear

Gaussian model (where the functions aðÞ and bðÞ are linear

and ut and vt are Gaussian) and the discrete hidden Markov

model (where xt takes its values in a finite alphabet). In the

vast majority of cases, nonlinearity or non-Gaussianity

render an analytic solution intractable [4]–[7].

The classical inference methods for nonlinear dynamic

systems are the extended Kalman filter (EKF) and its
variants, which are based on linearization of the state and

measurement equations along the trajectories [8]. The

EKF has been successfully applied to many nonlinear

filtering problems. However, the EKF is known to fail if

the system exhibits substantial nonlinearity and/or if the

state and the measurement noise are significantly non-

Gaussian.

Many algorithms have been developed to correct poor
performance in the EKF algorithm. One of the earliest

approaches was to approximate the posterior distribution

by expansion in a prespecified function basis. For example,

the Gaussian sum filter [9] approximates the posterior

density by a mixture of Gaussians (see [10] for an in-depth

discussion and some generalizations).

More recently, several algorithms have been proposed

that attempt to choose a set of deterministic points to

Fig. 1. Graphical model illustrating the Markovian dependencies

between states and observations.
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represent the posterior distribution accurately. Two
representative algorithms in this class are the unscented

Kalman filter (UKF) [11], [12] and the Gaussian quadrature

Kalman filter (QKF) [13]. The UKF is based on the

so-called sigma points and the QKF is based on the Gauss–

Hermite quadrature integration rule. One of the signifi-

cant advantages of these algorithms is that they do not

require the evaluation of the Jacobian matrix, which is

often a computationally intensive component in the EKF
algorithm. Whereas these techniques have been applied

successfully in certain settings, they are valid only if the

posterior distribution can be closely approximated by a

Gaussian distribution, which implies, in particular, that it

remains unimodal, which is typically not true in many

nonlinear state-space scenarios.

These limitations have stimulated the interest in

alternative strategies that can handle more general state
and measurement equations, and which do not put strong

a priori constraints on the behavior of the posterior

distributions. Among these, Monte Carlo methods, in

which the posterior distribution is represented by a

collection of random points, play a central role.

The use of Monte Carlo methods for nonlinear filtering

can be traced back to the pioneering works of [14] and [15].

These early attempts were based on sequential versions
of the importance sampling paradigm, a technique that

amounts to simulating samples under an instrumental dis-

tribution and then approximating the target distributions

by weighting these samples using appropriately defined

importance weights. In the nonlinear filtering context,

importance sampling algorithms can be implemented se-

quentially in the sense that, by defining appropriately a

sequence of instrumental distributions, it is not necessary
to regenerate the population of samples from scratch upon

the arrival of each new observation. This algorithm is

called sequential importance sampling, often abbreviated

to SIS. Although the SIS algorithm has been known since

the early 1970s, its use in nonlinear filtering problems was

rather limited at that time. Most likely, the available com-

putational power was then too limited to allow convincing

applications of these methods. Another less obvious reason
is that the SIS algorithm suffers from a major drawback

that was not clearly identified and properly cured until [3].

As the number of iterations increases, the importance

weights tend to degenerate, a phenomenon known as

sample impoverishment or weight degeneracy. Basically, in

the long run most of the samples have very small nor-

malized importance weights and thus do not significantly

contribute to the approximation of the target distribu-
tion. The solution proposed by [3] is to allow rejuvena-

tion of the set of samples by replicating the samples with

high importance weights and removing samples with low

weights, much as in the resampling step for the (nonse-

quential) sampling and importance resampling (SIR)

algorithm [16]. The so-called bootstrap filter of [3] was

the first successful application of sequential Monte Carlo

techniques to the field of nonlinear filtering. Since then,
there have been several independent variants of similar

filtering ideas, including the Condensation filter [17],

Monte Carlo filter [1], Sequential imputations [18], and

the Particle filter [19].

Sequential Monte Carlo (SMC) methods offer a

number of significant advantages compared with other

techniques currently available. These advantages arise

principally as a result of the generality of the approach,
which allows inference of full posterior distributions in

general state-space models, which may be both nonlinear

and non-Gaussian. As a result of this, SMC methods allow

for computation of all kinds of moments, quantiles and

highest posterior density regions, whereas EKF and UKF

allow approximation of only the first and second-order

statistics. In particular, an appropriate specification of the

state-space model allows SMC to handle constraints on the
state-space, which may arise, depending on the applica-

tion, from physical limitations (target speed, presence of

obstacles, etc.), or general prior knowledge about the

range of the state values. SMC methods are scalable, and

the precision of the estimates depends only on the number

of particles used in approximating the distribution.

To date, SMC methods have been successfully applied

in many different fields including computer vision, signal
processing, tracking, control, econometrics, finance,

robotics, and statistics; see [6], [7], [20], [21], and the

references therein for a good review coverage.

The paper is organized as follows. In Section II, we

recall the basics of simulation-based inference, importance

sampling and particle filters. In subsequent sections we

cover a selection of new and recent developments. In

Section III, we describe methods to perform fixed-lag and
fixed-interval smoothing. In Section IV, we present

methods to estimate unknown system parameters in batch

and on-line settings. In Section V, we describe applications

of SMC outside the filtering context, namely, adaptive

simulation of posterior densities over large dimensional

spaces and rare event simulations. This tutorial aims to

highlight basic methodology and up and coming areas for

particle filtering; more established topics and a range of
applications are extensively reviewed in a number of

excellent papers [22]–[27].

II . SIMULATION BASICS

A. Importance Sampling and Resampling
In the Monte Carlo method, we are concerned with

estimating the properties of some highly complex proba-

bility distribution p, for example computing expectations

of the form

�h ¼def
Z

hðxÞpðxÞdx
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where hð�Þ is some useful function for estimation, for

example the mean value is obtained with hðxÞ ¼ x. In cases

where this cannot be achieved analytically, the approxi-

mation problem can be tackled indirectly by generating
random samples from p, denote these fxðiÞg1�i�N, and

approximating the distribution p by point masses so that

�h � 1

N

XN

i¼1

h xðiÞ
� 

:

See Figs. 2 and 3 for a graphical example where a complex

non-Gaussian density function is represented using Monte

Carlo samples. Clearly N needs to be large in order to give

a good coverage of all regions of interest.
More generally, when we cannot sample directly from

the distribution p, we can sample from another distribu-

tion q (the importance distribution, or instrumental distri-
bution) having a support larger than p. So we make N
random draws xðiÞ, i ¼ 1; . . . ;N from q instead of p. Now

we have to make a correction to ensure that the obtained

estimate is an unbiased estimator of �h. This correction

involves assigning a positive weight to each of the random
points. It turns out that the required value of the weights is

proportional to the ratio r ¼def
p=q evaluated at the random

points; the function r is termed the importance function.

The expectation �h can thus be estimated using a weighted
average

�h ¼
Z

hðxÞ qðxÞpðxÞ
qðxÞ dx

¼
Z

hðxÞrðxÞqðxÞdx �
XN

i¼1

~!ðiÞPN
j¼1 ~!

ð jÞ
h xðiÞ
� 

(3)

where ~!ðiÞ ¼def
rðxðiÞÞ ¼ pðxðiÞÞ=qðxðiÞÞ is termed the unnor-

malized importance weight.

Remark 1: In many situations, the target distribution p
or the importance distribution q are known only up to a

normalizing factor (this is particularly true when applying

importance sampling ideas to state-space models and,

more generally, in Bayesian statistical inference; see

below). The importance function r ¼ p=q is then known
only up to a (constant) scaling factor. In (3), the weights

are renormalized to sum to unity and hence the estimator

of �h does not require knowledge of the actual normalizing

factor. Theoretical issues relating to this renormalization

are discussed in [28].

Although importance sampling is primarily intended to

overcome difficulties with direct sampling from p when

approximating expectations under p, it can also be used for
sampling from the distribution p. The latter can be

achieved by the sampling importance resampling (or SIR)

method originally introduced by [16] and [29]. Sampling

importance resampling is a two-stage procedure in which

importance sampling is followed by an additional random

sampling step, as discussed below. In the first stage, an

i.i.d. sample ð~xð1Þ; . . . ; ~xðMÞÞ is drawn from the importance

distribution q, and one computes the normalized version of
the importance weights

!ðiÞ ¼def ~!ðiÞPM
i¼1 ~!

ðiÞ
; i ¼ 1; . . . ;M: (4)

In the resampling stage, a sample of size N denoted by
xð1Þ; . . . ; xðNÞ is drawn from the intermediate set of points

Fig. 2. 2-D probability density function.

Fig. 3. 2-D probability density functionVrepresentation by random

points, or ‘‘particles.’’
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic

idea, the most obvious approach being sampling with

replacement, with the probability of sampling each xðiÞ set

equal to the normalized importance weight !ðiÞ. Hence

the number of times NðiÞ that each particular point ~xðiÞ in

the first-stage sample is selected follows a binomial

BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the

multinomial distribution with parameter N and probabil-

ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,

the points in the first-stage sample that are associated

with small normalized importance weights are most likely

to be discarded, whereas the best points in the sample are

replicated in proportion to their importance weights. In

most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)

than N.

While this resampling step is unnecessary in the non-

recursive framework, and would always increase the

Monte Carlo variance of our estimators, it is a vital com-

ponent of the sequential schemes which follow, avoiding

degeneracy of the importance weights over time. While the

multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can

be achieved through variance reduction strategies such as

stratification. Some of these alternative sampling schemes

guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.

Starting with the initial, or Bprior,[ distribution �0ðx0Þ,
the posterior density �0:tj0:tðx0:tjy0:tÞ can be obtained using

the following prediction-correction recursion [34]:
• Prediction

�0:tj0:t�1ðx0:tjy0:t�1Þ
¼ �0:t�1j0:t�1ðx0:t�1jy0:t�1Þfðxtjxt�1Þ (5)

• Correction

�0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ�0:tj0:t�1ðx0:tjy0:t�1Þ

‘tj0:t�1ð ytjy0:t�1Þ
(6)

where ‘tj0:t�1 is the predictive distribution of yt

given the past observations y0:t�1. For a fixed data
realization, this term is a normalizing constant

(independent of the state); it will not be necessary

to compute this term in standard implementations

of SMC methods.

We would like to sample from �0:tj0:tðx0:tjy0:tÞ; since it is

generally impossible to sample directly from this dis-

tribution, we resort to a sequential version of the impor-

tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~x

ðiÞ
0:t, i ¼ 1; . . . ;N,

from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!
ðiÞ
t ¼

�0:tj0:t ~x
ðiÞ
0:tjy0:t

� 
q0:t ~x

ðiÞ
0:tjy0:t

�  ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ
0:t; ~!

ðiÞ
t Þg1�i�N, we may

approximate the expectation of any function h defined on

the path space using the self-normalized importance

sampling estimator

�h ¼
Z

hðx0:tÞ�0:tj0:tðx0:tjy0:tÞdx0:t

�
XN

i¼1

~!
ðiÞ
tPN

j¼1 ~!
ðjÞ
t

h ~x
ðiÞ
0:t

� 
: (8)

As in the case of the nonsequential importance sampling

above, we will use in the following the notation !
ðiÞ
t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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to the normalized weight, so that !
ðiÞ
t ¼ ~!

ðiÞ
t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior

distribution �0:tj0:t by drawing N particle paths fx
ðiÞ
0:tg1�i�N

from the collection f~xðiÞ
0:tg1�i�N according to the importance

weights f!ðiÞ
t g1�i�N.

The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a

clever way so that all these steps can be carried out

sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target

posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t�1ðx0:t�1jy0:t�1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Keep existing path

qtðxtjxt�1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{extend path

: (9)

The unnormalized importance weights then take the fol-

lowing appealing form:

~!
ðiÞ
t ¼

�0:tj0:t ~x
ðiÞ
0:tjy0:t

� 
q0:t ~x

ðiÞ
0:tjy0:t

� 
/!

ðiÞ
t�1 �

f ~x
ðiÞ
t j~xðiÞ

t�1

� 
g ytj~xðiÞt

� 
qt ~x

ðiÞ
t j~xðiÞt�1; yt

� 
‘tj0:t�1ð ytjy0:t�1Þ

(10)

where the symbol / is used to denote proportionality,

up to a normalization constant (which does not matter

here due to the use of the self-normalized form of

importance sampling). This multiplicative decomposition

implies that the importance weights may be computed

recursively in time as successive observations become
available, and without having to modify past paths, prior

to time t. In the sequential Monte Carlo literature, the

multiplicative update factor on the right-hand side of

(10) is often called the incremental weight. Note that the

scaling factor ‘tj0:t�1ð ytjy0:t�1Þ, which would in general

cases be difficult to evaluate, does not depend on the

state sequence, and hence need not in fact be computed,

since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-

tance sampling method, as originally proposed in [14] and

[15], is that the N trajectories ~x
ð1Þ
0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-

ogy in use in the nonlinear filtering community, we shall

refer to the sample at time index t, ~x
ð1Þ
t ; . . . ; ~x

ðNÞ
t , as the

population (or system) of particles and to ~x
ðiÞ
0:t for a specific

value of the particle index i as the history (or trajectory, or

path) of the ith particle. The sequential importance

sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization

Sample ~x
ðiÞ
0 	 q0ðx0jy0Þ.

Assign initial importance weights

~!
ðiÞ
0 ¼

g y0j~xðiÞ0

� 
�0 ~x

ðiÞ
0

� 
q0 ~x

ðiÞ
0 jy0

�  :

end for

for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do

Propagate particles

~x
ðiÞ
t 	 qt ~x

ðiÞ
t j~xðiÞ

t�1; yt

� 
:

Compute weight

~!
ðiÞ
t ¼ !

ðiÞ
t�1

g ytj~xðiÞ
t

� 
f ~x

ðiÞ
t j~xðiÞt�1

� 
qt ~x

ðiÞ
t j~xðiÞt�1; yt

�  :

end for

Normalize weights

!
ðiÞ
t ¼ ~!

ðiÞ
t =
XN

j¼1

~!
ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

�ht ¼
XN

i¼1

!
ðiÞ
t ht ~x

ðiÞ
t

� 

end for

Despite quite successful results for short data records,

it turns out that the sequential importance sampling

approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate

after a few time steps, in the sense that a small proportion

of them contain nearly all of the probability mass, and

hence most particles contribute nothing significant to the

expectation estimates; see for example [35]. The reason for

this is that we are effectively sampling from a very high

dimensional state-space, i.e., the entire path history of
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state variables up to time t, which increases with each time
increment. Hence it is naive to imagine that the

distribution may be sampled effectively using a fixed and

practically realisable sample size. In practice we will often

be concerned with low-dimensional marginals such as the

filtering distribution �tj0:t or predictive distribution �tþ1j0:t,
and this suggests a solution based on the resampling ideas

discussed above. In the short-term, resampling does imply

some additional Monte Carlo variance; however, resam-
pling avoids accumulation of error over time and renders

the approximation to the filtering and predictive distribu-

tions much more stable.

The basic resampling method comprises sampling N
draws from the current population of particles using the

normalized weights as probabilities of selection. Thus,

trajectories with small importance weights are eliminated,

whereas those with large importance weights are replicat-
ed. After resampling, the normalized importance weights

are reset to 1=N. Resampling will, however, have two

important consequences. First, the overall algorithm

cannot anymore be seen as a simple instance of the

importance sampling approach since it implies repeated

applications of the importance sampling and resampling

steps. This obviously renders the complete algorithm much

harder to analyse from a theoretical perspective. Next, the
resampled trajectories x

ðiÞ
0:t are no longer independent.

We now state in Algorithm 3 the standard particle

filtering algorithm, with general proposal function and

optional resampling at every step. There are straightfor-

ward variants of the algorithm that propagate more par-

ticles than are selected, and which have variable numbers

of particles at each time step.

Algorithm 3 Particle Filter

for i ¼ 1; . . . ;N do . Initialization

Sample ~x
ðiÞ
0 	 q0ðx0jy0Þ.

Assign initial importance weights

~!
ðiÞ
0 ¼

g y0j~xðiÞ0

� 
�0 ~x

ðiÞ
0

� 
q0 ~x

ðiÞ
0 jy0

�  :

end for

for t ¼ 1; . . . ; T do

if Resampling then

Select N particle indices ji 2 f1; . . . ;Ng
according to weights

!
ð jÞ
t�1

n o
1�j�N

:

Set x
ðiÞ
t�1 ¼ ~x

ð jiÞ
t�1, and !

ðiÞ
t�1 ¼ 1=N, i ¼ 1; . . . ;N.

else
Set x

ðiÞ
t�1 ¼ ~x

ðiÞ
t�1, i ¼ 1; . . . ;N.

end if

for i ¼ 1; . . . ;N do

Propagate

~x
ðiÞ
t 	 qt ~x

ðiÞ
t jxðiÞt�1; yt

� 
:

Compute weight

~!
ðiÞ
t ¼ !

ðiÞ
t�1

g ytj~xðiÞt

� 
f ~x

ðiÞ
t jxðiÞt�1

� 
qt ~x

ðiÞ
t jxðiÞ

t�1; yt

�  :

end for

Normalize weights

!
ðiÞ
t ¼ ~!

ðiÞ
t =
XN

j¼1

~!
ð jÞ
t ; i ¼ 1; . . . ;N:

end for

Notice that even when resampling (or selection) does
occur, estimation should be carried out using the weighted

particles, i.e., with
PN

i¼1 !
ðiÞ
t hð~xðiÞ

t Þ, since the particle

representation after resampling has lower Monte Carlo

error than that before resampling.

A practical issue concerning the weight normalization

is numerical precision, since weights can be extremely

large or small. Thus weights are typically stored on a log-

scale and updated by addition of the log-incremental
weight to the previous log-weight. The normalization step

can still fail, however, owing to numerical overflow or

underflow. A simple solution involves subtracting the

largest log-weight value at each time t from all log-weights,

and then performing normalization using these adjusted

log-weights. This ensures that the largest (most important)

weights are easily computable within machine accuracy,

while very small weights (which are unimportant in any
case) may be set to zero by underflow.

C. The Bootstrap Filter (After [3])
The bootstrap filter proposed by [3] uses the state

transition density f , or Bprior kernel[ as importance

distribution. The importance weight then simplifies to

!
ðiÞ
t / !

ðiÞ
t�1 g ytjxðiÞt

� 
:

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 905

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 20, 2009 at 16:07 from IEEE Xplore.  Restrictions apply.



In the original version of the algorithm resampling is
carried out at each and every time step, in which case the

term !
ðiÞ
t�1 ¼ 1=N is a constant, which may thus be ignored.

In more sophisticated schemes, resampling is only carried

out when the distribution of the importance weights

becomes degenerate, which can be measured by monitor-

ing the changes of the coefficient of variation or the

entropy of the weight pattern over time [22], [23], [36].

A distinctive feature of the bootstrap filter is that the
incremental weight does not depend on the past trajectory

of the particles but only on the likelihood of the

observation, gð ytjxtÞ. The use of the prior kernel is popular

because sampling is often straightforward, and computing

the incremental weight simply amounts to evaluating the

conditional likelihood of the new observation given the

updated particle position.

A diagrammatic representation of the bootstrap filter in
operation is given in Fig. 5, in which the resampling

(selection) step is seen to concentrate particles (asterisks)

into the two high probability modes of the density function.

D. How to Build Better Proposals
Despite its appealing properties, the use of the state

transition density f as importance distribution can often

lead to poor performance, which is manifested in a lack of
robustness with respect to the values taken by the observed

sequence, for example when outliers occur in the data (the

observation is not informative) or on the contrary when

the variance of the observation noise is small (the obser-

vation is very informative). This results from a mismatch

between the prior predictive distribution and the posterior

distribution of the state conditioned on the new measure-

ment. In order to reduce this mismatch a natural option is
to propose the new particle position under the following

distribution:

qtðxtjxt�1; ytÞ ¼
fðxtjxt�1Þgð ytjxtÞR
fðxjxt�1Þgð ytjxÞdx

(11)

which may be recognized as the conditional distribution of

the hidden state xt given xt�1 and the current observation
yt. The normalization constant can be seen to equal the

predictive distribution of yt conditional on xt�1, i.e.,

pð ytjxt�1Þ. Below, we will refer to this kernel as the optimal
kernel, following the terminology found in the sequential

importance sampling literature. This terminology dates

back probably to [37] and [38] and is largely adopted by

authors such as [18], [20], [23], [26], and [39]. The optimal

property of this kernel is that the conditional variance of
the weights is zero, given the past history of the particles

!
ðiÞ
t / !

ðiÞ
t�1pð ytjxt�1Þ ¼ !

ðiÞ
t�1

Z
f xjxðiÞt�1

� 
gð ytjxÞdx: (12)

Fig. 5. The bootstrap filter in operation from time t to t þ 1,

nonlinear time series Example 1. Asterisks show the positions of

(a small selection of) the particles at each stage. The solid line

shows a kernel density estimate of the distributions

represented at each stage. Ten thousand particles were

used in total. Notice that resampling concentrates

particles into the region of high probability.
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The incremental weight above depends only on the pre-
vious position of the particle and the new observation. This

is the opposite of the situation observed previously for the

prior kernel, which depended only upon the new proposed

state and the observation. The optimal kernel (11) is

attractive because it incorporates information both on the

state dynamics and on the current observation: the par-

ticles move Bblindly[ with the prior kernel, whereas when

using the optimal kernel the particles tend to cluster in
regions where the conditional posterior distribution for

the current state has high probability mass. While the

optimal kernel is intuitively appealing, and also satisfies an

optimality criterion of some sort, it should be noted that it

is possible to sample directly from such a kernel and to

evaluate the weight integral analytically only in specific

classes of model.

Since the optimal kernel is itself intractable in most
cases, much effort has been expended in attempting to

approximate the optimal kernel. One principal means to

achieve this is local linearization and Gaussian approxi-

mation, using techniques inspired by standard nonlinear

filter methodology. Here, however, linearization is carried

out per particle, and a proper weighting is computed in

order to correct for the approximations introduced. Hence

standard methodology may be leveraged to good effect
without losing the asymptotic consistency of the particle

representation. These techniques are developed and exten-

sively reviewed in [6], [7], [12], [23], [24], and [40].

E. Auxiliary Sampling
We now consider a more profound revision of the

principles exposed so far. Let us first remark that as (8) is

valid for any function h, it defines a weighted empirical
distribution on the path space which we will denote by

�̂0:tj0:t, equivalently writing

�̂0:tj0:tðdx0:tÞ ¼
XN

i¼1

!
ðiÞ
t 


x
ðiÞ
0:t

ðdx0:tÞ (13)

where the notation 

x
ðiÞ
0:t

denotes the Dirac mass at point

x
ðiÞ
0:t. Under suitable technical assumptions, the weighted

empirical distribution �̂0:tj0:t is a consistent approximation

to �0:tj0:t, i.e., for any function h on the path space

�̂0:tj0:tðhÞ ¼def
XN

i¼1

!
ðiÞ
t h x

ðiÞ
0:t

� 

converges to �0:tj0:tðhÞ as the number N of particles in-

creases to infinity. The degree to which this assertion is
correct is discussed in [7], [32], and [41]–[44] but we only

need to know at this stage that the general intuition is

justifiable.

The previous methods were aimed principally at
improving the proposal distribution for the new states at

time t. However, it was realized that further improvements

could be achieved by replacing the standard resampling

schemes by more sophisticated algorithms. These attempt

to favor particles which are more likely to survive at the
next time step. Such schemes introduce a bias into the

filtering density representation which is corrected by asso-

ciating with surviving particles an appropriately modified
weight. The first exponents of these ideas were probably

Pitt and Shephard [45], and the ideas link in closely with

the biased sampling approaches proposed by [46].

The formulation given here is equivalent to that given by

Pitt and Shephard, although we avoid the explicit inclusion

of an auxiliary indexing variable by considering a proposal

over the entire path of the process up to time t. The starting

assumption is that the joint posterior at t � 1 is well
approximated by �̂0:t�1j0:t�1. Based on this assumption the

joint posterior distribution at time t is approximated as

�0:tj0:tðdx0:tjy0:tÞ �
1

Z

XN

i¼1

!
ðiÞ
t�1
x

ðiÞ
0:t�1

ðdx0:t�1Þ

� gðytjxtÞf xtjxðiÞ
t�1

� 
dxt (14)

where the normalization factor Z is given by

Z ¼
XN

j¼1

!
ðjÞ
t�1

Z
f xjxðjÞt�1

� 
gð ytjxÞdx:

Now, in exactly the same way as we interpreted (9) as a

joint proposal for all states of indices 0 to t, we now consider

a general joint proposal for the entire path of the new

particles x
ðiÞ
0:t, that is,

qtðdx0:tÞ¼ q0:t�1ðdx0:t�1jy0:tÞqtðdxtjxt�1; ytÞ

¼
XN

i¼1

v
ðiÞ
t�1
x

ðiÞ
0:t�1

ðdx0:t�1Þ
 !

qt dxtjxðiÞ
t�1; yt

� � 

where
PN

i¼1 v
ðiÞ
t�1 ¼ 1 and v

ðiÞ
t�1 9 0. Notice that as before

the proposal splits into two parts: a marginal proposal q0:t�1

for the past path of the process x0:t�1 and a conditional

proposal qt for the new state xt. Note that the first
component is constructed to depend explicitly on data up

to time t in order to allow adaptation of the proposal in the

light of the new data point yt (and indeed it may depend on

future data points as well if some look-ahead and latency is

allowable). The first part of the proposal is a discrete

distribution centered upon the old particle paths fx
ðiÞ
0:t�1g,
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but now with probability mass for each component in the
proposal distribution designed to be fv

ðiÞ
t�1g. The weighting

function v
ðiÞ
t�1 can be data dependent, the rationale being

that we should preselect particles that are a good fit to

the new data point yt. For example, Pitt and Shephard [45]

suggest taking a point value �ðiÞ of the state, say the

mean or mode of fðxtjxðiÞt�1Þ, and computing the weighting

function as the likelihood evaluated at this point, i.e.,

v
ðiÞ
t�1 ¼ gð ytj�ðiÞ

t Þ; or if the particles from t � 1 are
weighted, one would choose v

ðiÞ
t�1 ¼ !

ðiÞ
t�1gð ytj�ðiÞ

t Þ. The

rationale for this is as follows. Ideally, for filtering at time

t, one would wish to propose the past paths x0:t�1 from

their marginal conditional distribution �0:t�1j0:t. This can

be written out and expanded using the particle approx-

imation from t � 1 as

�0:t�1j0:tðdx0:t�1jy0:tÞ

/
Z

�0:t�1j0:t�1ðdx0:t�1jy0:t�1Þfðxtjxt�1Þgð ytjxtÞdxt

�
XN

i¼1

!
ðiÞ
t�1
x

ðiÞ
0:t�1

ðdx0:t�1Þ
Z

f xtjxðiÞ
t�1

� 
gð ytjxtÞdxt:

This integral may be approximated by any means available,

including Monte Carlo. In [45], it is suggested to use the

crude approximation fðdxtjxðiÞ
t�1Þ � 


�
ðiÞ
t
ðdxtÞ, in which case

we have

�0:t�1j0:tðdx0:t�1jy0:tÞ�
XN

i¼1

g ytj�ðiÞ
t

� 
!
ðiÞ
t�1
x

ðiÞ
0:t�1

ðdx0:t�1Þ

and hence the choice v
ðiÞ
t�1 ¼ gðytj�ðiÞ

t Þ!ðiÞ
t�1. Other biasing

schemes based upon an unscented approximation to the

integral can be found in [47], or on exploration of future

data points in [46].
Using this proposal mechanism it is then possible to

define a generalized importance ratio (in the Radon–

Nikodym sense) between the approximate posterior in (14)

and the full path proposal q, given by

~!
ðiÞ
t ¼ !

ðiÞ
t�1

v
ðiÞ
t�1

�
g ytjxðiÞt

� 
f x

ðiÞ
t jxðiÞt�1

� 
qt x

ðiÞ
t jxðiÞ

t�1; yt

�  :

Note that compared to the standard SIS sampler we have

had to account for the bias introduced in the sampler by a

correction to the importance weight equal to 1=v
ðiÞ
t�1; the

ratio !
ðiÞ
t�1=v

ðiÞ
t�1 is known as the first stage weight. Note that

in the original scheme a resampling stage was added to the
first stage selection; however, this is unnecessary and

introduces further Monte Carlo error into the filter. More

general schemes that allow some exploration of future data
points by so-called pilot sampling to generate the weight-

ing function have been proposed in, for example [46],

while further discussion of the framework can be found in

[48]. A summary of the auxiliary particle filter is given in

Algorithm 4. We assume that the selection step occurs at

each point, although it may be omitted exactly as in the

standard particle filter, in which case of course no weight

correction is applied.

Algorithm 4 Auxiliary Particle Filter

for i ¼ 1; . . . ;N do . Initialization

Sample ~x
ðiÞ
0 	 q0ðx0jy0Þ.

Assign initial importance weights

~!
ðiÞ
0 ¼

g y0j~xðiÞ0

� 
�0 ~x

ðiÞ
0

� 
q0 ~x

ðiÞ
0 jy0

�  :

end for
for t ¼ 1; . . . ; T do

Select N particle indices ji 2 f1; . . . ;Ng according to

weights

v
ðiÞ
t�1

n o
1�i�N

:

for i ¼ 1; . . . ;N do

Set x
ðiÞ
t�1 ¼ ~x

ð jiÞ
t�1.

Set first stage weights

u
ðiÞ
t�1 ¼

!
ð jiÞ
t�1

v
ð jiÞ
t�1

:

end for

for i ¼ 1; . . . ;N do

Propagate

~x
ðiÞ
t 	 qt ~x

ðiÞ
t jxðiÞ

t�1; yt

� 
:

Compute weight

~!
ðiÞ
t ¼ u

ðiÞ
t�1

g ytj~xðiÞ
t

� 
f ~x

ðiÞ
t jxðiÞt�1

� 
qt x

ðiÞ
t jxðiÞ

t�1; yt

�  :
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end for
Normalize weights

!
ðiÞ
t ¼ ~!

ðiÞ
t =
XN

j¼1

~!
ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series

model. This is presented purely as an example of the type

of results obtainable and their interpretation: others have

provided extensive simulation studies in this type of

model. A single data set is generated from the model, see

Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and

resampling occurs at every time stepVthis is then the

bootstrap version of the particle filter. The number of

particles used is fixed over time to N ¼ 10 000, a large

number that may be reduced substantially in practice,

depending on the accuracy of inference required. Figs. 7

and 8 show two time snapshots of the filter output, i.e.,

estimates of �tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞ
t ; !

ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as

there are so many particles covering important regions.

As a dashed line we plot a kernel density estimate ob-

tained from the weighted sample, using a Gaussian kernel

having fixed width of 0.5. Notice that the filter is easily

able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not

necessarily the most probable state estimates: the kernel

density estimator places the maximum of the filtering
density wherever the weights and the local density of

particles combine to give the highest probability density.

This is an elementary point which is often overlooked by

practitioners starting in the field. Finally, to give the

whole picture, the kernel density estimates over time are

compiled into an intensity image to show the evolution

with time of the densities, see Fig. 9. As a comparison we

have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ
40; !

ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ
50; !

ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).
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incorporated, as in Algorithm 2, under otherwise

identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions

are highly degenerate, i.e., resampling is an essential

ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear

and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the

other states. In these cases one may use standard linear

Gaussian optimal filtering for the linear part, and particle

filtering for the nonlinear part. This may be thought of as

an optimal Gaussian mixture approximation to the filtering

distribution. See [23], [39], and [49] for detailed

descriptions of this approach to the problem, which is

referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has

studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the

state is partitioned into two components, x L
t and x N

t ,

referring respectively to the linear (L) and nonlinear (N)

components. The linear part of the model is expressed in

the form of a linear Gaussian state-space model as follows,

with state-space matrices that may depend upon the

nonlinear state x N
t

xL
t ¼ A x N

t

� �
x L

t�1 þ uL
t ; (15)

yt ¼ B x N
t

� �
x L

t þ vL
t : (16)

Here uL
t and vL

t are independent, zero-mean, Gaussian

disturbances with covariances Cu and Cv, respectively,

and AðÞ and BðÞ are matrices of compatible dimensions

that may depend upon the nonlinear state x N
t . At t ¼ 0,

the linear part of the model is initialized with x L
0 	

Nð�0ðx N
0 Þ; P0ðx N

0 ÞÞ.
Now the nonlinear part of the state obeys a general

dynamical model (which is not necessarily Markovian)

xN
t 	 f x N

t jx N
0:t�1

� �
; x N

0 	 �0 x N
0

� �
: (17)

In such a case, conditioning on the nonlinear part of

the state x N
0:t and the observations y0:t, the linear part of the

state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the

classical Kalman filtering recursions [52]. The basic idea is

then to marginalise the linear part of the state vector to

obtain the posterior distribution of the nonlinear part of

the state

�0:tj0:t x N
0:tjy0:t

� �
¼
Z

�0:tj0:t x L
0:t; x N

0:tjy0:t

� �
dx L

0:t:

Particle filtering is then run on the nonlinear state se-

quence only, with target distribution �0:tj0:tðx N
0:tjy0:tÞ. The

resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter

(Algorithm 3) to allow for the fact that the marginalized

system is no longer Markovian, since

p ytjy0:t�1; x N
0:t

� �
6¼ p ytjx N

t

� �
:

Moreover, the dynamical model for the nonlinear part of

the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).
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Thus, instead of the usual updating rule we have:
• Prediction

�0:tj0:t�1 x N
0:tjy0:t�1

� �
¼ �0:t�1j0:t�1 xN

0:t�1jy0:t�1

� �
f x N

t jx N
0:t�1

� �
: (18)

• Correction

�0:tj0:t x N
0:tjy0:t

� �
¼

p ytjy0:t�1; x N
0:t

� �
�0:tj0:t�1 x N

0:tjy0:t�1

� �
‘tj0:t�1ð ytjy0:t�1Þ

(19)

where as before ‘tj0:t�1 is the predictive distribu-

tion of yt given the past observations y0:t�1, which is

a fixed normalizing constant (independent of the

state sequence x N
0:t).

Note that if fðxN;ðiÞ
0:t ; !

ðiÞ
t Þgi¼1;...;N denote the particles evolv-

ing in the state-space of the nonlinear variables according

to the above equations, and their associated importance

weights, estimation of the linear part of the state may be

done using a Rao–Blackwellized estimation scheme [53]: the
posterior density for the linear part is obtained as a random

Gaussian mixture approximation given by

�tj0:t x L
t jy0:t

� �
�
XN

i¼1

!
ðiÞ
t p xL

t jx
N;ðiÞ
0:t ; y0:t

� 
(20)

where the conditional densities pðxL
t jx

N;ðiÞ
0:t ; y0:tÞ are

Gaussian and computed again using Kalman filtering re-

cursions. Equation (20) replaces the standard point-mass

approximation (13) arising in the generic particle filter.

The Rao–Blackwellized estimate is usually better in terms

of Monte Carlo error than the corresponding scheme that

performs standard particle filtering jointly in both nonlin-

ear and linear states. The computational trade-off is more
complex, however, since the marginalized filter can be

significantly more time-consuming than the standard filter

per particle. These trade-offs have been extensively studied

by [51] and in many cases the performance/computation

trade-off comes out in favor of the marginalized filter.

To give further detail to the approach, we first

summarise the Kalman filter itself in this probabilistic

setting [34], then we place the whole scheme back in the
particle filtering context. As a starting point, assume the

distribution pðx L
t�1jy0:t�1; x N

0:t�1Þ has been obtained. This is

a Gaussian, denoted by

p xL
t�1jy0:t�1; x N

0:t�1

� �
¼ N x L

t�1j�t�1j0:t�1; Ct�1j0:t�1

� �
where the mean and covariance terms are dependent upon

both y0:t�1 and x N
0:t�1. Now, (15) shows how to update this

distribution, since x L
t is just a summation of two

transformed independent Gaussian random vectors,

Aðx N
t Þx L

t�1 and uL
t , which itself must be a Gaussian. Under

the standard rules for summation of independent Gaussian

random vectors, we obtain the predictive distribution for

xL
t , conditioned upon y0:t�1 and xN

0:t, as follows:

p x L
t jy0:t�1; x N

0:t

� �
¼ N x L

t j�tj0:t�1; Ctj0:t�1

� �
(21)

where

�tj0:t�1 ¼ A x N
t

� �
�t�1j0:t�1;

Ctj0:t�1 ¼ A xN
t

� �
Ct�1j0:t�1A xN

t

� �TþCu:

As a second step in the update, the new data point yt is
incorporated through Bayes’ Theorem

p xL
t jy0:t; xN

0:t

� �
¼

p x L
t jy0:t�1; x N

0:t

� �
� p ytjx L

t ; x N
t

� �
p ytjy0:t�1; x N

0:tð Þ
/N xL

t j�tj0:t�1; Ctj0:t�1

� �
N ytjB xN

t

� �
xL

t ; Cv

� �
¼N xL

t j�tj0:t; Ctj0:t
� �

(22)

where �tj0:t and Ctj0:t are obtained by standard rearrange-

ment formulae as

�tj0:t ¼�tj0:t�1 þ Kt yt � B x N
t

� �
�tj0:t�1

� �
;

Ctj0:t ¼ I � KtB x N
t

� �� �
Ctj0:t�1;

Kt ¼ Ctj0:t�1BT x N
t

� �
B x N

t

� �
Ctj0:t�1BT x N

t

� �
þ Cv

� ��1

and where the term Kt is known as the Kalman Gain. In

order to complete the analysis for particle filter use, one
further term is required, pð ytj y0:t�1; x N

0:tÞ. This is obtained

by the so-called prediction error decomposition, which is

easily obtained from (21), since yt is obtained by summing

a transformed version of xL
t , i.e., Bðx N

t Þx L
t , with an

independent zero-mean Gaussian noise term vL
t having

covariance Cv, leading to

p ytjy0:t�1; x N
0:t

� �
¼ N ytj�yt

; Cyt

� �
(23)

where

�yt
¼ B x N

t

� �
�tj0:t�1;

Cyt
¼ B x N

t

� �
Ctj0:t�1BT x N

t

� �
þ Cv:
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In order to construct the marginalized particle filter,
notice that for any realization of the nonlinear state

sequence x N
0:t, and data sequence y0:t, one may calculate the

value of pð ytjy0:t�1; x N
0:tÞ in (23) through sequential

application of the formulae (21) and (22). The marginal-

ized particle filter then requires computation and storage

of the term pð ytjy0:t�1; x
N;ðiÞ
0:t Þ in (23), for each particle

realization x
N;ðiÞ
0:t . In the marginalized particle filter the

particles are stored as the nonlinear part of the state xN
t ,

the associated sufficient statistics for each particle, i.e.,

�tj0:t and Ctj0:t, and the weight for each particle. We do not
give the entire modified algorithm. The only significant

change is to the weighting step, which becomes

~!
ðiÞ
t ¼ !

ðiÞ
t�1

p ytjy0:t�1; ~x
N;ðiÞ
t

� 
f ~x

N;ðiÞ
t jxN;ðiÞ

0:t�1

� 
qt ~x

N;ðiÞ
t jxN;ðiÞ

0:t�1; y0:t

�  :

As an important aside, we note that the marginalized filter

may also be used to good effect when the linear states are

unknown but Bstatic[ over time, i.e., fðdx L
t jx L

t�1Þ ¼

xL

t�1
ðdx L

t Þ with some Gaussian initial distribution or prior

xL
0 	 Nð�0ðxN

0 Þ; P0ðxN
0 ÞÞ, as before. Then the marginalized

filter runs exactly as before but we are now able to mar-

ginalise, or infer the value of, a static parameter � ¼ x L
t .

Early versions of such filters are found in the sequential

imputations work of [18], for example. This issue is ex-

plored more fully, including an example, in the context of

other parameter estimation schemes in Section IV.

We have focused here on the linear Gaussian case of

the marginalized filter. However, another important class

of models is the discrete state-space Hidden Markov

model, in which the states are discrete values and switch-
ing may occur between one time and the next according to

a Markov transition matrix. As for the linear Gaussian case,

the discrete state values may be marginalized to form a

marginalized particle filter, using the HMM forward

algorithm [54] instead of the Kalman filter [23]. For

simulations and examples within both frameworks, see [7]

and [23].

As mentioned before, several generalizations are
possible to the basic model. The most basic of these

allow the matrices AðÞ, BðÞ, Cu and Cv to depend on time

and on any or all elements of the nonlinear state sequence

xN
0:t. None of these changes require any modification to

the algorithm formulation. Another useful case allows a

deterministic function of the nonlinear states to be pres-

ent in the observation and dynamical equations. These

two features combined lead to the following form:

xL
t ¼ At x N

0:t

� �
xL

t�1 þ c x N
0:t

� �
þ uL

t ;

yt ¼ Bt x N
0:t

� �
xL

t þ d x N
0:t

� �
þ vL

t

and again the form of the algorithm is unchanged; see [55]
for a good coverage of the most general form of Kalman

filters required in these cases.

One other important case involves nonlinear observa-

tions that are not a function of the linear state. Then the

linear observation (16) can be generalized to yt 	 gðytjxN
t Þ,

which is a general observation density. This form is quite

useful in tracking examples, where observation functions

are often nonlinear (range and bearings, for example, or
range-only), but dynamics can be considered as linear to a

good approximation [49]–[51]. If in addition the nonlinear

state can be expressed in linear Gaussian state-space form

with respect to the linear state, i.e.,

xN
t ¼ B x N

t

� �
xL

t þ c x N
t�1

� �
þ vL

t ;

xL
t ¼ A x N

t

� �
xL

t�1 þ uL
t

then once again the Kalman filter can be run to marginalise

the linear state variable. In this case the weight expression

becomes

~!
ðiÞ
t ¼ !

ðiÞ
t�1

g ytj~xN;ðiÞ
t

� 
p ~x

N;ðiÞ
t jxN;ðiÞ

0:t�1

� 
qt ~x

N;ðiÞ
t jxN;ðiÞ

0:t�1; y0:t

� 
where now the term pð~xN;ðiÞ

t jxN;ðiÞ
0:t�1Þ is computed using the

Kalman filter. In some cases the linear state transition
matrices and observation matrices AðÞ and BðÞ for this

Kalman filter are independent of the nonlinear state and

the observations; then this form of marginalized particle

filter may be computed very efficiently, since the covari-

ance matrices are identical for all particles and thus need

only be computed once at each time step.

H. MCMC Adaptations
Another area where improvements can be made over

the basic methods is in Markov chain Monte Carlo

(MCMC) techniques. The general approach is that one

would design an MCMC transition kernel, such as a Gibbs

sampler or Metropolis–Hastings scheme [53], having

�0:tj0:tðx0:tjy0:tÞ as its stationary distribution. The MCMC

transition kernel is then applied one or more times to each

particle x
ðiÞ
0:t, either before or after the resampling step, the

intuition being that an adequate particle filter represen-

tation at time t can only be improved with the application

of MCMC moves having the correct stationary distribu-

tion; see especially the resample-move procedures [48],

[56]–[59], and also more recent works on incorporation of

MCMC into particle filtering in [60]. MCMC schemes are

found to be particularly effective in fixed-lag smoothing

approaches and in static parameter estimation, as further
discussed in Sections III and IV below. To give a concrete

example, consider a fixed-lag smoothing approach with
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MCMC moves (see also [61]). In this case one designs an
MCMC kernel having the fixed-lag conditional distribu-

tion as its stationary distribution

�0:tj0:tðxt�Lþ1:tjx0:t�L; y0:tÞ; L 9 0:

Such a kernel also has by construction the joint posterior as

its stationary distribution [62], as required. As a simple

example that will work for many models, consider a Gibbs

sampling implementation that samples states within the

fixed lag window one by one from their conditional

distribution

x
ðiÞ
t�l 	 �0:tj0:t xt�ljxðiÞ0:tnðt�lÞ; y0:t

� 
; l 2 f0; . . . ; L � 1g

where x0:tnj denotes all elements of x0:t except for element l.
Such moves are applied successively, with replacement, to

all particles in the current set i 2 f1; . . . ;Ng, and for all lags

l 2 f0; . . . ; L � 1g, for as many iterations as required

(usually dictated by the available computing resource). In

cases where a random draw cannot be made directly from

the conditional distributions, it will be necessary to split the

state xt into smaller subcomponents [48], or to apply

Metropolis–Hastings moves instead of Gibbs sampling [63],
[64]. A common misconception with this type of scheme is

that a full MCMC-style burn-in period2 is required for each

time step and for each particle. This is not the case, since we

are initializing nominally from a Bconverged[ particle set,

and so any MCMC moves will remain converged and require

no burn-in (although in practice the schemes are often

adopted to improve on a poor particle representation and to

introduce variability between replicated particles following
the selection step). Note that we have not intended to give a

tutorial in this review on general MCMC methods, which

are a whole research discipline in themselves, and for this

the reader is referred on to the textbooks [7], [53], [65].

III . SMOOTHING

In this section we review methodology for Monte Carlo

smoothing based upon particle filters. We note that

smoothing is particularly relevant in complex dynamical

systems, since filtering alone will often yield only fairly

uninformative state estimates, while the Blook-ahead[
allowed by smoothing enables much more accurate esti-
mates to be achieved retrospectively.

The first thing to notice is that the basic Bfiltering[
version of the particle filter (7) actually provides us with

an approximation of the joint smoothing distribution at
no extra cost, since the equations are defined for the

whole path of the process from time 0 up to time t. Thus

the stored particle trajectories fx
ðiÞ
0:tg and their associated

weights f!ðiÞ
t g can be considered as a weighted sample

from the joint smoothing distribution �0:tj0:tðx0:tjy0:tÞ. From

these joint draws one may readily obtain fixed lag or fixed

interval smoothed samples by simply extracting the re-

quired components from the sampled particles and retain-
ing the same weights; for example, if fðx

ðiÞ
0:t; !

ðiÞ
t Þg is a

weighted approximation to �0:tj0:tðx0:tjy0:tÞ then it automat-

ically follows that, for some smoothing lag L, fðx
ðiÞ
t�L; !

ðiÞ
t Þg

is a weighted approximation to �t�Lj0:tðxt�Ljy0:tÞ. Similarly,

if we are interested in studying dependencies over time of

state variables these can be obtained by extracting

subsequences from the path particle representation, e.g.,

for M 9 L, fðx
ðiÞ
t�Mþ1:t�L; !

ðiÞ
t Þg is a weighted approximation

to �t�Mþ1:t�Lj0:tðxt�Mþ1:t�Ljy0:tÞ, where in this case we are

interested in a smoothed subsequence of length M � L
extracted from the state sequence.

While these appealingly simple schemes can be

successful for certain models and small lags L and M, it

rapidly becomes apparent that resampling procedures

will make this a very depleted and potentially inaccurate

representation of the required smoothing distributions.
This situation is schematically represented on Fig. 11

which shows that while the diversity of the particles is

satisfactory for the current time index, successive resam-

plings imply that for time-lags that are back in the past, the

number of particle positions that are indeed different

decreases, eventually reaching a point where all current

particles share a common ancestor.

There are various ways in which one can improve upon
the performance of the basic scheme. We first consider

the use of backward smoothing recursions, which can be

thought of as the natural extension of the Kalman back-

ward smoothing recursions to nonlinear and non-Gaussian

state-space models.

We first note that the joint smoothing distribution may

be factorized as follows:

�0:Tj0:Tðx0:Tjy0:TÞ¼ �Tj0:TðxTjy0:TÞ
YT�1

t¼0

pðxtjxtþ1:T; y0:TÞ (24)

¼ �Tj0:TðxTjy0:TÞ
YT�1

t¼0

pðxtjxtþ1; y0:tÞ (25)

where the term in the product can be expressed as

pðxtjxtþ1; y0:TÞ ¼
�tj0:tðxtjy0:tÞfðxtþ1jxtÞR
�tj0:tðxtjy0:tÞfðxtþ1jxtÞdxt

(26)

/ �tj0:tðxtjy0:tÞfðxtþ1jxtÞ: (27)

2In usual MCMC applications, the initial iterations of the chain are
most often discarded in an attempt to reduce the bias caused by the fact
that the chain is started from an arbitrary point (rather than from a point
drawn from the stationary distribution).
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These formulae then form the basis of a sequence-based

smoother using the weighted sample generated in the
forward pass of the SMC procedure, see [66], and also [32]

and [67].

Assume initially that Monte Carlo filtering has already

been performed on the entire dataset, leading to an

approximate representation of the filtering distribution

�tj0:tðxtjy0:tÞ for each time step t 2 f0; . . . ; Tg, consisting

of weighted particles fðx
ðiÞ
t ; !

ðiÞ
t Þgi¼1;...;N .

Using this weighted sample representation, it is

straightforward to construct a particle approximation to
pðxtjxtþ1; y0:TÞ from (27) as follows:

pðdxtjxtþ1; y0:TÞ �
XN

i¼1

�
ðiÞ
t ðxtþ1Þ
x

ðiÞ
t
ðdxtÞ (28)

where the modified weights are defined as

�
ðiÞ
t ðxtþ1Þ ¼def

!
ðiÞ
t f xtþ1jxðiÞt

� 
PN

j¼1 !
ð jÞ
t f xtþ1jxð jÞ

t

�  : (29)

This revised particle-based distribution can now be used

to generate states successively in the reverse-time

direction, conditioning upon future states, using the

sampling importance resampling idea. Specifically, given

a random sample extþ1:T drawn approximately from

�tþ1:Tj0:T , take one step back in time and sample ext from

the particle approximation (28) to pðdxtjextþ1; y0:TÞ. The
pair ðext;extþ1:TÞ is then approximately a random realization

from �t:Tj0:T . Repeating this process sequentially back over

time produces the general particle smoother outlined in

Algorithm 5.

Algorithm 5 Particle Smoother

for t ¼ 0 to T do . Forward Pass Filter

Run Particle filter, storing at each time step the particles

and weights fx
ðiÞ
t ; !

ðiÞ
t g1�i�N.

end for

Choose exT ¼ x
ðiÞ
T with probability !

ðiÞ
t .

for t ¼ T � 1 to 0 do . Backward Pass Smoother
Calculate �

ðiÞ
t / !

ðiÞ
t fðextþ1jxðiÞt Þ, for i ¼ 1; . . . ;N; and

normalize the modified weights.

Choose ext ¼ x
ðiÞ
t with probability �

ðiÞ
t .

end for

Further independent realizations are obtained by

repeating this procedure as many times as required. The

computational complexity for each random realization is

OðNTÞ, so the procedure is quite expensive if many

realizations are required. Developments to these basic

techniques that consider the Rao–Blackwellized setting
can be found in [68], see Section II-G.

To illustrate this smoothing technique, consider the

nonlinear time series model of Example 1. Smoothing is

carried out using the above particle smoother, applying

10 000 repeated draws from the smoothing density. A

simple bootstrap particle filter was run through the data

initially, itself with 10 000 particles, and the weighted

particles fðxðiÞ
t ; !

ðiÞ
t Þg1�i�N were stored at each time step,

exactly as in the simulations for this model presented in

the section on particle filtering. Smoothing then follows

exactly as in the above algorithm statement. A small

random selection of the smoothed trajectories drawn from

�0:100j0:100ðx0:100jy0:100Þ is shown in Fig. 12. Note some

clear evidence of multimodality in the smoothing distri-

bution can be seen, as shown by the separated paths of

the process around t ¼ 46 and t ¼ 82. We can also show
the posterior distribution via grey-scale histograms of the

particles, see Fig. 13. Finally, see Figs. 14 and 15 for

visualization of an estimated bivariate marginal,

�3:4j0:100ðx3:4jy0:100Þ, using 2-D scatter plots and kernel

density estimates, again showing evidence of multimodality

and strong non-Gaussianity that will not be well captured

by more standard methods.

This algorithm is quite generic in that it allows joint
random draws from arbitrary groupings of state variables

over time. See also [67] for related methods that generate

smoothed sample paths by rejection sampling ideas.

Sometimes, however, one is specifically interested in the

marginal smoothing distributions, i.e., �tj0:T for some

t G T. There are several specialized methods available for

Fig. 11. Typical plot of the particle trajectories after a few

time steps; the width of the lines is proportional to the number of

current particles which share a particular ancestor path.
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this, based on the following backward recursion (see [69])
over a fixed interval 0 to T:

�tj0:Tðxtjy0:TÞ

¼ �tj0:tðxtjy0:tÞ
Z

�tþ1j0:Tðxtþ1jy0:TÞfðxtþ1jxtÞR
�tj0:tðxjy0:tÞfðxtþ1jxÞdx

dxtþ1

¼
Z

�tþ1j0:Tðxtþ1jy0:TÞpðxtjxtþ1; y0:TÞdxtþ1 (30)

where pðxtjxtþ1; y0:TÞ simplifies as before in (26). In [23]

and [70] marginal smoothing is achieved by a direct Monte

Carlo implementation of (30). One recursively obtains
particle estimates of the marginal smoothing distribution at

the next time point, i.e., �tþ1j0:T and combines these with

the particle filtering estimate of �tj0:t in (30). A compli-

cation compared with the sequence-based smoothers of

[66] is that one cannot in these schemes ignore the

denominator term in (26), that is, �tþ1j0:tðxtþ1jy0:tÞ ¼R
�tj0:tðxtjy0:tÞfðxtþ1jxtÞdxt, as a normalizing constant, and

instead a Monte Carlo estimate must also be made for
this term.

If we approximate the smoothing distribution �tþ1j0:T
using the weighted sample fðxðiÞ

tþ1; !
ðiÞ
tþ1j0:TÞg1�i�N, i.e.,

�tþ1j0:Tðdxtþ1jy0:TÞ �
XN

i¼1

!
ðiÞ
tþ1j0:T
x

ðiÞ
tþ1

ðdxtþ1Þ

Fig. 12. Smoothing trajectories approximating �0:100j0:100ðx0:100jy0:100Þ.
True simulated states shown as ‘‘�’’ (from [66]).

Fig. 13. Histogram estimates of smoothing densities,

�tj0:100ðxtjy0:100Þ, shown as gray scale intensities in vertical

direction. True simulated states shown as ‘‘�’’ (from [66]).

Fig. 14. Kernel density estimate for �3:4j0:100ðx3:4jy0:100Þ (from [66]).

Fig. 15. Scatter plot of points drawn from �3:4j0:100ðx3:4jy0:100Þ
(from [66]).
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then we may substitute this and the approximation of the
filtering distribution from time t into (30) and (26) to

obtain

�tj0:Tðdxtjy0:TÞ �
XN

i¼1

!
ðiÞ
tj0:T
x

ðiÞ
t
ðdxtÞ;

where the new weight is recursively updated according to

!
ðiÞ
tj0:T ¼ !

ðiÞ
t

XN

j¼1

!
ð jÞ
tþ1j0:Tf x

ð jÞ
tþ1jx

ðiÞ
t

� 
PN

k¼1 f x
ð jÞ
tþ1jx

ðkÞ
t

� 
!
ðkÞ
t

0@ 1A:

Note that this procedure inherently requires of the order

of OðN2TÞ operations, and hence, is very expensive to

compute as the number of particles becomes large.

Other forms of marginal smoothing can be obtained
using the so-called two-filter formula, see [1], [71], al-

though it should be noted that it is not always straight-

forward to initialise or implement the required backward

filtering pass.

The required two-filter factorization is

�tj0:Tðxtjy0:TÞ ¼
�tj0:tðxtjy0:tÞpðytþ1:Tjy0:t; xtÞ

pð ytþ1:Tjy0:tÞ
/�tj0:tðxtjy0:tÞpð ytþ1:TjxtÞ:

Note that this requires the approximation from the usual

forward filter plus a backward Banti-causal prediction[
function pð ytþ1:TjxtÞ.3 See also [74] for further develop-

ments in this area. Some restrictive assumptions in the
two-filter smoothers have been removed, and schemes

for making them computationally more tractable have

been introduced in [72] and [73]. Note that these two-

filter methods focus on approximation of smoothed mar-

ginals �tj0:Tðxtjy0:TÞ rather than the full sequence

�0:Tj0:Tðx0:Tjy0:TÞ as in [66].

In some applications, a Maximum a posteriori (MAP)

estimate is required for the state sequence rather than
samples from the posterior distribution, i.e., one is

interested in

argmax
x0:T

�0:Tj0:Tðx0:Tjy0:TÞ

¼ argmax
x0:T

�0ðx0Þ
YT

t¼1

fðxtjxt�1Þ
YT

t¼0

gð ytjxtÞ:

This can be obtained in several ways from the particle
filter output. A common misconception is that the MAP

estimate may be found by simply choosing the particle

trajectory with largest weight !
ðiÞ
t . This, however, is not

correct as the weights depend upon the target distribution

�0:Tj0:T and the proposal distribution. A suitable on-line

procedure is given in [75]. In this the particle represen-

tation is considered as a randomized adaptive discrete

grid approximation to the target distribution. Since we
can evaluate the transition probabilities between any two

states at adjacent times (via fðxtjxt�1Þ) and also the

observation probabilities gð ytjxtÞ, the discrete approxi-

mation may be interpreted as a Hidden Markov Model

with N states. Thus the classical Viterbi algorithm [76]

may be employed to find a particle estimate of the MAP

sequence at any given time. Specifically, the Viterbi

algorithm here finds the exact maximizer of the target
distribution �0:Tj0:T , subject to the constraint that

individual states lie on the discrete particle grid,

xt 2 fx
ðiÞ
t g1�i�N, for t 2 f0; . . . ; Tg. The procedure is

summarized in Algorithm 6.

Algorithm 6 Particle MAP Sequence Estimator

Run particle filter for t ¼ 0 to obtain particle locations

fxi
0; i ¼ 1; . . . ;Ng

for i ¼ 1 to N do


ðiÞ
0 ¼ �0ðx

ðiÞ
0 Þgðy0jxðiÞ0 Þ.

z
ðiÞ
0 ¼ x

ðiÞ
0 .

end for

jmax
0 ¼ argmax

j

ðjÞ
0 .

bx0 ¼ x
ðjmax

0 Þ
0 .

for t ¼ 1 to T do

Run particle filter for time t to obtain particle
locations fx

ðiÞ
t g1�i�N.

for i ¼ 1 to N do


ðiÞ
t ¼ max

j

ðjÞ
t�1f x

ðiÞ
t jxðjÞt�1

� 
g ytjxðiÞ

t

� 
:

j
ðiÞ
t ¼ argmax

j

ðjÞ
t�1f x

ðiÞ
t jxðjÞt�1

� 
g ytjxðiÞ

t

� 
:

z
ðiÞ
0:t ¼ z

jmax
tð Þ

0:t�1 ; x
ðiÞ
t

� �
:

end for

jmax
t ¼ argmax

j

ðiÞ
t .

bx0:t ¼ z
ðjmax

t Þ
0:t .

end for

Note that this algorithm is genuinely sequential in thatbx0:t approximates the MAP estimator for each and every t

3It should be noted that the backward function is not a probability
distribution (it is not, and in some cases it may not be, normalized), see
[7], [72] and [73] for further discussion of this issue.
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that the above algorithm operates, but that the algorithm
is again OðN2Þ at each time step. The methods of [73]

have also been applied to speeding up of this expensive

algorithm.

IV. PARAMETER ESTIMATION

We now consider the practically important problem of

calibrating system parameters to observations, otherwise
known as Bparameter estimation.[ In this section we thus

assume that both the state transition density and the

conditional likelihood function depend not only upon the

dynamic state xt, but also on a static parameter vector �,

which will be stressed by use of the notations fðxtjxt�1; �Þ
and gð ytjxt; �Þ.

Depending on the requirements of a given application,

calibration of model parameters can be carried in two very
different modes. If the calibration data is available in a

batch beforehand, the estimation of the parameters will

generally be done prior to the state inference (filtering or

smoothing) task. We refer to this situation as batch-mode

or off-line estimation. On the other hand, in some cases

the parameters have to be estimated sequentially without

the data being stored, which we refer to as on-line

estimation.

A. Batch Methods
In the batch setting, the parameters can be estimated

with nonsequential Monte Carlo methods, such as Markov

Chain Monte Carlo [53]. It has now been recognized,

however, that the use of sequential Monte Carlo methods

offers some significant advantages over these nonsequen-

tial methods in certain cases [7], [77], [78]. A first point to
note is that running a sequential Monte Carlo method for a

given value � of the parameter does itself provide a simple

way of evaluating the data likelihood

‘0:Tð y0:Tj�Þ ¼
Z

pðy0:T; x0:Tj�Þdx0:T

by use of the following decomposition:

‘0:Tð y0:Tj�Þ ¼ ‘0ð y0j�Þ
YT�1

t¼1

‘tþ1j0:tð ytþ1jy0:t; �Þ (31)

where the individual predictive likelihood terms are

defined as

‘tþ1j0:tð ytþ1jy0:tÞ ¼
Z

pð ytþ1; xtþ1jy0:t�Þdxtþ1:

These terms may be easily estimated from the weighted
particles fðxði;�Þ

t ; !
ði;�Þ
t Þg1�i�N as

‘tþ1j0:tð ytþ1jy0:t; �Þ ¼
Z Z

gðytþ1jxtþ1; �Þfðxtþ1jxt; �Þ

� �tj0:tðxtjy0:t; �Þdxtdxtþ1 (32)

�
XN

i¼1

!
ði;�Þ
t

Z
gðytþ1jxtþ1; �Þ

� fðxtþ1jxði;�Þt ; �Þdxtþ1: (33)

The superscript � highlights the fact that both the

weights !
ði;�Þ
t and particle positions x

ði;�Þ
t depend on the

parameter value � used to construct the weighted
sample approximation fðx

ði;�Þ
0:t ; !

ði;�Þ
t Þg1�i�N of the filter-

ing distribution. The integral in (33) may be evaluated

within the sequential importance sampling framework,

using the new particle positions x
ði;�Þ
tþ1 . For instance, when

using the bootstrap filter discussed in Section II-C, the new

particle positions ~x
ðiÞ
tþ1 are drawn from the mixture dis-

tribution
PN

i¼1 !
ði;�Þ
t fðxjxði;�Þt ; �Þ and the associated unnor-

malized importance weights write ~!
ði;�Þ
t ¼gð ytþ1j~xðiÞ

tþ1; �Þ;
in this case, the predictive likelihood approximation

simplifies to

‘tþ1j0:tðytþ1jy0:t; �Þ �
XN

i¼1

~!
ði;�Þ
tþ1 :

In models where the dimension of the parameter vector �
is small, a first natural solution for parameter estimation

consists in using directly the particle approximation to the

likelihood ‘0:Tð y0:Tj�Þ (or rather its logarithm), for

instance evaluated on a grid of values of �. All of [40],

[70] and [79] discuss the practical and theoretical aspects

of this approach, and in particular ways in which the
Monte Carlo variance of the log-likelihood evaluation may

be controlled.

When the model dimension gets large, however,

optimizing ‘0:Tð y0:Tj�Þ through a grid-based approxima-

tion of its values becomes computationally cumbersome,

leading to a necessity for more efficient optimization

strategies. A natural option consists in using iterative opti-

mization algorithms, such as Gauss–Newton or the
steepest ascent algorithm (and variants of it) or the

Expectation–Maximization (EM) algorithm [7], [80]–[82].

From a practical perspective, these two options imply

similar computations as both the evaluation of the gradient

of the log-likelihood function r‘0:Tð y0:Tj�Þ or the E-step
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of the EM algorithm require computation of quantities
in the form

�Tj0:Tð y0:T; �Þ ¼ E
XT�1

t¼0

stðxt; xtþ1Þj y0:T; �

" #
(34)

where s0 to sT are vector-valued functions which may

implicitly also depend on the observations and the
parameter. The full derivation of the EM or gradient

equations would require lengthier developments (see,

e.g., [7] and [83]) and we simply note that in the EM

approach, the appropriate functions are of the form

stðxt; xtþ1Þ¼ log fðxtþ1jxt; �
0Þ þ log gð ytþ1jxtþ1; �

0Þ for t � 1

and s0ðx0Þ ¼ log gð y0jx0; �
0Þ (assuming that the prior

distribution �0 of the initial state does not depend on the

parameter); while for gradient based methods, the
proper choice of functions in (34) is stðxt; xtþ1Þ¼
r log fðxtþ1jxt; �Þ þ r log gð ytþ1jxtþ1; �Þ (for t � 1) and

s0ðx0Þ ¼ r log gð y0jx0; �Þ (using the so called Fisher
identity [84]).4 The most natural sequential Monte Carlo

approximation to (34) is given by

�̂Tj0:Tðy0:T; �Þ ¼
XN

i¼1

!
ði;�Þ
T

XT�1

t¼0

st x
ði;�Þ
t ; x

ði;�Þ
tþ1

� 
(35)

which obviously admits a simple recursive form that can
be evaluated without storing the whole particle path but

keeping track only of
PT�1

t¼0 stðx
ði;�Þ
t ; x

ði;�Þ
tþ1 Þ, for i ¼ 1; . . . ;N,

in addition to the current particle positions and weights.

This approximation has been derived by [87]–[90] using

different arguments (see also [83], [89], and [91] for

alternative proposals). Such approximations have been

used with reasonable successes either using Monte Carlo

versions of the EM algorithm [7] or stochastic gradient
procedures [89]. There are, however, some empirical and

theoretical evidences that, when the number of observa-

tions T becomes large, the number N of particles should

be increased to ensure the convergence of the optimiza-

tion procedure [7], [92]. This observation is closely

related to the unsatisfactory behavior of the basic particle

filter when used to approximate smoothing distributions,

as illustrated by Fig. 11. It has been observed in practice,

that the mean squared error between �Tj0:T and �̂Tj0:T can
be reduced, sometimes very significantly, by replacing

(35) by an approximation based on fixed-lag smoothing [7],

[93]. Recent theoretical analyses confirm that the Monte

Carlo error of the fixed-lag approximation to (35) can be

controlled uniformly in T (in a suitable sense), under mild

assumptions on the number N of particles and on the lag

used in the smoothing procedure [94].

In [92], the degeneracy of the joint smoothing
distribution is addressed using a technique originally

introduced in [95], which consists in splitting observations

into blocks of equal sizes and defining a proxy of the log-

likelihood of the full observations by summing the log-

likelihood of these individual adjacent blocks. Because the

size of the block is fixed, the accuracy of the likelihood

estimator over each individual block does not depend on

the number of observations T, making the procedure
usable even if the sample size is very large; the downside is

that choosing an appropriate size for the individual blocks

introduces an additional parameter in the design of the

procedure, which is not always easy to set.

B. On-Line Methods
The methods discussed above have on-line variants as

discussed, for instance, in [83], [88], [89], and [92]. The
most obvious options consist in embedding the previously

discussed SMC-based gradient approximations in a

stochastic approximation framework; see [96] and the

references therein.

For Bayesian dynamic models, however, the most

natural option consists in treating the unknown parameter

�, using the state-space representation, as a component of

the state which has no dynamic evolution, also referred to
as a static parameter. Hence, we can reformulate our initial

objectives as trying to simulate from the joint posterior

distribution of the unobservable states and parameters

�0:tj0:tðx0:t; �jy0:tÞ. Unfortunately, the direct use of particle

filtering techniques described so far is bound to fail in this

particular case since the absence of evolution for � implies

that the exploration of the parameter space is limited to

the first time index: at subsequent times the initial
parameter samples will only be reweighted or resampled

but will not be moved around. A pragmatic solution

consists in running the sequential Monte Carlo filter using

an artificial, hopefully negligible, dynamic equation on the

parameter � (typically a random walk-like dynamic with a

small variance); see [3], [97], and [98]. This approach can

also be related to kernel estimate ideas where the target

filtering and smoothing distributions are smoothed using a
kernel with a small bandwidth [99], [100].

The idea put forward in [56], [59], and [101] is based

on using Markov chain Monte Carlo (MCMC) moves, as

briefly discussed in Section II-H, in order to maintain

the diversity of the samples in the parameter space. Here

the stationary distribution for the MCMC will be the full

joint posterior distribution of states and parameters,

4As a side comment, note that it is possible to rewrite (34) in a form
which is suitable for recursive implementation, although it does involve
updating an auxiliary quantity in addition to �tj0:t itself and �tj0:t, following
the approach first described in [85] (see also [7] and [86]). When the
quantity of interest is the gradient of the log-likelihood, the obtained
recursions are fully equivalent to the so-called sensitivity equations which
may be obtained by formally differentiating with respect to the parameter
� the logarithm of (31) and (32) [7]. This recursive rewriting, however, is
mostly useful in models where exact computations are feasible.
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�0:tj0:tðx0:t; �jy0:tÞ, and a natural choice of algorithm struc-
ture might be to apply Metropolis-within-Gibbs sampling

steps separately to �0:tj0:tð�jx0:t; y0:tÞ and �0:tj0:tðx0:tj�; y0:tÞ.
Note, however, that in general models this will not be

feasible for large datasets, since sampling from

�0:tj0:tð�jx0:t; y0:tÞ may involve recomputing statistics based

on the entire path x0:t and y0:t. In many models of interest,

however, this will not be necessary, since the influence of

the path x0:t and y0:t may be summarized by low-
dimensional sufficient statistics. To give a simple example

of this situation, consider the nonlinear time series model

of Example 1 where the observation equation takes the form

yt ¼ �bðxtÞ þ vt where vt 	 Nð0; �2
v Þ, bðxÞ ¼ x2 and � is a

scalar parameter, which is here assumed unknown for

illustration purposes. It is easily checked that the condi-

tional distribution of the observation and the state variables

given the parameter � is proportional to

pð�jx0:T; y0:TÞ / N �

PT
t¼0 ytbðxtÞPT
t¼0 b2ðxtÞ

;

PT
t¼0 b2ðxtÞ
�2

v

�����
 !

:

Hence if � is equipped with a prior distribution pð�Þ chosen

in the conjugate family [102], which here will be any

Gaussian distribution, the posterior distribution
pð�jx0:T; y0:TÞ is known and depends upon the observation

and the state variables through only two low-dimensional

sufficient statistics,
PT

t¼0 ytfðxtÞ and
PT

t¼0 f 2ðxtÞ. Note that

the argument used here turns out to be very similar to the

situation encountered when approximating the behavior of

gradient-based or EM methodsVsee (34) and associated

discussion. In such a case, it is possible devise a particle

filter which simulates from the posterior distribution of the
states, with the parameter �, directly regenerated from its

full conditional distribution pð�jx0:t; y0:tÞ using a single

Gibbs sampling step. For example, we may place this within

the setting of the bootstrap filter of Section II-C, denoting

by St the, possibly vector-valued, sufficient statistic at time t
and by s the function such that St ¼ St�1 þ sðxt; ytÞ.

Note that in some models featuring conditionally

Gaussian distributions, an alternative version of this
algorithm would marginalise � directly and run a fully

marginalized particle filter on just x0:t, as in Section II-G,

see also [18] for models with static parameters of this kind.

Algorithm 7 Bootstrap Filter with parameter regeneration

for i ¼ 1; . . . ;N do . Initialization

Sample �
ðiÞ
0 	 pð�ðiÞÞ and ~x

ðiÞ
0 	 �0ðx0j�ðiÞ

0 Þ.
Compute statistics ~S

ðiÞ
0 ¼ sð~xðiÞ0 ; y0Þ.

Assign initial importance weights

~!
ðiÞ
0 ¼ g y0j~xðiÞ0 ; �

ðiÞ
0

� 
:

end for
for t ¼ 1; . . . ; T do

Select N particle indices . Resampling

ji 2 f1; . . . ;Ng according to weights

!
ð jÞ
t�1

n o
1�j�N

:

Set x
ðiÞ
t�1 ¼ ~x

ð jiÞ
t�1, �

ðiÞ
t�1 ¼ �

ð jiÞ
t�1 and S

ðiÞ
t�1 ¼ ~S

ji
t�1,

i ¼ 1; . . . ;N.

for i ¼ 1; . . . ;N do . Propagation and weighting

Propagate

�
ðiÞ
t 	 p �

ðiÞ
t jSðiÞt�1

� 
;

~x
ðiÞ
t 	 f ~x

ðiÞ
t jxðiÞt�1; �

ðiÞ
t

� 
:

Update statistics ~S
ðiÞ
t ¼ sð~xðiÞ

t ; y0Þ þ S
ðiÞ
t�1.

Compute weight

~!
ðiÞ
t ¼ g ytj~xðiÞ

t ; �
ðiÞ
t

� 
:

end for

Normalize weights

!
ðiÞ
t ¼ ~!

ðiÞ
t =
XN

j¼1

~!
ðjÞ
t ; i ¼ 1; . . . ;N:

end for

At any time point, one may estimate by
PN

i¼1 !
ðiÞ
t hð~xðiÞ

t Þ
the expectation E½hðXtÞjY0:t�, where the unknown param-

eter � has been marginalized out. Similarly,
PN

i¼1 !
ðiÞ
t �

ðiÞ
t

provides an approximation to expectation of � given Y0:t,

that is, the minimum mean square estimate of the
parameter � given the observations up to time t. As an

alternative, we may also consider instead
PN

i¼1 !
ðiÞ
t pð�j~SðiÞ

t Þ
with provides a smooth approximation to the complete

parameter posterior as well as
PN

i¼1 !
ðiÞ
t Eð�j~SðiÞt Þ which has

reduced variance, by virtue of the Rao–Blackwell princi-

ple. Other more sophisticated examples of this approach

are discussed in [103]–[105]. Note that as in the case of

batch estimation discussed in the previous section, the
successive resamplings performed on the accumulated

statistics ~S
ðiÞ
t may lead to a sample impoverishment

phenomenon and ultimately compromise the long-term

stability of the method [92]. Here again, it is likely that the

forgetting ideas discussed at the end of Section IV-A can be
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put in use to robustify the basic algorithms described
above.

V. NONFILTERING USES OF
SEQUENTIAL MONTE CARLO

Thus far, sequential Monte Carlo has been presented as a

technique that is intrinsically related to the filtering and

smoothing problems in state-space models. We will now
consider the technique from a more general standpoint

and review some recent contributions where SMC meth-

ods are used for other inference tasks, which are not

necessarily intrinsically sequential (see also Section IV-A).

In particular, recent population-based sampling algorithms

provide methods for parameter estimation in high

dimensional batch processing problems where MCMC

would typically have been thought of as the method of
choice.

As a starting point, note that the basic structure for

applying SMC approaches is given by (5), (6), which we

may rewrite in the following more compact form:

�0:tðx0:tÞ ¼ c�1
t �0:t�1ðx0:t�1Þktðxt�1; xtÞ (36)

where �0:l is a l-dimensional probability density function,

kl is an unnormalized transition density function (i.e.,
klðx; x0Þ � 0 and

R
klðx; x0Þdx0 ¼ CðxÞ G 1 but where CðxÞ

may differ from unity), and finally, cl is the normalizing

constant defined by

cl ¼
Z

� � �
Z

�0:l�1ðx0:l�1Þklðxl�1; xlÞdx0:l (37)

which we may rewrite as cl ¼
R R

�l�1ðxÞklðx; x0Þdxdx0

upon defining by �kðxkÞ ¼
R R

�0:kðx0:kÞdx0:k�1 the mar-

ginal of �0:k. Equation (36) is referred to by [44] as a

(discrete-time) Feynman-Kac system of probability dis-

tributions. This structure is encountered in various

contexts outside of the standard filtering and smoothing

applications, notably in statistical physics [106], [107].

Note that, as with standard filtering, in some cases only
the marginals of �0:l are of interest and (36) takes the

simpler form

�tðxtÞ ¼ c�1
t

Z
�t�1ðxt�1Þktðxt�1; xtÞdxt�1 (38)

where �lðxlÞ are the 1-D marginals.

An example of (38) which is of particular interest
occurs when considering the successive posterior distribu-

tions of the parameter in a Bayesian model, as more and

more observations are incorporated at successive times t.

We have already touched upon this topic in the context
of parameter estimation for state-space models in

Section IV-B, where the matter is complicated due to

the Markov dependence in the unobservable states.

References [77], [108], and [109] consider the case where

independent observations y0; . . . ; yt with common mar-

ginal likelihood ‘ð yj�Þ are used to estimate the parameter

�. It is then easy to check that the ratio of the posterior

corresponding to different observation lengths satisfy

�ð�jy0:tþkÞ
�ð�jy0:tÞ

/
Yk

l¼1

‘ð ytþlj�Þ

which is a (very specific) instance of (38). The methods
proposed by [77], [108], and [109] combine pure iterated

importance sampling steps with techniques that are more

characteristic of SMC such as resampling, resample-move

proposals [56], or kernel smoothing [99], [100]. It is

argued in [77], [108], and [109] that the resulting algo-

rithms can be far less computationally demanding than

complete-sample Markov Chain Monte Carlo approaches

when dealing with large datasets.
A simple example of (36) occurs when considering a

target of the form

�0:tðx0:tÞ ¼
Yt

l¼1

�ðxlÞ (39)

i.e., when considering repeated samplings from a fixed
distribution �t ¼ �. We can now envisage schemes which

iteratively propose new particles with target distribution

�ðxtÞ, based on particles from earlier distributions �ðxlÞ,
l G t, in order to refine the approximation to �ðxtÞ as t
increases. By analogy with (10), if at iteration l the new

particle positions x
ðiÞ
l are proposed from qlð�jxðiÞl�1Þ, then the

corresponding importance weights are given by

!
ðiÞ
l�1 �

� x
ðiÞ
l

� 
ql x

ðiÞ
l jxðiÞ

l�1

�  : (40)

This strategy, termed Population Monte Carlo by [110], is

mostly of interest when dynamically adapting the form of

the importance transition ql between iterations, as indi-
cated above (see also [2] for an early related approach).

Here, the target distribution �ðxlÞ is fixed but one deter-

mines, from the output of the simulations, the best pos-

sible form of the importance density, given some

optimality criterion (such as minimizing the Monte Carlo

variance). Hence adaptive population Monte Carlo offers
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an alternative to adaptive MCMC algorithms as proposed
by [111] and others. The advantages of population Monte

Carlo in this context are twofold: first, the possible

computational speedup achievable by parallelizing the

computations; and second, there are less stringent

technical requirements on the adaptation scheme since,

for large enough population sizes, the fact that the whole

procedure indeed targets � is guaranteed by (40), which

implies that weighted averages (Monte Carlo expectations)
are unbiased estimates of the expectation under �.

Provably efficient rules for adapting mixture importance

sampling densitiesVi.e., transitions of the form qðx0jxÞ ¼Pm
j¼1 jqjðx0jxÞ, where qj are fixed and 1; . . .m are the

parameters of the proposal to be adapted are given in [112]

and [113].

Also of interest are cases where the target density is of

the form �tðxÞ / ��tðxÞ, where �t are positive numbers.
Using �t strictly smaller than one (and generally converg-

ing to one) flattens the target � and is often advocated as a

solution for simulating from highly multimodal distribu-

tions, in a process called simulated tempering [53].

Conversely, simulated annealing which consists in letting

�t tends to infinity at a sufficiently slow rate is a well-

known method for finding the global maximizer(s) of �
[101], [114]. Other examples occur in the simulation of
rare events where the successive targets �t correspond to

distributions under which the event of interest is less likely

than under the original distribution � ([115] use a classic

exponential tilting to achieve this goal, whereas the

construction of [116] makes a more thorough use of the

Markov property).

In this context, [78] point out that the choice of

the product target �0:tðx0:tÞ ¼
Qt

l¼1 �lðxlÞ is mostly
arbitrary. Instead, it is possible to postulate the existence

of a time-reversed transition density rt such thatR
. . .
R
�0:tðx0:tÞdx0:t�2 ¼ rtðxt�1jxtÞ�tðxtÞ, see also [117].

This implies that, if the particles x
ðiÞ
t�1 at iteration t are

perturbed using a draw from qtðxtjxðiÞt�1Þ, the importance

weights become

!
ðiÞ
t / !

ðiÞ
t�1 �

rt x
ðiÞ
t�1jx

ðiÞ
t

� 
�t x

ðiÞ
t

� 
�t�1 x

ðiÞ
t�1

� 
qt x

ðiÞ
t jxðiÞt�1

� 
where both the choice of the importance density qt and the

time-reversed density rt are user-defined. This scheme,

termed the Sequential Monte Carlo Sampler by [78], offers

much more flexibility in the type of importance density qt

that may be used and, in addition, rt can, to some extent,

be selected so as to reduce the variance of the simulation.

The theoretical analysis of the resulting algorithm in [78]

is more complicated than for the adaptive population

Monte Carlo methods mentioned above since it is not

based on repeated applications of basic importance sam-

pling (with resampling) steps, hence lacking the simple

unbiasedness property. Several applications of this ap-
proach are presented in [118]–[120], see also [121] for its

application in variable dimension settings.

VI. CONCLUSION AND DISCUSSION

In this paper we have reviewed a range of existing core

topics in sequential Monte Carlo methodology, and

described some of the more recent and emerging

techniques. In particular we see the expansion of SMC

methods into realms more routinely handled by MCMC or

other batch-based inference methods, both for static

parameter estimation in dynamical models and for more

general inference about high-dimensional distributions.
Our coverage is aimed at the methods themselves, so we

have not provided a full list of application references, of

which there are now many hundreds, nor have we given

any details of theoretical analysis, which is now a mature

and sophisticated topic. A primary resource for new papers

in SMC methods is the SMC Methods Homepage, hosted

on the Web site of the Signal Processing and Communica-

tions Group at the University of Cambridge.5 There are
several emerging areas which we have not been able to

cover, either for reasons of space or because the topics are

too new to have generated publications as yet. Amongst

these we identify particularly particle methods for random

finite set models, see [122], and particle methods for

continuous time diffusion models ([123] provides the basic

theory for this development in the batch (MCMC)

setting). For a snapshot of current emerging work see
the proceedings of two recent conferences relevant to the

topic: the Workshop on Sequential Monte Carlo Methods:

filtering and other applications (Oxford, U.K., July 2006),

Proceedings to appear in European Series in Applied and

Industrial Mathematics (ESAIM), under the auspices of

Société de Mathématiques Appliquées et Industrielles

(SMAI); and the IEEE Nonlinear Statistical Signal

Processing Workshop: Classical, Unscented and Particle
Filtering Methods (Cambridge, U.K., September 2006). h
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[32] H. R. Künsch, BRecursive Monte-Carlo
filters: Algorithms and theoretical analysis,[
Ann. Stat., vol. 33, no. 5, pp. 1983–2021,
2005.

[33] R. Douc, O. Cappé, and E. Moulines,
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