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Reference Posterior Distributions for Bayesian Inference 
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SUMMARY 
A procedure is proposed to derive reference posterior distributions which approxi- 
mately describe the inferential content of the data without incorporating any other 
information. More explicitly, operational priors, derived from information-
theoretical considerations, are used to obtain reference posteriors which may be 
expected to approximate the posteriors which would have been obtained with the 
use of proper priors describing vague initial states of knowledge. The results 
obtained unify and generalize some previous work and seem to overcome criticisms 
to which this has been subject. 

Keywords: NON-INFORMATIVE PRIORS ; VAGUE INITIAL KNOWLEDGE ; OPERATIONAL PRIORS ; 
INFORMATION THEORY; STEIN'S FIELLER-MARGINALIZATION PARADOX; PARADOX; 
CREASY PROBLEM. 

1. INTRODUC~ON 
COHERENCErequirements lead one to believe that, given a sampling model, the only sensible 
way to make inferences about its parameters is to assess a prior distribution describing one's 
initial knowledge about their values and to use the data to derive, via Bayes' theorem, the 
appropriate posterior distribution (see, for example, Lindley, 1971, and references therein). 

To some statisticians, the obvious dependence of the results on the prior distribution is 
somewhat disturbing. A possible solution to this difficulty, suggested by Dickey (1973), 
is to require that a scientific report should display the functional dependence of the posterior 
distribution on the choice of the prior, for a broad enough range of choices. Among those 
choices, one would like to include a prior which roughly describes a situation in which little 
relevant information is available, if only because the resulting reference posterior distribution 
would provide a standard to which other distributions could be referred in order to assess 
the relative importance of the initial knowledge in the final results. 

Much work has been done to formulate prior distributions which add little information to 
the sample information; this goes back to the early work of Bayes (1763) and Laplace (1825) 
based on the principle of insufficient reason. Modern approaches to this problem are often 
based on different types of invariance requirements, as those of Jeffreys (1946, 1939/67), 
Perks (1947), Barnard (1952), Hartigan (1964, 1965), Stone (1965, 1970), Villegas (1971, 
1977a, b), Box and Tiao (1973, Section 1.3), Piccinato (1973, 1977) and Jaynes (1978). Other 
approaches include the use of limiting forms of conjugate priors as in Haldane (1948), Novick 
and Hall (1965), Novick (1969) and DeGroot (1970, chapter lo), and different forms of 
information-theoretical arguments as those of Lindley (1961), Jaynes (1968), Good (1969), 
Kashyap (1971), ZeUner (1971, pp. 51-53, 1977), Bernardo (1975) and Akaike (1978). More-
over, although not directly concerned with the specification of reference priors, results on 
the conditions for numerical equivalence between classical and Bayesian inference, as those 
contained in Lindley (1958, 1965), Welch and Peers (1963), Geisser and Cornfield (1963) 
and Bartholomew (1965), are often relevant for its discussion. 
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Spain. 
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However, although we have many results which provide seemingly appropriate reference 
priors for a number of inference problems, no general theory has emerged which is capable 
of dealing with them all. More important, however, is that none of the procedures so far 
proposed seem to be able to deal with a number of serious criticisms raised against the 
uncritical use of (usually improper) reference priors. These criticisms include the 
inadmissibility results of Stein (1956), the marginalization paradoxes of Dawid et al. (1973), 
the results on strong inconsistency of Stone (1976) and Stein's paradox on the sum of squares 
of normal means (Stein 1959; Efron, 1973; Cox and Hinkley 1974, p. 383), and clearly apply 
as well to fiducial and to structural inference. 

This paper is an attempt to overcome these difficulties and suggest an operative procedure 
to derive reference posterior distributions which approximately describe the kind of inferences 
which one is entitled to make with little relevant initial information. The approximation 
referred to is to be taken in the sense of Dickey (1976); indeed, a real situation in which little 
initial information is available will be modelled by an operational (often improper) reference 
prior in such a way that the resulting reference posterior may be expected to approximate the 
posterior which would have been obtained with the use of a proper prior describing such 
vague initial knowledge. With expressions like "little initial information" or "vague initial 
knowledge" we intend to describe a situation in which most remains to be learned from the 
data, in a sense to be made precise. 

We shall conclude that the relevant reference prior may differ according to the parameter 
of interest. Thus, the operational prior used to derive the reference posterior for a normal 
mean turns out to be different from that required to obtain a reference posterior for the 
coefficient of variation. This was only to be expected, since vague initial information about 
the mean approximates a different state of knowledge from vague initial information about 
the coefficient of variation, and should therefore be modelled by a different function. 

People have sometimes questioned the need for reference distributions. We find it difficult 
however to avoid the need for an origin from which to measure precisely the relevance of the 
initial information. Particularly in scientific work, it seems difficult to deny the convenience 
of the eventual availability of standard posterior distributions which do not incorporate the 
scientist's personal opinions. The point was argued in Novick (1969) and ensuing discussion. 

Nevertheless, although the proposed operational priors depend on the likelihood function, 
we claim that their use as technical tools to obtain reference posteriors which provide origins 
for admissible inferences is compatible with a subjective view of probability. Here, and in 
the rest of the paper, we mean by admissible inferences those which may be produced, via 
Bayes' theorem, with a proper prior compatible with whatever "objective" knowledge one 
is willing to assume. Indeed, a reference posterior may be seen as an approximation to the 
personal posterior which would have been obtained by someone who happened to have little 
initial information; a Bayesian statistician with a subjective prior could presumably be 
interested in comparing his own posterior with the reference posterior obtained by his 
uninformed colleague. 

In this paper we intend only to provide a heuristic discussion of the basic ideas underlying 
our construction of reference posterior distributions to see whether they are sound; we feel 
that, at this point, much attention to mathematical detail would be premature. 

In the next section, some notation is introduced and the procedure to derive reference 
posterior distributions is described. In Section 3, their behaviour is investigated in a number 
of examples; in particular, it is proved that in the finite discrete case our result coincides with 
Jaynes' solution (1968) and that in the one-dimensional continuous case, under regularity 
conditions, Jeffreys' prior is obtained. 

Section 4 deals with the general situation in which nuisance parameters are present and 
offers some examples. In Section 5 it is found that, with this formulation, marginalization 
paradoxes do not seem to appear; moreover, reference posterior distributions are obtained 
for inference problems which have been regarded as somewhat controversial. These include 
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Stein's paradox on the sum of the squares of normal means and the Fieller-Creasy problem 
on the ratio of normal means. 

Finally, we consider in the last section the limitations of the proposed procedure and 
suggest areas for additional research. 

Let us assume that the objective of a piece of research is to improve one's knowledge 
about some parameter of interest 8 belonging to a parameter space 0. Let E = (X, @,p(x( 8)) 
be the experiment which consists of one observation of the random quantity X E  X which is 
distributed, for some 8 E O, according to the probability density p(xl8) with respect to some 
o-finite dominating measure on X. Without loss of generality, we shall assume that the 
probability densities of x which correspond to different values of 8 differ at least on a set of 
non-zero (dominating) measure. Reference will often be made to the experiment ~ ( k )  which 
consists of k independent replications of E, each with the same value of 8. 

For simplicity in notation, we shall not generally attempt to be specific in describing the 
density functions. Thus, p(x) will denote the density function of the random quantity x and 
p(8) that of the random quantity 8 without any suggestion that the random quantities x and 8 
have the same distribution. Specific densities, used to construct examples, will be denoted by 
specific symbols. Thus, if 8 has a Beta distribution with parameters a and b, its density 
function will be denoted by Be(8/ a, b), where 

Letp(8) be a prior probability density of 8 with respect to some dominating measure on O. 
Without loss of generality, assume p(8) strictly positive, i.e. such that p(8) >0 for all 8 E 0. 
Following Lindley (1956), the expected information about 8 to be provided by 8 ={X, 0,p(xl8)} 
when the prior density of 8 is p(8) is defined to be 

18(8,p(s)) = P( 8) sp(x) sp(81 x) l o g p m d 8  dx, 

where P(X) = JP(xI e)p(e> do and ~ ( 0 1  x) =~ ( x l~)P(~)/P(x). 
It is worth pointing out that the amount of information defined by (1) does not depend on 

the dominating measures and may be expressed directly in terms of Radon-Nikodym 
derivatives as 

However, for the sake of simplicity, we shall be using the definition in density form with either 
the Lebesgue or the counting measures as dominating measures. 

Although other measures of information have been proposed in the literature, the 
logarithmic measure defined above seems clearly preferable to us, both in terms of its 
properties: invariance, non-negativity, concavity; see Lindley (1956), and in terms of its 
axiomatic justification: Shannon (1948) and Lee (1964) for the discrete case; Good (1966) 
for a probabilistic explanation of information; Bernardo (1979) for a general decision- 
theoretical argument. 

The basic idea underlying the construction of a reference posterior may now be stated as 
follows. Consider the quantity IB{~(k),p(6)), i.e. the amount of information about 6 to be 
expected from k independent replications of E, and let C be the class of admissible priors, i.e. 
those compatible with whatever agreed "objective" initial information one is willing to 
assume. By performing infinite replications of E one would get to know precisely the value 
of 6. Thus, IB{~(co),p(6)) measures the amount of missing information about 6 when the 
prior is p(6). It seems natural to define "vague initial knowledge" about 0 as that described 
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by the density ~ ( 8 )  which maximizes the missing information in the class C. The reference 
posterior distribution for 8 after x has been observed, to be denoted ~(Olx),  may now be 
obtained via Bayes' theorem so that ~ ( 8  I Ix) cc~ ( x8) ~ ( 8 ) .  

In the continuous case, it is usually true that Ze{~(oo),p(0)) = + a ,  for all p(8). This is to 
be expected since an infinite amount of information would be required to know exactly a 
real number. However, one may define a reference posterior as a limiting result. By 
limp,(8) =p(8) we mean that the corresponding sequence of distribution functions converges 
to the distribution function of the limit in all its points of continuity. We shall assume that 
the class C of admissible priors is compact with respect to the topology induced by such 
convergence. 

Dejinition 1. Let x be the result of an experiment E = {X,@,p(xI 8)) and let C be the class 
of admissible priors. The reference posterior of 8 after x has been observed is defined to be 
n(8 1 lim ~ ~ ( 8  x), where ~ , ( 8  x) ccp(xl 8) ~ ~ ( 8 )  x) = 1 1 is the posterior density corresponding 
to that prior ~ ~ ( 0 )  which maximizes Ze{~(k),p(8)) in C. A reference prior for 0 is a positive 
function ~ ( 8 )  which satisfies ~ ( 8 1 ~ )  (ccp(x 8) ~ ( 8 ) .  

The compactness requirement for C is necessary to guarantee the existence of the maxima 
involved in the definition. Since Ze is concave as a functional of p(8) (Lindley, 1956) these 
maxima will be unique. If the class of admissible priors is not compact one could construct 
an expanding sequence of compact sets converging to C, derive the corresponding sequence 
of reference posteriors using Definition 1, and define its limit to be the appropriate reference 
density. 

It may seem unnecessarily complicated to define ~ ( 8 )  indirectly using the limiting process 
in the sequence of posteriors. However, a direct definition in terms of 4 8 )  = lim~,(8) 
entails difficulties. For instance, with a sequence of priors %(8) = Be(0J llk, llk) the limit of 
the corresponding sequence of posteriors after observing r successes in n Bernouilli trials 
with parameter 0 would be ~ ( B l r )= Be(Olr,n-r), implying an operational prior 
~ ( 8 )cc F ( 1 -  8)-l; however, with the topology adopted, lim ~ ~ ( 8 )  is the discrete distribution 
~ ( e0) ~ ( e  4.= = = 1) = 

Very often, under regularity conditions, a reference prior may be obtained much more 
rapidly than Definition 1 may suggest. For, if z = {x,, . . .,x,) is the result of ~ (k ) ,  we may 
write 

where H(p(8)) = -Jp(8) logp(8) d0 is called the entropy of p(8) for historical reasons. Using 
p(z) = $p(zI 0)p(8) d8 and reversing the order of integration in (2) we have 

and, also, 
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The equivalent expressions (3) and (4) are both of the form Jp(6)log(f(8)/p(6))d8, which is 
maximized (provided Sf(8) dB <co) when f(8) ccp(8) as an elementary exercise in calculus of 
variations shows. Thus, under regularity conditions to guarantee the operations involved, 
two sequences of prior distributions approaching the reference prior, in the sense of 
Definition 1, are approximately provided by 

.do) cc ~ X P(- /p(zl 6) H{P*(~! z)) dz) (5)  

and 

for large values of k, where p*(81z) is the asymptotic posterior density of 8, which is 
independent of the prior. 

It may be noted that, as one would require, the results of (5) or (6) are not affected if the 
data z are replaced by a sufficient statistic t = t(z). Indeed, their common limiting result in 
the sense of Definition 1, the reference prior .rr(8), will not even be affected if the data z in (5) 
or (6) are replaced by an asymptotically sufficient statistic, that is by some function t = t(z) 
such that, as k-+co, p(8I z) =p(8( t) (1 +o(1)) uniformly. 

Moreover, as a consequence of the invariance of I@under one-to-one transformations of 
8 the procedure is invariant under reparametrization. This is trivial in the discrete case for 
then reparametrization reduces to a relabelling which does not affect the probabilities. If 8 
is continuous and 5 = 5(8) is a one-to-one transformation of 8, a sequence of priors 
approaching the reference prior for 5 is 

where I J I  = 1 a8/851 is the Jacobian of the transformation. Thus, as one would require, the 
reference prior for a one-to-one transformation of 8 may be obtained from that of 8 by the 
appropriate change of variable. 

3. SOMEEXAMPLES 
3.1. The Finite Discrete Case 

If 8 may only take a finite number of values (say m) then, for any experiment E, the 
reference prior in the unrestricted class of all probability distributions of 0 is the uniform 
distribution .rr(8) = {llm, ..., llm). For, RCnyi (1964) showed that, in the discrete finite case, 
lim,,, H{p(BI z)} = 0 and thus, using ( 5 ) ,  we have ~ ( 8 )  cc 1. 

More generally, using (2), we obtain that in the finite discrete case, the missing amount of 
information is precisely the original Shannon entropy, i.e. Ie{~(co),p(8)} = H{p(8)}. One 
may note that the Shannon entropy was axiomatically developed as a measure of uncertainty 
in the finite discrete case. We see that the concept of missing information contains this as a 
particular case. As a consequence, the reference prior in a given class C is here that which 
maximizes the entropy in such a class. This agrees with Jaynes (1968). 

The infinite discrete case cannot be handled in a similarly easy way because no general 
results seem to be available on the asymptotic posterior entropy of a discrete variable which 
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may take an infinite number of values. However, the problem may usually be solved by 
embedding the model in a continuous one for which such type of results do exist (see 
Section 3.3). 

3.2. The General Continuous Case 
Under regularity conditions, the limiting form of (5) and (6) takes a very simple form. 

For, if a maximum likelihood estimate 6' = 8(z) exists, the asymptotic posterior distribution 
~"(6'1z) usually depends only on the data through 0. Thus, the asymptotic posterior entropy 
may be written as 

H{p*(8lz)) = -/p*(81 8)logp*(6'l h d 8  

=-logp*(Ol 0)+o(1) 

=K(@+O(I) (8) 

where ~ ( 0 )  = -logp*(@[ 8), since for large k the posterior density will concentrate around 8. 
Moreover, since for large k the likelihood p(zl8) will also concentrate around its maximum 
8, we have 

/p(z 1 dz =8) ~ ( 8 )  K(8) +o(1) 

so that both equations (5) and (6) become 

and the reference posterior density of 8 after x has been observed is simply 

3.3. The "Regular" Continuous Case 
Assume the usual regularity conditions for asymptotic normality of the posterior 

distribution of 8 (cf. Lindley, 1961; Walker, 1969; Johnston, 1970; Dawid, 1970) so that 
p*(Bl z) is normal with mean 0, the maximum likelihood estimate, and precision (inverse of 
the variance) ki($), where 

aa 
i(8) =-Sp(xl8) Blogp(xl 8) dx. (1 1) 

It is easily verified that if 8 has a normal distribution with mean p and precision h, its entropy is 

Using (12), the asymptotic posterior entropy of 8 is 

H{p*(O I z)) =4log (2relk) -a log i(0) +o(1) 

so that using (8) and (9) and leaving out an irrelevant constant 

~ ( 8 )cc exp (- K(8)) cc i(8)t (13) 
which is, of course, Jeffreys' (1946, 1939167) prior. 

Alternative justifications for this prior have been given by Perks (1947), Lindley (1961), 
Welch and Peers (1963), Hartigan (1965), Good (1969), Kashyap (1971), Box and Tiao (1973, 
1.3) and Akaike (1978). From our own approach, Jeffreys is the appropriate reference prior 
ifyand only if, there are no nuisance parameters, and the usual form of asymptotic normality 
may be guaranteed. 

The argument may easily be extended to the multivariate case, so that we obtain Jeffreys' 
multivariate prior for simultaneous inference about all the parameters. We do not know of 
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any objection to the use of such a prior for simultaneous inferences, i.e. to derive a joint 
reference posterior. If, however, we are interested in, say, one of the parameters, the rest 
being nuisance parameters, the situation is quite different, and the appropriate reference 
prior is no longer Jeffreys' multivariate prior. Indeed the reference prior to obtain a reference 
posterior for p in a Normal situation with both parameters unknown is n(p,u) a U-I and not 
Jeffreys' n(p, u) cc (see Section 4). 

The preceding argument may easily be modified to obtain the reference prior for a quantity 
B whose asymptotic posterior distribution is known. If, in particular, the asymptotic posterior 
distribution of 6 is known to be normal with variance 02(B)/k which depends on some 
asymptotically consistent estimate of 0 then, by the argument just presented, the reference 
prior for 6 will be n(B) = lIu(8). This makes precise the conditions under which Perks' 
(1947) suggestion, based purely on intuitive grounds, is to be used. An interesting application 
of this result occurs in Stein's paradox about the sum of squares of normal means (see 
Section 5.3). 

3.4. Binomial Data 
The problem of making inferences about the parameter B of a binomial distribution has 

often been regarded as controversial. Suggested reference priors are uniform (Bayes, 1763; 
Laplace, 1825); n(6) a 0-*(l - 6)-4 (Jeffreys, 1946; Perks, 1947) and n(B) a O-l(l- 6)-I 
(Haldane, 1948; Jaynes, 1968; Novick, 1969). Their relative merits are discussed in Jeffreys' 
book (1939167, p. 184) and in the discussion following Novick's (1969) paper. It follows from 
the results in Section 3.3 that our approach leads to Jeffreys'. Thus, if n independent 
observations are taken from a Bernouilli process with parameter 0, r of which result in 
successes, our reference posterior would be Be (6 1 r +8, n-r ++). In particular, if r = 0, we 
obtain the reference posterior Be(Bl+,n++) while the posterior density using Haldane's 
prior would still be improper. Now consider that a random sample of 60 individuals is 
checked for lung cancer and none of them has the disease. We would conclude for instance 
that, in the absence of other sources of information, we are prepared to bet approximately 
evenly on the proportion of people in the population with lung cancer being less than 0.4 
per cent. With Haldane's prior, inferences about 8 cannot be made since the posterior is 
improper; we find this less than adequate. 

3.5. Non-regular Continuous Case 
We shall conclude this section by considering an example in which the asymptotic posterior 

distribution is not normal. Let z = {xl, ...,xL) be a random sample from a uniform 
distribution over the interval (0- +,B +  4) and suppose that we are interested in the value of 8. 
It may be verified that the asymptotic posterior distribution of 8 is uniform over the interval 
(x,,, -+,xmin+3) where x,,, and x,, are respectively the maximum and minimum values 
in the sample. Thus, 

= -log {1 -(x,,, -x ~ , ) )+o(1) 
and, moreover, 

which is independent of 0. Thus, using ( 9 ,  the reference prior for B is uniform and therefore, 
using Bayes' theorem, the reference posterior distribution ~ ( 8 1  z) is a uniform distribution 
over (x,,, -4, x,, +4). 
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4. NUISANCEPARAMETERS 
Let us consider now the general case in which we want to use the result x of an experiment 

E = {X, Y,p(xI $)} to make inferences about some function of the parameter 8 = 8($) rather 
than about the parameter $ itself. Without loss of generality, assume that the quantity of 
interest 8 = 6($) consists of the first component of z,b so that $ = (6, w), where w is some 
nuisance parameter since, otherwise, an appropriate transformation could be made to achieve 
such a situation. 

Extending Lindley's (1956) definition, the expected information about 8 to be provided 
by E = (X, Y,p(xI 8, a)} when the prior density of z,h = (8, w) is p($) =p(8)p(w 1 8) is defined 
to be 

withp(x) = SP(X~ dodwyp(x1 8) = I 8) dw andp(81 x) =P(XI B)P(B)IP(X). 8, w)p(e, JP(XI 8, W ) P ( ~  
Note that the expected information about 8 depends on the entire prior p($) =p(8, w) and 
not only on the corresponding marginal p(8). It may be shown (Bernardo, 1978) that Ie  
retains the appealing properties (additivity, non-negativity, etc.) which I@has and, further- 
more, that for all p(8, w) one has 

(15) 

where 

so that, in particular, le<I@. 
For any given conditional priorp(w 1 8) on the nuisance parameter, the expected information 

about 8 may be computed from (14) and thus, using the argument in Section 2, a reference 
prior ~ ( 8 )  for the parameter of interest may be derived as the limit of 

where p(zl 8) = Jp(zl8, w)p(wl 8)do. A reference posterior distribution for 8 may now be 
obtained by the formal use of Bayes' theorem so that 

The reference posterior thus obtained will generally depend on p(w 1 8). 
The conditional prior of the nuisance parameters p(o  I 8) may be chosen so as to describe 

personal opinions, previous empirical "objective" knowledge or, alternatively, to describe 
some form of diffuse opinions about w given 8, using the procedure described in Section 2. 
Each of these assessments of p(wl8) will give rise to a different reference posterior distri- 
bution for the parameter of interest 8. This battery of reference posteriors would establish 
different "origins" to make inferences about the parameter of interest depending on the 
assumptions that one is willing to make about the nuisance parameters. 

Occasionally, one may find a conditionally sufficient statistic t = t(x) whose sampling 
distribution only depends on 8, i.e. such that p(tl 8, o )  =p(tl8). By conditionally sufficient we 
mean that, givenp(w I 8), the posterior distribution of 8 only depends on t, i.e. p(81 x) =p(81 t) 
whatever the prior p(8) might be. This is the situation in which the marginalization paradoxes 
(Dawid et al., 1973) may occur. If t is conditionally sufficient for 8 then the reference posterior 
density of 8, ~ ( 8 1  x) = ~ ( 8 1t) ccp(tl8)~(8) does not depend on the exact form ofp(w18) and 
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may be interpreted as (i) an origin for those inferences about 0 from priors for which t is 
conditionally sufficient or (ii) an origin for those inferences about 8 based solely on t, rather 
than the complete data x, whatever the prior p(f3, w) might be. 

It is important to distinguish between the quantity of interest 8 and the complete parameter 
$ = (8,w); this, to the best of our knowledge, has not been done previously. We proceed to 
illustrate the difference by means of some examples. 

4.1. The Counterfeit Coin 
Let us suppose that E consists of one toss of a coin which is known to be fair ($ = $,) or 

double headed ($ = $,) or double tailed ($ = $&, and let x be the result of the toss, where 
x = 1 stands for "head" and x = 0 for "tail". Thus, 

Moreover, assume that we are interested on whether the coin is fair or not. We may describe 
the parameter $ as $ = (8, w), where 8 specifies whether the coin is fair (8 = 8,) or not (8 = 8 3  
and o specifies whether the coin is double headed (w = wJ or double tailed ( o  = wJ given 
that it is not fair. We are interested in a reference posterior distribution for 8. 

According to the result stated in Section 3.1, the reference prior for 8 is the uniform 
distribution ~(0 , )  = ~ ( 8 , )= $ whatever the prior for w might be. Similarly, if we do not have 
(or do not wish to use) any relevant information about w given 8, we may use the same 
argument to obtain the reference prior for w given f3 which, again, will be uniform; indeed, 
we would need that prior ~ ( ~ 1 8 )  which maximizes the missing information about w given 8, 
i.e. Zule{&(m),p(8, w)} = H{p(wl8)}. This is maximized by T(W,~ 8 3  = ~ ( w ~ l8 3  = &.8 = 8 = 
Thus, the operational prior to make inferences about 8 is 

Using Bayes' theorem it is easily established that the corresponding reference posterior 
for 8 after n tosses of the coin, r of which resulted in heads, is 

~ ( 8 , l  r) = 1/(1+2n-I), if r = 0 or r = n 
= 1, otherwise 

and ~(0 , l r )  = 1-~(0,(r) .  Inspection shows that (20) behaves as one would expect from a 
posterior which reflects the inferential content of the data without incorporating any other 
information. For example, if n = 1, then ~(8 , l  r) = 9 (r = 0,l) corresponding to the obvious 
fact that the first toss of the coin gives no information on its own about whether the coin is 
fair or not and thus, in the absence of any other source of information, both possibilities should 
have the same probability. Note that the uniform prior for $, r($)= {Q,Q, +} which has often 
been described as a "universal" representation of ignorance in the discrete case yields, for 
n = 1, p(8,l r) = & (r = 0,l)  pointing out the fact that although "non-informative" with 
respect to $, the uniform prior {Q, Q, Q} describes some information about 8, making twice as 
likely that the coin is not fair than that it is fair. 

A superficial analysis of this example could lead one to think that this approach can 
justify all sorts of priors on discrete parameters, simply by considering suitable many-to-one 
transformations. Of course, what we argue is that one should have a reference uniform prior 
in the discrete case on the parameter of interest, i.e. on that which is the immediate object of 
inference, regardless of how it may relate to other parameters in the model. 

4.2. Reference Posteriors for the Normal Case 
Let z = {x,, ...,xk)be a random sample from a normal distribution with mean p and 

standard deviation a, and suppose that we are interested in the value of p, a being a nuisance 
parameter. 
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It is well known (see, for example, DeGroot, 1970, Section 10.10) that the asymptotic 
posterior distribution of p is normal with mean 8 = Exilk and variance G2/k where 
G2 = s2= Thus, using (17) and (12), the reference prior for p will be the limit, E ( ~ ~ - f ) ~ / k .  

in the sense of Definition 1, of 


W~O.)= exp (- /P(Z 1 dt log {(2ne/k) 9) (21) 

where p(zl p) = J ~ N ( x ~ ~  Thus, will concentrate forp, a)p(ol p) da. since the likelihood 
large k on its maximum, 

so that, as we have anticipated, the reference (marginal) prior of p will generally depend on 
p(ol p). If o is a priori considered independent of p so that p(al p) =p(u), and only then, the 
integral (22) will not depend on p and the reference prior for p will be uniform. 

We may want p(alp) to describe diffuse opinions about a given p. Then, using the 
argument in Section 2, one would like to maximize the missing information about a given p. 
The same argument used to derive (5) leads then to 

'%(el d exP (- P9Z))dZ).PY o ) H { P * ( ~ ~  (23) 

Now, the asymptotic posterior distribution of o given p is normal with variance a2/2k so that 
using (23) and (12), 

and therefore 
rk(aI p) CC (i-l{l +0(1)). 

Consequently, the joint reference prior to make inferences about p is 

that is the left Haar invariant measure already defended by Jeffreys (1939167, p. 138), Barnard 
(1952) and Stone (1965) on different grounds. The corresponding reference posterior for p 
is the familiar Student t with n- 1 degrees of freedom, i.e. 

TO.I x1, ..a ,  xn) CC 11+{(x-p ) / ~ ) ~ l - + ~ ,  

where s2= )=(xi-Z)2/n. 
Similarly, if we are interested in a, p being now the nuisance parameter, one may use an 

analogous argument to obtain .rr,(p, a) = a-l as the reference prior to make inferences about o.. 
The corresponding reference posterior distribution of a is 

40I XI, ...,x,) cc a-n exp {-ns2/202), 

i.e. ns2/02 has the familiar xi-, distribution. 
However, as we shall see in the next section, the reference prior to make inferences about 

A = p/a is no longer a-l but one that avoids the marginalization paradox discussed by Stone 
and Dawid (1972). 

5. A SOLUTIONTO SOME CONTROVERSIALPROBLEMS 
5.1. Marginalization Paradoxes 

Let us suppose that in the normal case discussed in Section 4.2, one is interested in the 
value of X =p/a. Then, if one insists on using nb,  a) cc a-l as an operational prior, problems 
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arise. For (Stone and Dawid, 1972) the posterior distribution of A obtained with such a 
prior depends on the data through the statistic r = (Xxi)/(JCx:) whose sampling distribution 

p(r 1 p, a) = exp(- @A2) (1 -(r2/n))*(n4) on-lexp{- 4w2+YAW)dw 
/om 

only depends on A. Therefore, one would expect to be able to "match" the original inferences 
about A by the use of p(rl A) together with some appropriate prior for A. However, no such 
a prior exists. This type of marginalization paradox further explored by Dawid et al. (1973) 
and recently discussed by Jaynes (1978), appears in a large number of multi-parameter 
problems. This makes it difficult to believe that such a thing as an all-purpose representation 
of "vague knowledge" about the parameters of a given model is possible. 

In a previous paper (Bernardo, 1977b) we applied the procedure described above to derive 
the reference prior to make inferences about A = plu. It turns out that, in terms of A and a 
and whatever the conditional prior p(uI A) might be, the reference prior for A is 

and that of u given A, n(o1 A) cc u-l, so that the appropriate operational prior is 

?TA(A,0) = n( A) n(u 1 A) cc (1+$A2)+ 0-1 

or, in terms of the original metric, 

The corresponding reference posterior density of A is 

One may observe that the factor in brackets is proportional to p(rlA) and thus the 
marginalization paradox does not occur. Similar results are obtained with the other examples 
in Dawid et al. (1973). We conjecture that our procedure always avoids the marginalization 
paradoxes; however, we do not have a proof. 

5.2. The Fieller-Creasy Problem 
In biological assay work one is often interested in the relative power of two treatments on 

drugs, and the following problem suggests itself. Suppose that two samples x = {x,, ...,x,) 
and y = {y,, ...,y,) are available from two independent normal populations with unknown 
means p, 7 and common unknown variance u2. The problem is to make inferences about the 
value of 0 = p/7, the ratio of the means. 

This problem was discussed in a symposium on Interval Estimation held by this Society. 
Fieller (1959) and Creasy (1959) presented there two different solutions that both claimed to 
be fiducial. Fieller's solution, defended by R. A. Fisher in the discussion, is difficult to accept 
for it can lead, for instance, to a "confidence" interval consisting of the whole real line. 
Kappenman et al. (1970) showed that Creasy's solution may be reproduced from a Bayesian 
point of view by the use of the familiar "non-informative" prior n(p, qr u) cc u-l. 

In a previous paper (Bernardo, 1977a) we obtained the reference prior to make inferences 
about 0 = p/q using the procedure described above. In terms of {0,q, u) such a prior turns 
out to be 

.rre(ey r,o) =4 0 )  4 7 1  O)n(olqy 0) (1+ 
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or, in terms of the original parameters, 

The corresponding reference posterior distribution of 8 after the samples x and y have 
been observed is 

where R = Xxi/m, j = XyJn, and S2= X(xi -XI2 +X(yi -jl2. This is of the form 

where the term in brackets in (24), p(x, y 1 8) is an integrated likelihood which, as one would 
expect, coincides with the integrated likelihood derived by Kalbfleish and Sprott (1970) for 
this example. 

The reference posterior (24) has been studied using Monte Carlo methods with satisfactory 
results. Clearly, it is a symmetric density about the origin when either f = 0 or 9 = 0. This 
is to be expected since, in either case, there is no information to decide on the sign of 8. This 
feature is not obtained with the usual prior .rr(p, q, a) = a-l. 

5.3. Stein's Paradox 
Marginalization paradoxes may be considered to be a powerful argument against the use 

of a unique reference prior for a given model. Since those paradoxes disappear when one 
uses proper priors, one is tempted to blame impropriety for the unsatisfactory results often 
obtained in multi-parameter situations with the usual improper operational priors. However, 
to use proper approximations to those priors when trying to describe the inferential content of 
the data does not work either. This is clearly demonstrated in Stein's (1959) example on the 
sum of the squares of normal means. Indeed, the universally recommended operational prior 
for a multivariate normal model with known precision matrix is .rr(pl, ..., p,) cc 1, which we 
certainly regard as appropriate to produce reference posterior distributions for any set of the 
pis, and this prior may be approximated by the proper density p(pl, ...,pk) = .rrN(pilO,a) 
where a is very large. Now, suppose that we desire to make inferences about the value of 
8 = Xp:; it is easily verified (Efron, 1973) that the use of such a prior overwhelms, for large k, 
what the data have to say about 8, so that the corresponding posterior distribution for 8 is 
rather unsatisfactory. 

From our point of view, the use of a uniform prior does not make sense if one is 
interested in 8; indeed, to obtain a reference posterior for 8 we have to maximize the missing 
information about 8, a completely different situation to one in which you want to maximize 
the missing information about the pis. We now turn to derive our reference posterior 
distribution for 8. 

Let e(n) be the experiment which consists of n observations from each one of k independent 
normal distributions with means pi (i = 1, ...,k) and variance 1. Let Xi be the mean of the n 
observations from population i, and let y and Z be the corresponding vectors in Rk.Thus, 
p(Z p) = N(Z( y, n-I I,) and p(y 1 Z) cc p(Z ( y)p(y). For large n, the prior density p(y) may 
be ignored so that the asymptotic posterior distribution of y is p*(p.lZ) =N(y lZ,n-lI,) 
and therefore (see, for example, Graybill, 1961, chapter 4) with 8 = Xpq = yT y and 
t = X f q  = ZTZ, n8 has asymptotically a non-central x2distribution with k degrees of freedom 
and parameter nt. It follows (see, for example, Johnson and Kotz, 1970, p. 139) that the 
posterior distribution of 8 is asymptotically normal with variance (2/n) (2t +(kin)). More-
over, the sampling distribution of nt is a non-central X2 distribution with k degrees of freedom 
and parameter n8, so that E(t( 8) = 8+(k/n) and therefore t is an asymptotically consistent 
estimate 8 of 8. It now follows from the last paragraph of Section 3.3 that the reference 
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prior for 6' is 46') a 6'4. One may note in passing that this could theoretically have been 
obtained from the sampling distribution of t, p(tl B), assuming t conditionally sufficient, by 
the use of Jeffreys' formula; this proves to be however a difficult exercise in calculus. 

Thus, if the conditional priorp(y 1 6') is such that t is sufficient or, alternatively, if inferences 
about 6' are desired solely based on the value of t, the appropriate reference posterior is 

A student of mine, J. R. Ferrandiz, has recently shown that the same reference posterior is 
obtained without the assumption of sufficiency; thus, if one works in polar coordinates, in 
terms of 6' and the corresponding vector o of angles, the reference prior to make inferences 
about 6' is, for some function f(o), 

and the corresponding reference posterior distribution for 0 is again (25). 
In his recent address to this Society, Wilkinson (1977) makes Stein's example central 

for his argument of "fiducial" versus Bayesian inference. We proceed to compare his 
solution with ours. Indeed, with the data he uses, i.e. with n = 1, k = 50 and t = 100, the 
95 per cent shortest credible interval for 6' is (19.4, 88.2) as derived from (25) by numerical 
integration. This is not far from the fiducial interval (21, 89) which he quotes. 

Consider however the data n = 1, k = 10 and t = 9.133. The value 9.133 for t = Cxq was 
obtained by simulation as the sum of the squares of ten normal deviates with zero mean and 
unit variance. Thus, the "true" value of B is 0. Note that there is nothing special about this 
value, since p(t 18 = 0) is a central X2 distribution with 10 degrees of freedom so that the 
value o f t  would be expected to lie between 6.7 and 12.5 with probability 9. The corresponding 
posterior density of B obtained from (25) decreases monotonically from 0 and, in particular, 
P(8< 1 = t) = 0.3952 and P(6' < 5 1 t) = 0.7903. The corresponding upper bounds obtained 
using Wilkinson's method are 0.6003 and 0.8247 but this leaves an "unassigned" probability 
of p, = P{X2(10)> 9.133) = 0.5195 so that, for him, p(O< 1 1 t) could lie anywhere between 
0.0808 and 0.6003. Wilkinson claims that "a high value of p, would indicate evidence that the 
observed point is too close to 0 to be statistically compatible with the assumed covariance 
matrix I, of x or else with the normal form of the distribution". However, our data were 
obtained by simulation precisely from a multinormal distribution with Ik as covariance 
matrix ! 

Finally, as Smith (1977) clearly shows, Wilkinson's results are inconsistent with those 
directly obtained for the one-dimensional normal case. Indeed, using Smith's example, if 
one obtains x = 1.1503 as a realization of a normal random variable with unknown mean p 
and unit variance, the reference posterior distribution for y is .n(y(x) = N(y(x,  1) SO that 
P(- 1 < p <  11x = 1.1503) = E,N(p (  1.1503,l)dp = 0.4245. This is consistent with the 
result P(y2 < 1 It = 1.15032)= 0.4245 obtained using (25) with n = k = 1 and t = x2, and one 
may prove that this is true for all x. This was to be expected since we have calculated in two 
alternative ways the probability of the same event, given the same information. This is to be 
compared with Wilkinson's rather surprising results 0.2060 < P(p2< 11 t = 1.15032)< 0.4560, 
but ~ ( - l < p < l I x =  1.1503) =0.4245 exactly! 

6.  D ~ s c u s s ~ o ~  
The derivation of reference posterior distributions may be seen as a part of an analysis 

of the sensitivity of the posterior distribution to changes in the prior. The reference posterior 
distribution provides an origin for those statements about the parameter of interest which 
may be regarded as admissible, given the model and the data. Being an origin for admissible 
inferences, the reference posterior distribution need not be itself admissible but only 
arbitrarily close to admissible posteriors; indeed zero, which is not positive, is an appropriate 
origin for positive quantities. 
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In a private conversation, G. A. Barnard suggested to me the appealing name information-
modulated likelihood function for the product r(8)p(xl 8). However, no claim of "objectivity" 
is made for the set of inferences that could be produced from its normalized form, the reference 
posterior r(81x). It is only argued that r(8l X) gives a coherent feeling of the values of 0 
that the data x are supporting, under the assumptions that p(8) EC and that the model is true. 
One should compare the reference posterior r(8I x) with the posterior densityp(8I x) obtained 
from a personal prior p(8) which describes the scientist's initial information; the distance 
between p(8I x )  and r (8(  x) would be a measure of the relevant information contained in p(8). 

A reference prior does not describe a situation of "non-information" about the parameters 
of a model; the examples in Section 5 show that such a description is not possible. Instead, 
if (8, w) are the parameters of the model, re(8, w) describes the limit of a particular kind of 
knowledge about (8, w): that which leaves most to be learned from the data about the value 
of 8. This is why, although invariant to one-to-one transformation of the parameter space, 
the method is not invariant to marginalization. We maintain that the reference posterior which 
corresponds to such a prior is a useful distribution to quote in a scientific report about 8. 

If it is desired to restrict the sensitivity analysis to some specific class C of priors, e.g. those 
compatible with some accepted information or those introducing some assumptions, this is 
done by maximizing the missing information in C rather than in the class of all probability 
densities. Although in this paper we have only worked in the latter case, we believe this is a 
promising field of research. It could be used, for instance, to derive reference priors for the 
last step of hyperparameters in a hierarchical prior specification as those used by Lindley and 
Smith (1972) and Smith (1973); here, C would be the class of priors with the assumed 
hierarchical structure, and one would have to find a reference prior by maximizing in C the 
missing information about the parameter of interest. 

It  should be clear to the audience that an entirely satisfactory mathematical presentation 
of the methods suggested in this paper would require much more attention to detail than 
has been attempted here. In particular, the asymptotic behaviour of posterior entropies, and 
the maximization process which Definition 1 requires, should be more carefully investigated. 
However, an understanding for the foundations and consequences of the procedure advocated 
here can be achieved with the informal approach adopted. 

I would like to conclude by quoting the last paragraph of Professor Novick's address to 
this Society (Novick, 1969) on precisely the same topic I have been discussing tonight, for it 
describes precisely my own feelings: "The paper is put forward as a further foray into the 
unknown to see if the basic principles are sound. Naturally, the emphasis has been on the 
case for the defence, though no relevant, possibly embarrasing facts have been suppressed. 
The case for the prosecution will, I am sure, follow shortly". 
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Professor J. B. COPAS (University of Salford): I would like to start by welcoming Professor 
Bernardo to the Society and complimenting him on the presentation of his case both tonight and in 
his written paper. I believe we have before us a paper which is both important and challenging, and 
I am pleased to have the privilege of opening the discussion. There are several points I would like 
to take up, but perhaps it is incumbent on the opening prosecution witness to start off by taking 
his spade to the very roots of the edifice, leaving it to the later witnesses, many more expert than I, 
to comment on more particular matters. 

The backbone of the method is equation (I), Professor Bernardo's idea being that to maximize 
this expression one maximizes the contribution of the data and minimizes the contribution of the 
prior distribution. The argument rests on the belief that the entropy of a distribution is a measure of 
uncertainty. Consider the distribution shown in Fig. D l .  If this is cut in half, and the two halves 
moved apart, the variance increases dramatically. For example, if we are forecasting next year's 
company profits, then the original distribution says that we are sure to break almost even over the 
year, whereas the displaced distribution says we are sure to make almost Elm profit or Elm loss, 
but we have no idea which. Surely, the company is operating under much greater uncertainty in the 
second case than in the f ist ,  yet the entropies of the two distributions are exactly the same. This is 
because entropy depends only on the distribution of the different heights of the probability function, 
and pays no regard to the values of the variable at which these various heights are attained. Entropy 
is the average amount of information which has to be transmitted in order to specify without error 
which particular value of a random variable is obtaining at any particular time, a quite different 
matter from measuring the statistical uncertainty in the value of the random variable itself. Given, 
then, that entropy is a very imperfect measure of statistical uncertainty, how does Professor 
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Bernardo's method apparently remain unscathed? It is because asymptotic posterior distributions 
are usually normal, when the entropy is essentially the log of the standard deviation and thus a 
monotonic function of variance. 

If the asymptotic posterior of 6 is independent of the prior, then the equation leading to (3) 
can be written 

M(p(6)) -Ee a<@, (A) 

where 

and M is the measure of uncertainty, taken in the paper to be entropy. Here, once the experiment 
is specified, the function a(8) is fixed, and expression (A) is the quantity to be maximized over p(8). 
To minimize the second term, the prior should concentrate on those values of 6 which make a(6) 
small, but on the other hand, to maximize the fist  term requires probability over a wide range of 
values; Professor Bernardo's solution is the compromise between these two opposing forces, and 
naturally the resulting prior density in (5) is a monotonically decreasing function of a(6). An 
important special case is when a(6) is constant, as for instance happens for an unknown location 
parameter. One is then left to maximize just M(p(6)), which by any reasonable definition of M will 
spread the probability out to a uniform distribution. Thus, as Professor Bernardo rightly says, the 
uniform prior does not require asymptotic normality, but neither does it require the use of entropy; 
it would just as well result if M was variance, assuming one only wished to optimize within 
unimodal distributions. Similarly, the uniform prior on log 6 would result for a scale parameter. 

If (A) is univariant under one-to-one transformations of 8, then this argument extends to the 
regular continuous case. For in the notation of the paper, the asymptotic posterior distribution of 
the transformed parameter 4 defined by 

4 = Joi(6)+d6 

is normal with variance independent of 4, and so 4 is assigned a uniform prior distribution, or 6 
itself the Jeffreys' prior as in (13). The essential property required of M is that (A) be invariant, not 
specifically, that it be entropy. It would be interesting to know whether there is some other measure 
Mwhich more directly relates to statisticians' ideas of uncertainty and yet which leaves (A) invariant. 
If such a measure exists, it might form a better rationale for the results derived in tonight's paper. 

As I have remarked already, entropy pays no regard to the metric of the sample space of the 
relevant random variable, and so can take no account of smoothness of the resulting distribution. 
I think this is another difficulty with entropy. Professor Bernardo emphasizes that his method can 
apply to the situation when one wants to incorporate some specific knowledge about 6 by maximiz- 
ing within the restricted class C of prior distributions consistent with that knowledge. Perhaps this 



130 Discussion of Professor Bernardo's Paper 'Po. 2, 

is the most promising aspect of his technique but unfortunately the results can be somewhat un- 
appealing. For instance, suppose we wish to incorporate the knowledge that the prior probability 
of 0 belonging to some set S isp. Then a straightforward extension of the analysis given in Section 3 
shows that in the regular continuous case the prior distribution for 6' is 

where c, and c, are chosen such that P(OE S )  and P(O6S )  are proportional t o p  and (1 -p) respec-
tively. The discontinuities on the boundaries of S do not make much sense from a practical point 
of view, since the choice of both S and p are likely to be somewhat arbitrary. However, when C 
takes the form of specifying prior moments, Professor Bernardo's technique can give a simple and 
rather appealing solution. For instance, if the prior mean and variance of 0 are to be fixed in 
advance, one obtains the solution 

~(6')cc i (0)fexp ( A ,  0+  A, 02), 

where A, and A, are specified in order to give ~ ( 0 )the required mean and variance. The fist  term 
is the distribution obtained when no information about 6' is assumed, and the second term is simply 
a normal density. Interestingly, this is roughly equivalent to assuming one has available the data 
from a supplementary sampling experiment which gives rise to a "normal" likelihood function 
which is then multiplied in accordance to Bayes' theorem. 

Professor Bernardo points out that his method is not invariant under many-to-one transforma- 
tions or under marginalization. As he says, this means that one's choice of prior depends on which 
aspect of the parameter is under study. But there are cases where the choice of a "natural" para-
meterization is not clear. For instance, in the counterfeit coin example in Section 4.1, suppose 
we are interested in whether the coin is double-headed (4,) .  What is the alternative hypothesis? 
If it is the composite of 4, and 4,, then P(4,) = 4, but if there are two separate simple alternatives 
+,, and #,, P(4,) = 3. Does the author's analysis of this example imply that the probability of any 
simple hypothesis that we care to examine in the finite discrete case is + ?  I find the discussion of 
this in the paper less than adequate. Similarly, in Stein's paradox in Section 5.3 one may be interested 
in making separate decisions for each component problem. As such, the complete vector of para- 
meters y is the object of inference. But it so happens that, using a combined loss function, risks of 
symmetric decision rules depend on y only through a scalar function such as 0 = X pq. Is then 0 
the object of inference? More generally, the parameter in a decision problem may not be an 
object of inference at all, but simply that part of the model which links the loss function to the 
likelihood function. 

If tonight's speaker is serious in his claim that the method is consistent with a subjectivist view 
of probability, then reference prior distributions cannot possibly be interpreted as inferences in 
their own right. In the tone of his discussion of the examples in Sections 4 and 5, however, I detect 
that Professor Bernardo comes very close to interpreting them as if they in fact are. One of the 
most compelling consequences of the Bayesian argument is that inferences can be updated in a 
sequential way as new information arises; this too cannot be so for reference posterior distributions, 
as the complete form of the likelihood function has to be known before the initial prior can be 
formulated. Perhaps Professor Bernardo is himself near the brink of his own trap, but I think there 
is a great danger that some, who from indoctrination believe they should always find Bayesian 
solutions to data problems, will dive into the trap headlong and interpret the method of tonight's 
paper as a recipe for prescribing prior distributions which do indeed represent ignorance. One is 
back to the position of interpreting the reference posterior merely as a yardstick. But what is the 
use of a yardstick if we do not know how to measure with it? I look forward to hearing Professor 
Bernardo expand on his meaning of "origin" and "reference". 

Tonight's paper has been stimulating and provocative, but as perhaps should always be the 
case with a good read paper, there are many questions left unanswered. It gives me great pleasure 
to propose the vote of thanks. 

Dr A. O'HAGAN (University of Warwick): "Ignorance is bliss", they say, but the question of 
whether it really serves any useful purpose to represent prior ignorance formally is highly con- 
tentious. Nevertheless, I will confine my remarks to operational behaviour of Professor Bernardo's 
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reference posteriors, because despite his protestations that they only represent an "origin" or 
"reference" it is clear from his examples that he sees them as being meaningful, and perhaps useful, 
in themselves. 

It is obviously a significant achievement to derive, from a single framework, the uniform prior 
for "finite discrete" cases and the Jeffreys' prior for suitable continuous cases. Moreover, it is very 
important that Professor Bernardo has indicated regularity conditions for the Jeffreys' prior to be 
appropriate. Consider, for instance, a simple class of problems where the posterior distribution is 
not asymptotically normal and therefore Jeffreys' prior is not obtained: let the observation x have 
density function given 6' of the form 

depending on 6 only through the function $(6). Then if $(6) is not a one-to-one transform, the 
whole parameter 6' is not identified. The Jeffreys' prior is clearly a function of $(6) alone, implying 
that the conditional prior distribution of 6' given $(6) is uniform. Now it is well known that in such 
a case the data do not modify the distribution of 6' given $(6'), so it will be uniform in the posterior 
also, which may well result in the posterior being improper. But Professor Bernardo's basic 
approach of Section 2 recognizes the fact that the data tell us nothing about 6' given $(6) and, quite 
properly, admits defeat-the reference prior for 6 given $(6) turns out to be arbitrary. This in turn 
highlights the fact that posterior distributions, reference or otherwise, require a conscious specifica- 
tion of prior information. 

But whereas I am impressed by Section 2, I find Professor Bernardo's handling of nuisance 
parameters in Section 4 much less convincing. We are treated to some elegant verbal sidestepping 
but the basic idea must still amount to a way of representing total ignorance about the parameter 
I,6 = (6, w). First we pretend ignorance about w for every possible value of 6, yielding a set of 
conditional reference priors a(w I 6'). Then we pretend ignorance about 6 to obtain a reference 
prior a(@. Yet the result of multiplying these two is different from pretending ignorance about I,6 
directly. To see how different they can be, consider the "counterfeit coin" example of Subsection 4.1. 
The direct approach yields what I will call the unconditional reference prior {t, 4, &) with entropy 
log 3. Using the methods of Section 4 to obtain a(w I 6') ~ ( 6 ' )yields what I will call the conditional 
reference prior {+, a, 8) with entropy 1.5 log 2, which is only 5 per cent less than log 3. This is only 
a small difference, but suppose we extend the example to allow the coin to be biased not just to the 
two extremes of double-headed or double-tailed but to k different degrees. The unconditional and 
conditional reference priors are 

1 - and 1 11 [2,a,...,&] 
~ r n , . . . ~ k + I  

respectively, and the entropy of the latter for large k is only about half that of the former. So the 
conditional reference prior contains up to half of the missing information: how can these both be 
representations of total ignorance? Even greater discrepancies can be achieved with multinomial 
sampling. Professor Bernardo tries to justify his conditional reference prior by arguing that a single 
toss of a coin tells us nothing about whether it is fair, but the Bayesian argument acknowledges this 
fact regardless of the prior-by the prior and posterior probabilities that the coin is fair being equal. 

But even if the conditional priors are sensible, by changing which aspect of the parameter we 
regard as being a nuisance we change the reference prior, and hence the reference posterior, for the 
full parameter. In his very tirst sentence Professor Bernardo invokes coherence to justify being a 
Bayesian, and yet his approach to nuisance parameters is incoherent. Referring again to the 
counterfeit coin, imagine that a single toss of the coin results in heads. Then the reference posterior 
distribution for inference about whether it is fair is {+, +, 0). But the reference posterior for inference 
about whether it is double-headed is {+, $, 0). If asked to bet on whether the coin is fair, Professor 
Bernardo refers to the tirst posterior distribution and will accept any odds better than evens. And 
if asked to bet on whether it is double-headed he refers to the second distribution and accepts odds 
better than 4-1 on. It would be very easy, with these highly incoherent beliefs, for him to place 
bets which would lose him money whatever the true state of the coin, and yet which he would 
believe were to his advantage! I would like to be his bookmaker! 

So inferences about different aspects of the full parameter do not cohere, and the prime symptom 
is that probability laws fail-the same probability evaluated two different ways yields two different 
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answers. As another example consider evaluating the probability that the next toss of the coin will 
also be heads. We should completely reformulate the problem so as to express the result of the 
next toss as a function of the parameter (and I would be interested to see how Professor Bernardo 
would do this), but one might be tempted, naively, to use probability calculus via 

P(heads next) = P(heads next Ifair) P(fair)+ P(heads next Idouble-headed) P(doub1e-headed). 

With the above reference posteriors we find 

heads next) = q x q + 1  x 4  = 1.05! 

Although I think Professor Bernardo would have been safer sticking to his unconditional theory 
of Section 2, I am glad that he did not. As a result he has given us a paper which is not only lucid and 
stimulating but also challenging. It gives me very great pleasure to second the vote of thanks. 

The vote of thanks was carried by acclamation. 

Professor A. F. M. SMITH(University of Nottingham): I t  has long been a source of considerable 
embarrassment to dwellers in the Bayesian citadel that it houses so many improper waifs and strays, 
most of hideously deformed appearance. How fitting that a Dr  Bernardo should appear with the aim 
of providing a respectable shelter for these outcasts! 

My own view of "vague" or "improper" priors is that they are simply mathematical artefacts 
(having no intrinsic interest in their own right) whose justification rests on the fact that their use in 
Bayes' theorem results in a posterior distribution which is a "good approximation", in some sense, 
to what would have been obtained using the "non-informative" prior anticipated from careful 
assessment. It is clear that the quality of an approximation will depend both on the parameter of 
interest and on the likelihood, and so it should not be a matter of surprise, or concern, if the form 
of representation of the "vague" prior (i.e. mathematical artefact) depends on the data, or does not 
transform in an "obvious" way when we change the parameter of interest. I certainly have no 
objection to Bernardo's results on these grounds. 

But, from this "pragmatic" standpoint, how should one react in general to Professor Bernardo's 
rather formal approach? In a sense, if we take the "good approximation" idea seriously, then the 
whole business seems rather circular. An "actual" prior is "non-informative" (by definition!) only 
if the posterior it would lead to is well approximated by Bernardo's reference posterior. A possible 
alternative reaction is to note that the reference recipes seem intuitively satisfying and also provide an 
elegant unification and clarification of many hitherto messy issues. I suggest that we should, 
therefore, be pragmatically delighted with this paper, whilst continuing to bear in mind that 
approximation is the real issue. 

I have some queries. First, there seems to be a promise, in the Introduction, to shed further 
light on the Stein inadmissibility result (Stein, 1956) and the strong inconsistency result of Stone 
(1976), in so far as they relate to particular improper prior representations. This promise does not 
appear to be fulfilled. Secondly, have some "possibly embarrassing facts" been inadvertently 
suppressed following equation ( IS)?  The author has noted that, in the presence of nuisance para- 
meters, the reference prior for 0 will generally depend on p(w I 8). One option would appear to be 
to use the reference form ~ ( w  I 8). But is this an unambiguous procedure if w = (w,, w,), say? We 
could proceed directly to obtain ~ ( w , ,  w, I 8), or we could obtain a(w, 1 8, w,), ~ ( w ,  1 8) in two 
stages. Would the author comment on whether these alternatives necessarily lead to the same 
results? And what should we do in cases where they do not? 

Finally, I should like to ask the author whether he feels his approach can help with the following 
important class of problems. Suppose we have a finite list of alternative models (for example, 
location-scale families with different tail behaviours, or alternative regression models) and wish to 
obtain posterior probabilities on the individual models, having assigned "non-informative" priors 
to parameters within each model. Should the non-informative priors for location and scale differ 
from family to family? If so, how? And what are the appropriate "constants" for "uniform" 
priors assigned to alternative vectors of regression coefficients having different dimensionalities? 

Professor A. P. Dawn, (The City University): I feel well placed to appreciate Professor 
Bernardo's achievement, since some time ago I myself tried, and failed, to carry out a similar 
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programme. My approach was to consider an uncertainty function U(n) defined for distributions .rr 
for the parameter. This might, as in tonight's paper, be the entropy of n ,  but I was thinking in 
terms of a decision problem with specified loss function, and taking U to be the expected loss 
consequent on taking the optimal decision for the state of information n. Defining noas the prior 
distribution for 8, and II, the posterior based on data X = x, the expected value of sample informa- 
tion in the experiment is U(no)- E[U(n,)]. It seems reasonable that an "uninformative" prior 
(relative to U) is one for which this quantity is maximized. 

This idea occurred to me and to several others at about the same time, but no simple general 
solution emerged. While some special cases may be solved, these give little insight. Moreover, 
some of these answers seemed somehow "wrong". 

Professor Bernardo has hit on the idea of maximizing the expected value of information from a 
large number of replications of the experiment. This gives more elegant and more acceptable 
answers. I should like to know if the method might extend to a general uncertainty function. For 
one based on a decision problem, we would actually get a "reference decision" for any observation. 

This raises a general problem of interpretation. Reference posteriors (or decisions) are not for 
use: they are for reference. But just how are we supposed to make the comparison between our real 
(informed) analysis and the reference? And what use are we to make of this comparison? 

A further problem arises from the "incoherence" of reference priors for different parameters. 
Suppose, for example, A = 8,- 8, represents the effect of applying some treatment, and we are 
interested in whether the treatment has a positive effect. We want a reference posterior probability 
P(A >0). What reference prior is called for ? One might use that appropriate for inference about A, 
and integrate the posterior reference density over the event "A >0". But one could also construct a 
new parameter: @ = 1 if A>0, @ = 0 otherwise; and use a reference prior for @ to obtain a 
(presumably) different reference value for P(@ = 1). In other words, if we want to find the reference 
posterior probability of a set in the parameter space, this is not done by integrating the reference 
posterior density over that set. But if this is so, what use are we to make of reference densities? 

Professor D. J. BARTHOLOMEW(London School of Economics): For a long time now I have only 
been a spectator in the game of hunting the prior but that, perhaps, provides a vantage point from 
which to make observations and ask questions. The author is to be congratulated for providing 
what, to me at least, is a convincing and impressive method of deriving what used to be called 
ignorance priors. It gives me some satisfaction to note that in the regular continuous case the 
Jeffreys' prior to which the method leads is also the one which Welch and Peers (1963) arrived at 
using frequentist arguments. In this connection it is worth observing (though somewhat remote from 
the rarified atmosphere of this evening's meeting) that we now have a further justification for some 
of the inference procedures which form the backbone of the elementary courses which we teach. 
I must confess to some slight amusement at the verbal manoeuvres in which the author has had to 
engage to maintain his Bayesian faith but, even so, he comes perilously close to heresy. For 
example, reference priors involve integration over the sample space and hence they depend on the 
sampling rule. It would be interesting to know how much the form of the reference prior is affected 
by the choice of sampling rule. Would it make sense, I wonder, to use the authors' method with 
sequential sampling schemes where the stopping rule might depend on the observations obtained to 
date. If so the relationship between the sampling rule and the prior might throw some further light 
on whether the basic principles are sound. Another direction in which the author might extend his 
work is to predictive inference where we are interested in the values of future observations rather than 
in parameters. This is a field where Bayesian methods are attractive from a practical point of view. 
Does the author think that his information criterion provides an approach to the choice of prior for 
that problem? There was much discussion of the correct choice of prior in the case of observations 
on Bernoulli variables following Thatcher (1964). 

Professor D. V. LINDLEY(Somerset): The author of today's paper is to be congratulated on 
the ingenious ways that he has overcome the difficulties usually associated with reference priors. 
However one snag remains: the distributions derived by his procedure violate the likelihood 
principle, and therefore violate the requirements of coherence that he mentions. I t  is easy to see 
this because the method depends on repetitions, not of the result of an experiment, but of results 
like those obtained in an experiment, namely those in the sample space. It is even more transparent 
in the regular case where the expectation operator is used (equation (11)). 
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An example is illuminating. Suppose r successes and n-r failures have been observed in a 
Bernoulli sequence with unknown chance of success 8. If n is fixed (binomial sampling) the reference 
prior is proportional to {&I- @)-a (Section 3.4). In contrast, if r is fixed (Haldane sampling) this is 
replaced by {02(1 - 8))-*. Consequently if you or I were to make inferences about 8, we could use 
our personal probabilities, but if we wanted to engage in scientific reporting, then we would have 
to go back to the data (r, n -r), which had so far proved adequate, and enquire what the sampling 
rule was. I find it unnatural that completely new information should be needed for scientific, as 
distinct from personal, reporting. 

A further example sheds more light. The trinomial distribution with chances h{1-(1 -6) 81, 
(1-6h) 8 and (1 -A) (1 - 8) occurs in the analysis of life-tables and yields numbers D of deaths, 
W of withdrawals and Sof survivors in the three classes. Here we take 6 to be a known value in 
[O, 11. The likelihood factors into a function of 8 times one of h. It might be expected that the 
reference prior would factor, giving independence, but this appears not to be so. Suppose C is 
restricted to the class of priors that do factor. Then we can isolate h say and have likelihood 
hD(l-6h)S(1- For 8 = 0 or 1 this is Bernoulli, yet the reference prior in neither case is 
{h(l- A))-* suggested by Professor Bernardo. I find this strange. But he has been so successful in 
overcoming other difficulties, and the rewards of success would be so great, that I am s u e  he will 
be able to overcome these teasers. 

Dr P. J. BROWN(Imperial College, London): In the search for "non-informative" priors the 
subjective element is at least crucial in deciding between the benefits and drawbacks of each candidate 
prior. A difficulty for me with tonight's approach arises in the context of medical diagnosis pre- 
sented here in a very simplified form. The essence of the problem has been touched on by both 
Professors Copas and A. F. M. Smith. In the decision theory framework the parameter of interest 
may not be fixed and the dimension of the parameter space may be changing. 

In an important paper, Lindley (1978) in response to Hughes (1968), has considered the case 
of two multinomial populations described by two sets of probabilities 85 for the first, $( for the 
second, i = 1, .. . ,n, Z 8$= 1, X $, = 1. Training data in the form of N observations from each 
population are available. The two populations may be thought of as two diseases and it is also 
envisaged that n = 28SO that the labels to the cells of the multinomial are considered as strings of s 
binary symptoms. A change from n = 28to 28+1is equivalent to introducing an extra symptom. 
Suppose there is a single undiagnosed case and it is desired to predict its population of origin. 
Now one would hope that the sequence of prior distributions obtained by increasing the number of 
symptoms observed would be such that the expected diagnostic accuracy would be non-decreasing. 
Use of Jeffreys' multiparameter prior as suggested by Professor Bernardo for this regular continuous 
case (Dirichlet with indices &) for any two numbers of symptoms s, s' would mean that the priors 
would not cohere and as pointed out by Lindley this leads to problems such as those of Hughes 
(1968) where you can actually expect to do worse by observing extra symptoms. That you might 
expect to do no better is reasonable but to expect to do worse within a Bayesian framework is 
disturbing. In an as yet unpublished paper I have shown that in the simple case when the training 
sets are very large (N +co) so that 8 and 4 are determined, the expected probability of correct 
classiiicationpn given by 

is monotone non-decreasing for coherent specifications of sequences of priors and may approach 
any limit in [+, 11 as n +c~ (contrary to a conjecture of Lindley, 1978). However, there is no such 
guarantee of monotonicity if the priors are not coherent. Mr P. Rundell at Imperial College is 
working on priors which are coherent and also informative in this diagnostic situation. 

That said, I found this a very interesting paper. 

Professor C. A. B. SMITH (University College London): A recently discovered missing page from 
Alice in Statland reads: 
White Rabbit (to Alice): I've grown 10 lettuces in a magnetic field, and 10 unmagnetized, and 

weighed them. I want to know if magnetism has made them bigger. How can I find out? 
Alice: Ask "Significant Statisticians Ltd: Enquiries" over there. 
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Significant Statisticians: (Looking at data.) We are in agreement: it depends on why you grow 20 
lettuces. If you decided beforehand on the number 20, the magnetic field had a significant effect. 
If you stopped at 20 because you thought you had proved the point, the effect of magnetism was 
insignificant and presumably zero. 

White Rabbit: I just put seed in on rainy days. 
Significant Statisticians: What a way to proceed! Always consult a statistician before you do an 

experiment! 
Alice: I don't see how intentions can influence the growth of the lettuces: these statisticians seem 

incoherent to me. Let's try the "Strict Savages Enquiry Office" over there. (Going in). Are you 
coherent ? 

Strict Savages: Of course. (Looking at the data.) Smith here calculates that magnetism increased 
the mean weight by 13 grams. Jones thinks it decreases it by 6 grams. .. 

Alice: You're hardly united. 
Strict Savages: We never are: we each rely on our own prior opinion. 
Alice: Let's try the "United Bayesians" office over there. (Going in.) Are you coherent and united? 
United Bayesians: Yes, of course. We decide beforehand on our shared prior beliefs using the 

"Fisher information" which depends on how you plan your experiment. Thus, if you decide you 
will weigh the lettuces exactly, we have one opinion. If you weigh them to the nearest 10 grams, 
we have another. 

Stone and Dawid (walking in): Beware! Their views are paradoxical. 
Alice: Well, let's try the Better Bernardians over there. (Entering enquiry office.) Are you coherent, 

united, and Stone-resistant ? 
Better Bernardians: Yes. But of course the answer depends on whether you're interested only in the 

mean effect of the magnetic field, which then comes to 16 grams, or whether you're interested in 
the variability as well, when the mean effect comes to only 12 grams. 

Alice: But how do you work that out? 

Better Bernardians: By taking the prior corresponding to the limit of posteriors maximizing the 


missing information. .. 
Alice: What is "information"? 
Better Bernardians: Negative expected log probability. 
Alice: If negative expected log probability is information, then I am the Queen of Hearts. Off with 

all your heads. 

Desist, oh brutal Queen; these statisticians are laudably trying to find a universally acceptable 
compromise. But psychologically a successful compromise must stand out as as a specially unique 
and convincing solution. Do any of these qualify? 

Professor BRUNODE FINETTI(University of Rome): After a hasty reading of this beautiful paper, 
I suggest a modified version of Dickey's solution. After considering, for a broad range of choices, 
the pairs of priors and posteriors, choose that pair which gives the most subjectively satisfactory 
result. In other words, take an overall, rather than a one-sided, view of an acceptable choice. 

Professor M. H. DEGROOT(Carnegie-Mellon University, Pittsburgh) : Congratulations to 
Professor Bernardo on an interesting and stimulating paper. Unfortunately, because of space 
limitations, I must skip over the many features that I liked and proceed directly to the few aspects 
with which I had difficulty. First, since the notion of reference posteriors depends on the idea of 
an infinite number of replications of E, is this notion relevant to experiments that cannot be 
replicated? 

Second, we cannot measure meaningfully the amount of information about 6 in E without con- 
sidering the use to which this information is to be put. Choosing a measure of information is 
equivalent to considering a particular decision problem with a decision space D and loss function 
L(0, d), as follows: For any density p E C,let U(p) = mindj L(0, d)p(O) dB denote the uncertainty 
in p. Let p, denote the posterior density p(6 Iz), and let E[U(pk)] = j U(pk)p(z) dz. Then the 
expected information in e(k) is ZB{e(k), p(B)} = U(p) -E[U(pk)], the expected reduction in un- 
certainty. Any such measure of information satisfies the properties of invariance, non-negativity, 
concavity and additivity mentioned by Professor Bernardo. He has taken U to be the entropy 
function H throughout his paper. Although H i s  useful in theory of communication, there is no 
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compelling reason to restrict ourselves to this particular measure of uncertainty in statistical experi- 
ments. Using His equivalent to considering a decision problem in which the statistician must choose 
a density function f from the class of all densities on O subject to the loss function 

L(0,f) = -logf(O). 

The Bayes' decision is then to choose f to be the statistician's prior (or posterior) density p and the 
Bayes' risk U(p) is just H(p). The appropriateness of H in statistics is therefore no greater than the 
appropriateness of this decision problem. 

The discussion in Section 3.4 suggests that it may be useful to partition prior distributions into 
three types: (i) proper priors, (ii) improper priors which must yield proper posteriors after some 
fixed number of observations and (iii) improper priors which do not satisfy (ii). In Section 3.4, 
Jeffreys' prior ~ ( 0 )  a {i(O)]f is proper. For the mean of a normal distribution, i(0) is constant, and 
for the mean of a Poisson distribution, i(0) = 1/64. In each case, Jeffreys' prior belongs to category 
(ii). Haldane's prior in Section 3.4 belongs to category (iii). 

Two final comments: (1) The rate at which the posterior distribution approaches normality 
seems to be irrelevant to the reference prior. Thus, at the end of Section 3.3 we could replace k in 
02(8)/k by any function of k. Is this reasonable? (2) In Definition 1,the reference prior was obtained 
from the reference posterior. (Can we always obtain one?) But in Section 4, when nuisance 
parameters are present, the reference posterior is obtained from the reference prior. Is this switch 
necessary? 

Dr A. W. F. EDWARDS(Gonville & Caius College, Cambridge): The fist  sentence of the paper 
contains the fallacy known to logicians as petitio principii, the fallacy of taking for granted a premiss 
which is equivalent to the conclusion. For although it might go without saying that the correct use 
of probability entails coherence, it does not go without saying that the correct medium for statistical 
inference is probability. This premiss is disputed. 

Professor D. A. S. FRASER (University of Toronto): In this paper Professor Bernardo offers a 
thoughtful and comprehensive discussion within the Bayesian commitment. He acknowledges the 
familiar Bayesian difficulties involving reparameterization effects, marginalization paradoxes and 
strong inconsistency. He then confronts the prime Bayesian characteristic, that the results depend 
on the prior distribution. His approach is to seek a reference prior, "little relevant initial informa- 
tion" and to use the corresponding posterior directly or as a reference for other posteriors based on 
personal priors. 

The marginalization paradoxes are avoided by a currently familiar procedure (Wilkinson, 1977), 
by making a virtue of a failure. The problem of inconsistent posteriors vanishes by having a wealth 
of priors and a corresponding compound wealth of posteriors. However, the procedure for com- 
ponent parameters does produce interesting and appealing results. It also raises the question as to 
what a distribution means if most of the probabilities cannot be used. In the extreme, each indicator 
parameter of a model, as a parameter of interest, could have its own prior and thus its own posterior 
probability: a prior for each possible posterior probability, conceivably all mutually inconsistent. 
The discrete example (coin) indicates the possibilities in this direction. 

The author-within the Bayesian frame-focuses on the choice of a prior to describe "little 
relevant information". The difficulties lie in the commitment to the Bayesian frame; for some 
discussion see Fraser (1974). 

Some recent research on information with and for statistical models (with D. Brenner, evolving 
from Fraser, 1972) leads to a classification of information as categorical, frequency and diffuse. 
Information can be available that is neither categorical nor frequency; the Bayesian approach makes 
no allowance for this, with resultant difficulties. Also, the proper classification for no information 
within a range is pure categorical. The Bayesian approach forces a measure on this range; the 
present paper attempts to minimize the effect. 

To someone without a Bayesian commitment this thoughtful paper seems close to an interment 
of the Bayesian philosophy as an answer to statistics. 

Professor S. GEISSER (University of Minnesota) : Inferential theories directed towards statements 
about parameters are largely irrelevant except they serve as a vehicle for theorists to beat one 
another over the head with. However, the notion of a reference prior is useful, not so much for the 
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ostensible purpose intended-a statement about parameters-but as a device that permits the 
introduction of a predictive distribution of potential observables based principally on the observa- 
tions at hand. 

In a not too limited sense, the predictive distribution of a future observation is a surrogate for 
the sampling distribution of that observation, Geisser (1971). With this in mind, we outline another 
approach to the reference prior enigma. 

Let DN = (XI ,..., XN)represent a set of random variables which are to be observed and have 
joint density f(d, I 0), 0 being an unknown set of parameters. Let a future random variable 
X- f(x I 0). For each p(0) belonging to an admissible class C of prior densities for 0, a predictive 
density of X is obtained, say g(x I d,) = j f(x I 0)p(B Id,) do where p(0 IdN) =f(d, I O)p(O)/f (d,). 

Using the Kullback and Leibler (1951) information distance (or some such other reasonable 
measure) 

and averaging over the sample space yields M(f, g I 0) = EDNl~ I 0, DN). Then a reference K(J g 
prior (artifactual prior might be a better term, since the reference is to presumptive ignorance of an 
artifact of a statistical model imposed on the generation of data) could be defined as that member of 
the class C which minimizes M(f,g I 0) provided one exists, say p*(0) resulting in g*(x Id,), for all 
admissible 0. The class C may actually be defined in a manner such that certain restrictions on the 
behaviour of g(x IdN) are incorporated. Such an approach has already been hinted at in Geisser 
(1971, 1977), Aitchison (1975) and Murray (1977). 

Its first advantage is that predictive inference is stressed, not an irrelevant intermediary. 
Secondly, the question of nuisance parameters is avoided as interest is not focused on a marginal 
distribution of a particular set of parameters. Further, it also has a frequentist interpretation, if 
one prefers to think in those terms, in that g* can be considered, for the given distance measure, as 
an optimal estimator of f(x I 0) amongst estimators g generated by C. 

All this is not meant to gainsay the interesting approach of Professor Bernardo which attempts 
to avoid some of the usual difficulties associated with the production of reference priors. 

Professor I. J. GOOD(Virginia Polytechnic, U.S.A.): Professor Bernardo's paper is meaty but 
the central idea of considering the prior that "maximizes the missing information" was I think 
anticipated in Good (1969), to which Bernardo refers, and in Good (1968), where some of the 
results were announced. Those works mentioned among other things that (a) the concept of the 
''utility" or "quasi-utility" of a distribution merited more attention (see also Good, 1960); (b) when 
the distribution is parameterized this amounts to talking about the utility of assigning values to the 
parameters; (c) when one has such measures of utility, the minimax prior for the parameters is 
known, by Wald's theorem, to be one of smallest prior utility; (d) although minimax priors have 
disadvantages they have nice invariant properties; (e) an interesting quasi-utility is an information 
measure or expected weight of evidence as in Bernardo's work and as used by Turing (see Good, 
1979 for more history); (f) in this case the minimax prior is the least informative one and could 
be called the minimax-information or minimax-evidence prior; (g) this is the Jeffreys' prior in the 
continuous case; (h) "the 'least favourable' initial distribution, if it exists. .. is . ..invariant. . . . 
It generalizes (i) the Jeffreys-Perks invariance theory; (ii) a principle of minimum discriminability 
for determining a distribution (Kullback, 1959); and (iii) the similar principle for maximum entropy 
for initial distributions (Jaynes, 1957)." 

I was pleased to see the concept of minimax-information priors developed so well in so many 
directions by Bernardo. In particular I was intrigued by his proposal in Section 6 for applying the 
idea to hyperpriors, for I have been advocating hierarchical Bayesian methods for a very long time 
(Good, 1952), especially in connection with multinomials and contingency tables (for example, 
Good, 1965, 1967, 1976; Good and Crook, 1974). In these applications improper hyperpriors, 
such as the Jeffreys-Haldane prior, cannot be used but can be approximated so as to model 
"ignorance". It might be interesting to consider the minimax-information hyperpriors for these 
applications and to compare the effects with those of the log-Cauchy hyperpriors that I used. 

Professor J. A. HARTIGAN(Yale University): Although Professor Bernardo states that "much 
attention to  mathematical detail would be premature", my own belief is that the difficulty with 
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"improper" priors is one of mathematical detail. For this reason, Definition 1 of a reference prior, 
in which a limiting notion is used to avoid explicit handling of improper priors, demands careful 
attention to mathematical detail. What is the role of the compact class C of admissible priors 
which is never mentioned in later derivations? It does not appear that compactness of C in the 
topology of weak convergence of priors is sufficient to "guarantee the existence of the maximum". 
Consider Example 3.5; if the prior density is p, and prior distribution function is P, 

which is infinite for the discrete prior P(0 = k) = a/k(log k)a. In general IB(e(k), P) will be infinite, 
for all k, for the prior density 

~ ( e )= elaXIB(IO~ e>2, 

It will be infinite for many proper priors with the appropriate tail behaviours. The same sort of 
degeneracy applies to normal location. Expected increase of information is technically inadequate 
as a criterion for evaluating priors, since so many give infinite increases in information. 

Professor S. JAMES PRESS (University of California): The author has written what I feel is an 
important paper in the field of Bayesian inference. I am sure it will be cited on numerous occasions 
in the future, and will be used by many research workers in this field to justify the prior distributions 
that they use. 

The principal concern I have with the paper revolves around the nature of the approximations 
used by the author to develop sequences of prior distributions approaching the reference prior. 
The quality and implications of the approximations are not clear. What constraints are being 
imposed on the analyst's subjective beliefs by this approximation? 

The notion of using Jeffreys' invariant prior for simultaneous inference about all parameters is 
useful. It is also useful for the author to point out the importance of distinguishing between the 
quantity of interest and the complete parameter (in the final paragraph before Section 4.1). It 
should be noted that Professor Arnold Zellner and I have made this distinction also, in our paper 
on the posterior distribution of the multiple correlation coefficient (1978). There, we showed that 
if this distinction is ignored, the likelihood function will not be the correct one to use and an 
apparent paradox arises. The way the problem is resolved is consistent with the argument of 
Jaynes (1978), which is supported by the approach of the present paper. 

I congratulate the author on making inroads on a difficult, but very important problem. 

Dr A. M. SKENE(University of Nottingham): I find this paper interesting and I applaud its 
objective. However, I would be grateful for some further explanation on one matter and I wish to 
offer an additional comment. 

Consider the balanced one-way random effects model, (see, for example, Box and Tiao, 1973, 
p. 244). An experimenter approaches me with suitable data and expresses an interest in the overall 
mean and both variance components. I duly supply him with the joint posterior reference distribu- 
tion. Can the experimenter use this to calculate the marginal distribution for, say, the within groups 
variance? If so, what, if anything, is he allowed to infer from that margin? I feel that there exists a 
practical distinction between those parameters which are deemed to be nuisance parameters, 
a priori, and those which are temporarily so designated while investigating individual margins of a 
joint posterior density. 

The concept of a reference posterior distribution forces one to consider the consequences of 
different choices of prior. In a somewhat cursory numerical investigation which set out to show 
that the choice of prior was immaterial given sufficient data, marginal distributions for the two 
variance components of the model previously mentioned were plotted for six different choices of 
prior. Let a2 and at be the within and between groups variance components having unbiased 
estimates S2and Si respectively. The priors chosen were (i) uniform, (ii) ~ - ~ ( o ~ + J o : ) - ~ ,  where J 
is the number of observations per group, (iii) a-2. u;~, (iv) independent xi2densities whose modes 
coincided with the unbiased estimates, (v) independent xi2densities whose modes differed from the 
unbiased estimates, (vi) a-2exp (- S2/a2).a;2 exp (- Si/oi), the last being the product of two 
improper limiting distributions obtained from the x - ~distribution. The two examples illustrated 
in Figs D2 and D3 are due to Box and Tiao (1973, p. 246) and Hill (1976), respectively. In view of 
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1R\ Between groups varlance 

no. D2. Variance components of a one-way ANOVA having six groups and five observations per group 

Within groups variance Between groups variance ., 


FIG.D3. Variance components of a one-way ANOVA having twenty groups and ten observations per group 

the marked effects of these priors, all of which purport to provide little information, a major 
question which is still to be answered is simply "when, for the purposes of inference, is one curve a 
valid approximation for another?' 

The AUTHORreplied later, in writing, as follows. 
I am most grateful to the contributors for interesting and very useful comments. I have to thank 

most of them for their generally warm and encouraging tone, despite of this Societys' reputation as 
a forum for violent exchanges; for providing further insight into the consequences of the procedure 
proposed and for suggesting new problems for research. In  the following, I shall try to give an  
answer to the queries which have been raised. 

Professor Copas is certainly right when he mentions that the expected information Ie defined by 
(1) depends only on the shape of the distribution and is independent of the actual values of the 
variables. He goes on to describe a situation in which the risk involved in decision-making is higher 
when the probability distribution is the same. However, he misses that, in this paper, we are facing 
a purely inferential case, where one is only interested in gaining knowledge about the parameter of 
interest and has no specific decision in mind. The connection between the logarithmic measure of 
information and scientific inference has been established elsewhere (Bernardo, 1979) within a 
Bayesian framework. The reason why the method works, as illustrated by the examples of Sections 
3.1, 3.5 and 4.1 and by that provided by Dr O'Hagan in the discussion, is not asymptotic normality 
but the deep connection between scientific inference and Shannon's information measure. 

It must be stressed, however, that the relevant quantity is information not entropy. For, the 
axiomatic justification of entropy does not extend to the continuous case and, moreover, for a 
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continuous random quantity X, H{p(x)} = -Sp(x) logp(x) dx is not the limit of discrete entropies, 
is not invariant under one-to-one transformations of X and has no precise meaning as a measure 
of the uncertainty attached to X. However, I"{ Y, p(x)} = H{p(x)}-E, H{p(x Iy)} is invariant under 
one-to-one transformations of X and is a measure of the amount of information that Y is expected 
to provide about the value of X with a precise interpretation in terms of the expected number of 
questions about X that it would be necessary to ask to obtain the same level of knowledge as that 
expected to be provided by Y (RBnyi, 1970, p. 564). I believe Ze relates very directly to statisticians' 
ideas of information and inference although certainly not to those of risk and decision. 

It seems rather likely that if one had a prior knowledge of the form p(8 E S )  = p, one would 
also have a similar knowledge of the form p(8 E Si) = p, for other sets Siclose to S. It is clear that 
a number of statements of this form will produce a more smooth reference prior. In any case, the 
object of discussion and interpretation should be the reference posterior, not the operational prior. 

A situation in whichp(8 E S )  = p may be the only prior knowledge available is when (8  E S )  is a 
consequence of some scientific theory, the prior probability of which is p. This really occurs when 
the parameter of interest is not 8 but $(8) defined by $(8) = 1 if B E  S, $(8) = 0 otherwise, with 
p($ = 1) = p and p($ = 0) = 1 -p. The operational prior is then that quoted by Professor Copas 
and the resulting reference posterior for the parameter of interest is such that 

which is, I feel, a rather sensible result. 
Reference posteriors are not inferences in their own right in the sense that they do not describe 

the scientist's personal opinions but those of someone with a very special kind of knowledge: that 
which leaves most to be said by the data. However, reference posteriors may certainly be updated 
in a sequential way as new information arises from the same model. Indeed, the operational prior 
depends on the model only through the asymptotic posterior of its parameters which is, of course, 
independent of the particular sample one might have obtained. 

Finally, I hope that reference posteriors will not prove to be so dangerous as Professor Copas 
fears. The proposal is very simple: people should quote both the personal and the reference 
posterior and explain that the discrepancy among them is solely due to the prior knowledge they had 
about the parameters. 

Dr  O'Hagan insists on treating operational priors as a representation of ignorance and proceeds 
to measure this ignorance by using entropies. I have just mentioned that operational priors are 
not representations of ignorance but approximate descriptions of a very specific type of knowledge: 
that in which most remains to be learned from the data about the parameter of interest 8. No 
wonder that the description of such knowledge depends on the choice of the parameter of interest; 
the entropy of the resulting prior is thus irrelevant. He goes on to mention that the Bayesian argu- 
ment acknowledges the fact that a single toss of the coin tells us nothing about whether it is fair, 
by the prior and posterior probabilities that the coin is fair being equal; but the fact remains that 
(*,$, 4) is the only prior which produces the reference posterior (+,+) one would expect to obtain. 

I have tried to stress that a reference posterior is an  origin for inference. It should be used to 
measure the relative importance of prior knowledge, but it would certainly be foolish to use it to 
take a personal decision in lieu of the personal posterior which describes the decision-maker's 
opinions. Only if, by some personal or political reason, one wanted to justify a decision in terms 
of some agreed initial knowledge and some data, one could use the reference posterior compatible 
with such knowledge. In this case, one should identify the utility function, treat as parameter of 
interest the parameters from which this function depends and use a reference posterior for them to 
obtain a reference decision. The procedure will be coherent in that one would be adopting areference 
posterior as a personal one and acting accordingly. In Dr  O'Hagan's example, the decision problem 
(to accept or not a set of bets) involves all the parameters. I would decide on the basis of my 
personal opinions about them, which only in very special circumstances would be described by the 
corresponding reference posterior (g, 3,O). Clearly, to use this distribution without good reason 
may well be foolish, but it is not incoherent; I am afraid that Dr O'Hagan will not become rich by 
being my bookmaker. I will outline later a procedure to  produce reference posteriors that could be 
used in decision-making to produce reference decisions; this takes into account the utility function 
of the decision problem. 
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In his last point, Dr  O'Hagan is interested in the probability of the next toss of the counterfeit 
coin being heads. Thus, the quantity of interest is whether the next toss is heads (y = 1) or not 
(y = 0). It will be shown later that the operational prior required to obtain reference predictive 
distributions is precisely that required to obtain the joint reference posterior for all the parameters 
in the model. In this example, such operational prior is obviously n$($) = (3, f, f ) ;  the corre- 
sponding reference posterior distribution after one toss of the coin resulting in heads is 
n($ I x = 1) = (f, $,0) and thus the reference predictive probability desired ~ ( y= 1 1 x = 1) = $ 
and certainly not 1.05! 

In conclusion, although some obscurities may remain in the construction of what Dr  O'Hagan 
calls conditional reference priors, I do  not think his testimony provides evidence against them. 
Moreover, to judge them fairly, one should keep in mind the rather appealing solutions obtained 
with their use to the problems discussed in Section 5. 

Professor A. F. M. Smith complains that further light is not shed on the problems raised by 
Stein (1956) and Stone (1976). With respect to Stein's inadmissibility result I have two comments: 
(i) Reference posteriors are intended to be an origin for admissible inferences and must therefore 
produce results which are arbitrarily close to admissibility but are not necessarily admissible; 
although the mean 2 of the reference posterior for the means of a multivariate model is an inadmis- 
sible estimator for dimensions larger than two, it is arbitrarily close to estimators of the form 
aR+(l -a) p,, which are posterior means for suitably chosen proper priors and are, therefore, 
admissible. (ii) Indeed, one may have a prior knowledge about some kind of relation among the 
pi's; in this case, one may obtain the reference posterior in the restricted class of priors compatible 
with such assumption and this will produce admissible estimators of the type mentioned above. 

I have not included a discussion of Stone's examples of strong inconsistency to keep the paper 
within reasonable size, but it may be verified that maximization of the missing information produces 
sensible answers in the two examples discussed in that paper. Indeed, in the Flatland example there 
is a relevant nuisance parameter w, namely the position of the woman and the soldier just before 
leaving the treasure, which was ignored in Stone's "Bayesian" analysis. Thus, the data x will 
consist on the direction in which the thread is pointing from the endpoint (N, S, E, W). The para- 
meter of interest 8 concerns the position of the treasure relative to the endpoint (N, S, E, W) and 
the nuisance parameter w the position of the woman and the soldier one step before leaving the 
treasure, relative to 8, {N(8), S(8), E(8), W(8)). Clearly, the likelihood of, say x = E is given by 

Using the results in Section 3.1, the missing information about 8 is maximized when 

and the missing information about w given 8 when 

n { ~ ( e )1 6) = T{N(B)I e) = n{w(e) I el = n{~(e)1 8) = ). 
Using this operational prior, the reference posterior for the parameter of interest is clearly 

n{B= E l x =  E ) =  %,~ { 8 =S I X =  E ) =  n{8= W l x =  E) = n{B= N I X =  E) = A  
in agreement with the coverage probabilities. Moreover, as Professor Stone mentions in his reply 
to the discussion, the reason for the strong inconsistency in his Example B is surely the non- 
identifiability of 8. But, as Dr O'Hagan has just remaked, the procedure described in this paper 
makes explicit the inexistence of a reference posterior for a non-identifiable parameter by producing 
an  arbitrary operational prior. 

Professor Smith is right when he notes that in the presence of several nuisance parameters, say 
w = (w,, w,), the joint reference conditional prior ~ ( w , ,w, I 8) might be different from the product 
n(wl I w,, 8) n(w2 I 8); this was to be expected since, given 8, the first alternative is equivalent to a 
situation in which the parameter of interest is (w,, w,) while the second is equivalent to one in 
which w1 is the parameter of interest and w, a nuisance parameter. The choice among them will 
depend on the type of reference knowledge one wants to describe. 
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Finally, Professor Smith mentions the truly important class of problems which arise in Bayesian 

choice of model, when one is interested in the posterior probabilities of a list of alternative models 
with possibly different dimensionalities. I have reasons to believe that the method of maximizing 
the missing information does indeed produce sensible answers in this area too. However, the topic 
is much too vast to be covered here; I hope to be able shortly to report on it elsewhere. 

Professor Dawid asks whether the procedure described may be extended to produce reference 
decisions. I think this can be done. Consider a decision problem (D, 0,u) where D is the decision 
space, O the parameter space and u(d, 8) the utility function. Let x be the result of some experiment 
E and z = (xl, ...,xk} that of k independent replications of E. The expression 

then measures the increase in utility to be expected from performing E. A measure of the missing 
utility that could eventually be provided by infinite replications of E is 

am max u(d, e) p(e 1 z) dep(z) dr -maxJ u(d, e) ~ ( e )  do 
w wI 4 . I  

which, under suitable conditions, will be simply 

i.e. the expected value of perfect information. The prior ~ ( 8 )  which maximizes (2) within the class 
C of admissible priors may be seen as a reference prior for the decision problem considered, in that 
it leaves most to be gained from the data. The optimal decision attached to the corresponding 
reference posterior would be a suitable reference decision to be compared with the optimal decisions 
attached to personal posteriors. 

A very simple example is provided by the decision problem of estimation with quadratic loss. 
Here, D = O and u(d, 8) = -A(d- Qa;the fist  integral in (2) vanishes and the second term is the 
prior variance of 8. Thus, the reference estimator with quadratic loss is the posterior mean corre- 
sponding to that prior with larger variance among those compatible with the assumptions made. 
It is apparent from this example, that reference decisions are not necessarily unique although, often, 
sensible restrictions in the class of admissible priors will imply uniqueness. 

It may be verified that the method proposed in this paper to derive reference posteriors is the 
special case of the procedure outlined above, where D is the class of distributions of 8 (so that we 
are in a problem ofpure inference) and the utility function is of the form 

Indeed, in this case expression (1) becomes IB{~,p(0)}, and maximizing the missing utility means 
maximizing the missing information. The rationale for using the particular utility function (4) may 
be found in Bernardo (1979). 

In the second part of his remarks, Professor Dawid worries about the procedure to obtain a 
reference posterior probability for the event that the parameter of interest 8 belongs to a given set S. 
As he mentions, one could define a new parameter of interest f such that f = 1 if 8 ESand f = 0 
otherwise and determine its reference posterior distribution or, alternatively, to compute the 
probability Js~ ( 8x) dB attached to Sby the reference posterior distribution. It may be seen how- I 
ever that both methods give the same result. 

Indeed, the reference conditional prior ~ ( 8  I 0 is, as mentioned by Professor Copas, of the form 

where n(0) is the reference prior for 8. 


c i l  =Is=(B) dB and crl =fEn (8)  do. 
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Moreover, the reference (unconditional) prior for [is found to be ?r(f = 1I= ci l and P(E = 0) = cr1. 
It follow that 

and therefore T([ = 1 x) ( x) dB as desired. Consequently, one may integrate in reference ( = SS ~ ( 0  
posterior distributions to obtain reference posterior probabilities. 

Professor Bartholomew wonders whether the procedure presented may be applied with sequential 
sampling schemes where the stopping rule depends on the observations obtained to date. I do 
not see why not. The likelihood of the result finally obtained when the experiment comes to an end 
will be of the form 

where x = (x,, ...,x,), f(x 1 0, w) is the probability of obtaining the sample x given 0, w and n and 
g(n I x, 0, w, 7) the probability of stopping there after observing x. Thus, the only consequence of 
the stopping rule is the introduction of the new nuisance parameter 7,and the methodology 
described nlay be used to obtain the reference posterior for the parameter of interest 0. 

On his second point, Professor Bartholomew is certainly right when he mentions that the para- 
meter of interest is often a future observation; a simple example of this was mentioned by Dr 
O'Hagan in the discussion. According to the procedure proposed in the paper, if the parameter of 
interest is a future observation y from p(y I B), the operational prior for the parameter of interest, 
i.e. the predictive distribution ~ ( y )  = Jp(y I 0) 4 0 )  dB should be one maximizing the missing 
information about y and, among those prior distributions of 8 which satisfy this condition, one 
should select that maximizing the missing information about the nuisance parameter, i.e. the 
missing information about 8. We shall now show that the result of such a programme is simply the 
operational prior for 8, ~e(0).  

Indeed, if z = {x,, ...,xk), we have by definition 

Under regularity conditions, for large k we have p(y I z) = p(y I d) with d in a neighbourhood of 0. 
Thus, 

But, if we write p(y) + aS(y) in place of p(y), a necessary condition for p(y) to be an extreme of (6) 
such that jp(y) dy = 1 is, using Lagrange multipliers, that 

I P ( 0 ) j  (- - A) S(y) dy d6' = 0 for any My). 

This implies jp(0)p(y I 8) d8 = Ap(y), which is simply the definition of the predictive density p(y). 
Thus, the first condition on ~ ( 8 )  turns out to be vacuous, and one must simply maximize the missing 
information about 8 to obtain the operational prior for 8, q(0), which will therefore be the prior 
required to produce reference predictive distributions. 

In the case of Bernoulli observations, the operational prior is Be (0 I i,4) and, thus, the reference 
predictive probability of obtaining a new success if one has previously obtained r successes out of n 
trials is ~ ( y  = 1 I r, n) = (r + +)/(n+ 1). 

Professor Lindley is worried by the dependence of the reference posterior on the sampling rule 
in violation of the likelihood principle; I must admit that I was puzzled myself when I first realized 
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this. However, when one looks more closely into the problem of scientific reporting, one realizes 
that scientists are usually required by their colleagues to specify not only their results but also the 
conditions in which the experiment has been performed, i.e. the design of the experiment; if I am 
right, they should be asked to do so. Indeed, it is known that, even from a purely personalistic 
point of view, one must integrate over the sample space to design an experiment. It does not seem 
unnatural to me that one has to do the same to analyse the implications of its results. 

In Haldane sampling, when one is sampling until r successes are obtained, one is somehow 
assuming that r successes will eventually appear, a different situation from that in ordinary sampling. 
This is duly reflected in the reference posterior for Haldane sampling, 

which is not proper if r = 0. This is only natural, for we are assuming that a success will appear 
and, in the absence of other information, we cannot make inferences otherwise. However, with 
ordinary sampling, we have the situation described in Section 3.4 and we can make inferences even 
if r = 0. I find these results quite reasonable, and I would suggest that, indeed, scientific reporting 
on the implications of some experimental results requires the knowledge of their design. 

In his second example, Professor Lindley proposes to obtain the reference prior for (8,  A) after 
x = ( D ,  W ,  S )  have been observed when 

P(D,  w ,  s I 0, A)  = 
r ( D +  W + S )  { A [ l - ( 1  - 6 )  6']}D{(1 - S A )  B)W{(l- A) ( 1  - 6))'

r ( D )  W )  U S )  

and 6 is a known constant, i.e. a trinomial with p1 = ( 1  - 6X) 8, p2 = ( 1  - A) ( 1  - 8) and 
pa = 1 - p l -pa .  A straightforward extension of the results in Section 3.3 shows that, under 

with no nuisance 6' regularity conditions, the reference prior to make inferences about a vector 
parameters is Jeffrey's multivariate I F(8) If where F(8) is Fisher's information matrix. In the 
trinomial case with parameters pl and p,, it is easily verified that 

Moreover, if 5 = 5(8) is a one-to-one transformation of 8, it is easily established that the corre- 
sponding information matrix F(& is related to F(8) by the equation 

F-I(& = (V&-I F - ~ ( o ){ (Vf)T)- l ,  (8)  

where (VE) is the square matrix of typical element af,/a8,.  Thus, using (7)  and (8), the inverse of 
the information matrix of (8,  A) is 

where 

F-l(p1,p2)is given above, p, 
then 

= ( 1  - -( 1=p2and 6'6A) A) ( 1  - 8). The reference prior for (8,  A) is 

~ ( 8 ,  cc I F-I(8, A) I -f.A) 
After some rather tedious algebra, this becomes 

which does factorize. 
Moreover, the reference prior for A, i.e. 

,(A) cc { & I - 6  A) ( 1  - A))-* 
does reduce to A-*(l - A)-* when 6 = 0. If 6 = 1, it reduces to A-t(1- A)-1, i.e. the reference prior 
for Haldane sampling with 8 = ( 1  - A ) ;  I suspect that 8 = 1 is a limiting condition which precisely 
implies this type of sampling rule. 

Dr Brown proposes to consider a problem of diagnosis where the new undiagnosed case is 
known to belong to one of two multinomial populations. As he mentions, the problem is a specific 
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example of the model choice problem mentioned by Professor A. F. M. Smith. In Dr  Brown's 
problem, the likelihood of the symptoms x observed in the new case is of the form 

n n 

p(x 1 8, +,6 = 1) = ,n&, P(X I 8, +,6 = 0)= H +;'
z-1 i=l 

and one is interested in the reference posterior probability of 6 after some training data z and the 
symptoms x of the new case have been observed. 

Since the parameter of interest is not (8,$) but 6, while w = (8,4) is a set of nuisance parameters, 
the appropriate operational prior is not a Dirichlet but one of the form ~ ( 6 )  ~ ( w6) where ~ ( 6 )  1 
maximizes the missing information about 6 and ~ ( w  6) the missing information about w given 6. 1 
I have not worked out the details, but I would expect ~ ( 6 )  to depend on n in a way that will avoid the 
problems pointed out by Lindley. 

Professor C. A. B. Smith is to be congratulated for his discovery of a missing page of Alice in 
Statland which we have all enjoyed so much. I am afraid, however, that the author of the book did 
not transcribe properly the conversation between Alice and the Better Bernardians' Enquiry Office. 
Indeed, in the internal report from that conversation, I have found that what Alice was told was 
that the mean effect of the magnetic field comes to 16 grams whether you are interested or not in the 
variability as well, and that the concept of information may well be taken as primitive and proba- 
bility derived from it. 

Professor de Finetti suggests that one could assess subjectively whether the posterior distribu- 
tion gives a satisfactory result. I believe one should certainly do that : how would one deal otherwise 
with, say, totally unexpected results? I only hope that some people will find subjectively satis- 
factory reference posterior distributions as a description of the knowledge provided by the data. 

Professor De Groot wonders whether the notion of reference posteriors is relevant to experi- 
ments that cannot be replicated. Since only a formal, conceptual replication of the experiment 
performed is necessary, and one can always imagine this, I think the procedure may be used to analyse 
the result of any experiment. 

I certainly agree with Professor De Groot's general definition of information; this, in turn, is a 
special case of the approach to reference decisions I have outlined above. Indeed, the appropriate- 
ness of Shannon's information measure in statistics is not greater than that of the utility function 
u(p, 8) = logp(0); but, possibly, this is the utility function appropriate to scientific inference 
(Bernardo, 1979). 

The idea of a reference posterior is based on some sort of "measure" of the "distance" between 
between prior and perfect knowledge; I do not see why this distance should depend on the rate at 
which perfect knowledge may be obtained any more than the distance between Pittsburgh and 
Valencia should depend on the speed at which my friend could come to visit me. 

A formal definition of the operational prior when nuisance parameters are present should also 
be given in terms of the reference posterior to avoid convergence problems. Thus, the operational 
prior would be that function .rra(O, w) which produces, via Bayes' theorem, the posterior 

~ ( 6 'I x) = limpk(O 1 x), 
where 

pk(O I x) cc ' r k  (6S P ( ~I 0, w) T k  (w I dw, 
where i-rk (w I 6 maximizes Z"/a{~(k),p(w I 8)) and ~ k ( e ) ,  maximizes Za{&(k), p(8) rk(w I O)}, within the 
class of admissible priors. Under mild regularity conditions, the reference posterior will always 
exist, since the maxima exist by the concavity of the information measure as a functional of the 
prior and their limit by the asymptotic convergence of posterior distributions. 

Dr Edwards does not comment on the paper: he simply refuses to accept the Bayesian approach to 
inference. I do  not think this is the best occasion to discuss foundations, but I would like to see 
Dr  Edwards' explicit solutions to any of the problems mentioned in Section 5, and I would like to 
know whether he claims them to be better in any well-defined sense. 

Professor Fraser wonders what a distribution means if, according to him, most of the probabili- 
ties cannot be used. As I have mentioned before, in reply to Professor Dawid, all the relevant 
probabilities, i.e. the posterior probabilities of the parameter of interest belonging to any set, may 
be used and are consistent with those obtained when their respective indicators are considered as 
parameters of interest. 

I am afraid that I cannot agree with Professor Fraser's apocalyptic conclusion. Indeed, the 
standard arguments against Bayesian methods focus on their dependence on prior opinions which 



Discussion of Professor Bernardo's Paper 

somehow conflict with scientific reporting, and reference posteriors provide a procedure to bypass 
this problem. 

Professor Geisser stresses quite properly the practical importance of prediction and goes on to 
propose as an operational prior, when interest is in prediction of the next observation x, that which, 
for every 8, minimizes 

where z = {x,, ...,x,). This is the expected value of the amount of information about x which 
perfect knowledge about 8 would provide over and above that contained inp(x I z); it is therefore a 
non-negative quantity whose minimum value, zero, is attained for each 8, when p(x I z) = p(x ( 8). 

I do not think this procedure will produce sensible answers, if only because the prior which 
minimizes (9) will generally depend on 8. Moreover, the results obtained may be far from satis- 
factory. To see this, consider the problem introduced by Dr O'Hagan in the discussion where one 
is interested in predicting the second toss from the counterfeit coin of Section 4.1. Expression (9) 
is then minimized by n($) = (1,0,0) if $ = $, (fair coin) and by any prior of the form 
n($) = (0, p, 1 -p) if $ is either $, or $,. I do not know how Professor Geisser would choose 
among those priors, but I suspect that he would not like to use either of them. 

I certainly agree with Professor Geisser in that when one is interested in prediction the question 
of nuisance parameters is irrelevant. But, as I have shown above in reply to Professor Bartholomew, 
the reference predictive distribution is obtained using a reference prior for all the parameters 
involved in the model so that, as he requires, the question of nuisance parameters is then avoided. 

I am grateful to Professor Good for his comments. As A. P. Dempster once remarked, "In the 
area of statistical inference, there must be little that anyone has thought about that Dr Good has 
not written about, to the point that a computerized information retrieval system would be very 
helpful to scholars in the area." 

I am aware of Professor Good's interest in multinomial problems, which also do intrigue me. 
I hope to be able in the near future to devote some time to study them from the perspective of this 
paper. 

Professor Hartigan is certainly right in demanding more careful attention to mathematical 
detail if the procedure is to be systematically used. I insist, however, that this was premature before 
we could understand what reference posteriors really meant. 

I believe that pathological cases as those mentioned by Professor Hartigan may be avoided with 
some mild regularity conditions for the class of admissible priors. Two such reasonable conditions 
are that (i) the joint measure p(z, 8) should be absolutely continuous with respect to the product 
measure p(z)p(8) (see Osteyee and Good, 1974, p. 32) and (ii) the priors p(8) should be strictly 
positive. It is clear that none of Professor Hartigan's examples meets these conditions. 

I am grateful to Professor Press by his encouraging comments and by bringing to my attention 
an interesting paper which I had overlooked. 

I have not fully investigated the implications of the approximations used but I suspect that one is 
only imposing mild regularity conditions to the class of admissible priors such as those mentioned 
above in' reply to Professor Hartigan. 

Dr Skene wonders what is the use of a marginal distribution jn(0, w 1 x)  dB from a joint 
reference posterior n(0, w I x). None, I would say, unless the operational prior which produces the 
joint reference posterior n(8, w I x) happens to coincide with the operational prior which produces 
the reference posterior for w.  

Inference about the two variance components in the random effects model is an important 
problem where no generally accepted solution exists. I would be glad if Dr Skene could devote some 
of his time to produce and analyse the relevant reference posterior distributions. 

I would like to thank all the discussants for the stimulus they have provided in making me think 
about the issues raised in the paper. The best way to understand an argument is, possibly, to be 
obliged to defend it. 
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