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SEMIDEFINITE PROGRAMMING VS. LP RELAXATIONS
FOR POLYNOMIAL PROGRAMMING

JEAN B. LASSERRE

We consider the global minimization of a multivariate polynomial on a semi-algebraic set �
defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP
relaxations based on products of the original constraints, in the spirit of the RLT procedure of
Sherali and Adams (1990), and recent semidefinite programming (SDP) relaxations introduced by
the author. The comparison is analyzed in light of recent results in real algebraic geometry on
various representations of polynomials, positive on a compact semi-algebraic set.

1. Introduction. In recent years, semidefinite programming (SDP) and LP-based relax-
ations have become more and more popular for obtaining good lower bounds (or even an
optimal solution) for global optimization problems with polynomials. For instance, the well-
known Shor’s (1987) SDP relaxation has provided good lower bounds for combinatorial
problems, notably the MAX-CUT problem, for which the Goemans and Williamson (1995)
algorithm yields an approximate solution with guaranteed performance. Also, the lift-and-
project procedure of Lovász and Schrijver (1991) yields a hierarchy of SDP or LP-based
relaxations for 0-1 linear programs, with finite convergence (see also Kojima and Tunçel
2000 for extensions).
Other LP-based relaxations have been proposed in the literature, particularly the so-called

reformulation linearization technique (RLT) of Sherali and Adams (1990). (See also Sherali
and Tuncbilek 1992, 1997.) The basic idea, elements of which appear in Adams and Sherali
(1986) and Shor (1987), is to (i) multiply the original constraints by a family of polynomials
(usually products of the original constraints), (ii) linearize in an augmented space (lifting)
via introduction of additional variables, and (iii) solve the associated resulting LP program.
Depending on the degree of the multiplying polynomials, one obtains a hierarchy of LP-
based relaxations. For unconstrained (and a certain class of constrained) 0-1 polynomial
programs, the sequence of relaxations converges in at most n steps. For more general
problems, the authors propose to include additional constraints and use these relaxations
in a branch-and-bound algorithm; see, e.g., Sherali and Tuncbilek (1992, 1997) and also
Audet et al. 2000. This methodology illustrates the old idea of using valid inequalities to
help solving nonconvex problems.
More recently, Lasserre (2001a) has introduced a new hierarchy of SDP relaxations for

general optimization problems with polynomials. The resulting sequence of optimal values
converges asymptotically to the global optimum, and in many cases, the optimal value is
obtained at some particular relaxation. For instance, for MAX-CUT problems, the second
relaxation provided the global optimum in a sample of 50 randomly generated instances
of MAX-CUT in �10 (see Lasserre 2000). We recently showed that for arbitrary nonlinear
(constrained) 0-1 programs, these SDP relaxations have, in fact, finite convergence (see
Lasserre 2001b).
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In this paper, we compare the relative merits of LP relaxations based on linearizing
valid inequalities formed with products of the original constraints (in the spirit of Sherali
and Tuncbilek’s 1992, 1997 RLT procedure) and the abovementioned SDP relaxations of
Lasserre (2001a) for polynomial programming. To do this, we will consider the generic
problem

� �→ p∗ �=min
x∈�n

�g0�x	�gi�x	≥ 0� i = 1� � � � �m��(1.1)

where gi � �
n → � is a real-valued polynomial for all i = 0� � � � �m.

We will see that there is a common and natural framework to analyze both relaxations,
namely, in terms of the problem

� →min
�

{∫
g0�x	d��x	����	= 1� �≥ 0

}
(1.2)

(where � is the feasible set in (1.1)) that is easily seen to be equivalent to � (see
Lasserre 2001a) and in terms of recent results in algebraic geometry on various representa-
tions of polynomials, positive on a compact semi-algebraic set.
It turns out that in both SDP and LP relaxations, the variables aim at representing the

moments of the probability measure � in (1.2). The constraints in the primal SDP and LP
relaxations are specific moment conditions to ensure that the support of � is contained in �.
In the SDP relaxations, they are stated in terms of positive semidefiniteness of appropriate
matrices, whereas the linear inequalities in the LP relaxations are Hausdorff-type moment
conditions (only necessary in general). Similarly, the respective duals of both relaxations
have a simple interpretation in terms of the representation of polynomials, positive on the
feasible set �. While the duals of the SDP relaxations aim at representing the polynomial
g0�x	−p∗, nonnegative on �, as a sum of gi’s weighted by sums of squares of polynomials,
we show that the duals of the LP relaxations aim at representing g0�x	− p∗ as a sum
of products of the gi’s, weighted by nonnegative scalars. In the light of recent results
in real algebraic geometry by Putinar (1993) and Jacobi and Prestel (2001), the former
representation is far more general than the latter.
The univariate case (that is, when n = 1 and � = �a� b�) deserves special attention.

Indeed, Shor (1987) was the first to show that � reduces to a convex minimization problem
that could be solved via interior-point methods. Later, Nesterov (2000) provided an LMI
formulation of the cones of polynomials nonnegative on �, �+, and on �a� b� that could
be used to solve � via a positive semidefinite program (SDP) (see also Lasserre 1999).
Therefore, in the univariate case, a single SDP relaxation solves � whereas in general, only
asymptotic convergence can hold for LP relaxations. In particular, for the latter relaxations,
we show that the exact optimal value cannot be reached at a particular relaxation whenever
there is a global minimizer in the interior of �a� b�. In addition, the LP relaxations are “ill
conditioned,” as they contain larger and larger binomial coefficients. Thus, in the univariate
case, the (single) SDP relaxation clearly outperforms basic LP relaxations based on products
of the original constraints. This is confirmed in the sample of problems considered in
Sherali and Tuncbilek (1997), where even with additional constraints only a lower bound is
obtained.
Of course, an attractive feature of LP relaxations is that it permits us to use powerful

LP codes to solve large size problems, which is not (yet?) the case for SDP relaxations.
However, we will see that the LP relaxations suffer several drawbacks, namely,
(a) The Hausdorff moment conditions are not numerically stable because of the binomial

coefficients involved in the constraints, whereas no such coefficient appears in the SDP
relaxations.
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(b) In contrast to SDP relaxations, the asymptotic convergence of the LP relaxations is
not guaranteed in general. However, we prove asymptotic convergence in the univariate case
as well as in the multivariate case when � is a convex polytope with nonempty interior.
To the best of our knowledge, this is a new result that we prove by invoking a result of
Handelman (1988) in algebraic geometry. Incidentally, this result validates and provides a
rationale for the old idea of using valid inequality constraints to help in solving nonconvex
optimization problems.
(c) Even in the case of a convex polytope �, the LP relaxations cannot be exact in gen-

eral (for instance, as soon as there is a global minimizer x∗ in the interior of the feasible
set or if there is some nonoptimal solution that saturates the same constraints as the global
minimizer). In contrast, this is not a problem for the SDP relaxations, because the “poly-
nomial multipliers” of the inactive constraints are not required to be identically null but
vanish at x∗ (which is not possible for a scalar coefficient).
Both drawbacks (b) and (c) are illustrated on simple examples. Therefore, it seems that

SDP relaxations are in principle superior to LP-based relaxations (this is already known
for the SDP and LP lift-and-project procedures of Lovász and Schrijver 1991 for 0-1 linear
programs). However, so far, the present status of SDP software packages excludes their uti-
lization for large-size (or even medium-size) problems, whereas LP software packages can
handle very large-size problems. Thus, while it seems that SDP relaxations will outperform
LP relaxations for small-size problems � , LP relaxations (with eventual additional con-
straints and associated with a branch-and-bound procedure in the general case, e.g., as in
Sherali and Tuncbilek 1992, 1997 or Audet et al. 2000) are so far the only ones imple-
mentable for larger-size problems (up to the numerical stability issue).
Of course, there are alternatives to SDP and LP relaxations. For instance, the recent work

by Sherali and Fraticelli (2000) tries to combine the power of LP solvers with the strength
of SDP relaxations by translating SDP relationships into RLT types of valid inequalities
to tighten the LP-based relaxations. In a different spirit, Burer and Monteiro (2001), and
Vanderbei and Benson (2000), solve SDP relaxations as ordinary nonlinear programs with
suitable nonlinear programming techniques.
We hope that this paper will stimulate further developments of more efficient solving

procedures for large-size (or even moderate-size) SDPs and/or adhoc alternative techniques
as in the above-mentioned recent works (Burer and Monteiro 2001, Vanderbei and Benson
2000).

2. Global minimization of a univariate polynomial. We first consider the univariate
case, that is, the global minimization of a univariate polynomial g0�x	� � → �, on an
interval �a� b�. Of course, one way to solve such a problem is to compute the finitely many
real zeros of the polynomial g′0 via an appropriate method and compare the values of g0 at
those points (as well as the values of g0 at a and b). However, here we compare the SDP
and LP-based relaxations. Thus, consider the problem

� → p∗ �= min
x∈�a� b�

g0�x	�(2.1)

where
g0�x	 �=

s∑
k=0

�g0	kx
k�

if s is the degree of g0.
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2.1. SDP relaxations. Given a vector y ∈ �2n+1, let Mn�y	, Bn�y	 be the Hankel
matrices,

Mn�y	=


1 y1 � yn
y1 y2 � yn+1
� � � �
yn � � y2n


 � Bn�y	=




y1 y2 � yn+1
y2 y3 � yn+2
� � � �

yn+1 � � y2n+1


 �

For convenience, and with no loss of generality, we may and will assume that the constant
term g0�0	 of the polynomial g0 vanishes.

Proposition 2.1. Let g0�x	 � �→ � be a univariate polynomial of odd degree 2n+ 1
with g0�0	= 0 and let �a� b� be an interval of the real line. Then

min
x∈�a�b�

g0�x	= p∗ =



min
y

2n+1∑
k=1

�g0	kyk�

s.t. bMn�y	� Bn�y	� aMn�y	�

(2.2)

Proof. Observe that from the equivalence of � and (1.1), the criterion
∫
g0�x	��dx	 is

a linear form in the first 2n+1 moments, that is,
∫
g0�x	��dx	=

2n+1∑
k=1

�g0	kyk�

Next, the sequence �1� y1� � � � � y2n+1� is a sequence of moments of some probability measure
� with support in �a� b� if and only if

bMn�y	� Bn�y	� aMn�y	(2.3)

(see, for instance, Curto and Fialkow 1991, Theorem 4.1, Remark 4.2). Therefore, � is
equivalent to

min
y

{
2n+1∑
k=1

�g0	kyk � (2.3) holds
}
�

and the result follows. �

In addition, we also have

g0�x	−p∗ = �x−a	qa�x	
2+ �b−x	qb�x	

2(2.4)

for some polynomials qa�x	
2, qb�x	

2 of degree at most n. The coefficients of the polyno-
mials qa� qb in (2.4) are precisely optimal solutions of the dual SDP of (2.2) (see, e.g.,
Lasserre 2001a, b in a more general framework).
In the case where g0 has even degree, then (after rescaling to obtain a=−1 and b = 1),

g0�x	−p∗ = q�x	2+ �1−x2	q1�x	
2(2.5)

for some polynomials q�x	� q1�x	 of degree, at most n/2.
Nesterov 2000 characterized the cone of polynomials nonnegative on �a� b� and its dual

to obtain (in a slightly different form) the constraints of the above SDP (see Nesterov
2000, Theorem 17.13). The case of polynomials with even degree can be treated in a
similar manner using now Remark 4.4 in Curto and Fialkow (2000) or Nesterov (2000,
Theorem 17.12). Thus � , equivalent to the single SDP (2.2), is a hidden convex problem.
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2.2. LP relaxations. We now consider LP relaxations in the spirit of the RLT proce-
dure of Sherali and Tuncbilek (1992, 1997). To simplify the exposition, and after an affine
transformation, one may and will assume that �a� b�= �0�1�. We consider the � LP relax-
ation obtained by linearizing the constraints

xk�1−x	m ≥ 0� k�m= 0�1� � � � � �(2.6)

in replacing each term xi with the new variable yi. One then minimizes
∑2n+1

i=1 �g0	iyi,
subject to the (linearized) constraints (2.6). Obviously, the abovementioned constraints (2.6)
contain the so-called bound-factor product constraints obtained from the linearization of the
constraints

xk�1−x	�−k ≥ 0� k = 0� � � � � �(2.7)

in the LP relaxation of the RLT procedure of Sherali and Tuncbilek (1992, 1997). (As
proved in Sherali and Tuncbilek (1992), they imply all the bound-factor products of order
less than �.)
The interpretation of these constraints is easy if one realizes that a probability measure

� has its support contained in �0�1� if and only if

∫ 1

0
xk�1−x	m ��dx	≥ 0 ∀k�m≥ 0�(2.8)

The abovementioned conditions (2.8) are due to Hausdorff (and also Bernstein) (see Feller
1966, Shohat and Tamarkin 1943), and a sequence �yj� is a moment sequence if and only
if y satisfies the conditions

m∑
j=0

�−1	j
(
m

j

)
yk+j ≥ 0� ∀k�m= 0�1� � � � �(2.9)

obtained from (2.8) after “linearization.” Thus, for a fixed �, and after linearization, the
constraints (2.6) of the LP relaxation are a finite subset of the infinitely many necessary and
sufficient Hausdorff moment conditions (2.9), and the variable yi is to be interpreted as the
moment

∫
xi d� of some probability measure �. The conditions (2.9) on the yi’s will ensure

that � has its support contained in �0�1�. We therefore consider the LP relaxation

�� →  � �=min
y

{∑
i

�g0	iyi � s.t. (2.9)�0 ≤ k+m≤ �

}
�(2.10)

We still assume that the constant term g0�0	= 0.
Proposition 2.2. Consider the LP relaxation �� in (2.10). Then, as �→�,

 � �=min�� ↑ p∗ �= min
x∈�0�1�

g0�x	�(2.11)

Proof. We obviously have  � ≤ p∗ for all �. Next, observe that the LP dual of �� is
the linear program

� ∗
� →



max
ckm≥0

−
�∑

m=1
c0m�

∑
k≤i� k+m≥i

�−1	i−k
(

m

i−k

)
ckm = �g0	i� i = 1� � � � � ��

(2.12)
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Let " > 0 be fixed and arbitrary. Then, g0�x	− p∗ + " is strictly positive on �0�1� and,
therefore, can be written as

g0�x	−p∗ + " = ∑
0≤k+m≤��"	

ckmx
k�1−x	m� ∀x ∈ �(2.13)

for some integer ��"	 and some nonnegative coefficients �ckm� (see Powers and
Reznick 2000). By identifying terms of same power in both sides of (2.13), the �ckm� must
satisfy ∑

k≤i� k+m≥i
�−1	i−k

(
m

i−k

)
ckm = �g0	i� i = 1� � � � � ��"	

and for the constant term
��"	∑
m=1

c0m =−p∗ + "�

Thus, as soon as � ≥ ��"	, �ckm� is admissible for �
∗
� with value p

∗ − ". As " > 0 was
arbitrary, the result follows. �

We have thus proved that the LP relaxations �� yield lower bounds as close as desired
to the optimal value p∗ if one lets �→�. Although for each �, the LP relaxations �� are
stronger than those in the RLT procedure; the latter also converge because as �→�, the
constraints (2.7) match the constraints (2.9).
In both SDP and LP relaxations, the vector y in (2.2) and (2.10) has the same interpre-

tation as the moment vector of a probability measure �. The constraints (2.3) and (2.9) are
different necessary and sufficient conditions for � to be supported on �a� b�. Similarly, an
optimal solution to the dual problem of each relaxation yields a different representation of
the polynomial g0�x	−p∗ + ":
• as a sum of x− a and b − x, weighted by sums of squares for SDP relaxations

(see (2.4)), and
• as a sum of products �x−a	k�b−x	m, weighted by nonnegative scalars for LP relax-

ations (see (2.13) with a= 0� b = 1).
Remark 2.3. (i) In general, the representation (2.13) holds for polynomials p, strictly

positive on �0�1�. Observe that if g0�x	−p∗ has the representation (2.13), � may be larger
than deg�g0	. In addition, assume that there is a global minimizer x

∗ in the interior of
�0�1�. Then, g0�x	−p∗ cannot have the representation (2.13) with " = 0, for then taking
x∗ ∈ �0�1	 yields ckm = 0 for all k�m. Therefore, in such a case, the LP relaxation can
provide only a lower bound  � < p∗, and therefore, only asymptotic convergence  � ↑ p∗

holds if one lets �→�. This is why one may have to consider infinitely many constraints
(2.9) in the LP relaxation ��, even if g0�x	 is a low-degree polynomial. In addition, the
constraints (2.9) are ill behaved in view of the binomial coefficients

(
m

j

)
, whereas no such

coefficient appears in the Hankel matrices Mn�y	 and Bn�y	 in (2.2).
(ii) After a rescaling, we may have instead considered the minimization of a polynomial

g0 on �−1�1� (instead of �0�1�). Consider the case where there is a global minimizer
x∗ ∈ �−1�1	. For every " > 0, we have

g0�x	−p∗ + " = ∑
0≤k+m≤��"	

ckm�"	�1+x	k�1−x	m(2.14)

for some finite ��"	. However, then with x �= 0,
g0�0	−p∗ + " = ∑

k+m≤��"	
ckm�"	�

so that the sequence �ckm�"	� is bounded, that is, when extended with zeros, �ckm�"	� ∈ l+�.
Therefore, let "i ↓ 0. By a standard diagonal argument, consider a (pointwise) converging
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subsequence �ckm�"in	�→ �c∗km� in l�. Fix x ∈ �−1�1	 as arbitrary and consider (2.14). By
Fatou’s lemma, we must have

g0�x	−p∗ = lim inf
n→�

∑
k�m

ckm�"kn	�1+x	k�1−x	m ≥∑
k�m

c∗km�1+x	k�1−x	m�

Taking x = x∗ ∈ �−1�1	 in the above inequality clearly implies that c∗km = 0. Therefore, the
whole sequence �ckm�"	� converges to the null sequence in l�. Hence, the duals of the LP
relaxations that provide the coefficients �ckm�"	� in (2.14) will handle solutions with very
small values as � grows.
This is not true for the SDP relaxations. Indeed, from the representation (2.4), even if a

global minimizer x∗ is in the interior of �−1�1�, we have

g0�x
∗	−p∗ = 0= q�x∗	2+ �1−x∗	2q1�x

∗	2�

with q�x∗	 = q1�x
∗	 = 0; that is, both “polynomials multipliers” q�q1 vanish at x

∗. For
a complete and detailed discussion on various representations of univariate polynomials
positive on an interval, the interested reader is referred to the paper by Powers and Reznick
(2000).
The examples for the univariate problems considered in Sherali and Tuncbilek (1997) are

disappointing and confirm the drawbacks of the LP relaxations with only the subset (2.6) of
the Hausdorff moment conditions (2.9). Indeed, the lower bound obtained by the LP relax-
ations with those constraints (and even additional convex variable-bounding constraints) is
very far away from the optimal value p∗ (� is the degree of the polynomial g0 to minimize)
(see Sherali and Tuncbilek 1997, Table 1 column &�C −LB	). Additional constraints are
needed to improve the lower bounds. In contrast, a single SDP relaxation with 6 variables
and 3 LMI constraints of size 4×4 solves exactly each problem.
Example 2.4. Consider the (trivial) concave minimization problem minx∈�0�1� x−x2. The

version of the SDP relaxation (2.2) for the even case and the LP relaxation with �= 2 both
find the global optimum p∗ (the global minimizer is at the boundary of �0�1�). If we instead
consider the convex minimization problem minx∈�0�1�−x+ x2, the SDP relaxation is again
exact, whereas for the LP relaxations, we obtain

 2 =  4 =−1/3�  6 =−0�3�  10 =−0�27�  15 =−0�2695�

with �= 2� � � � �15. Observe that in the latter problem, the global minimizer x∗ = 1/2 is in
the interior of the feasible set (see Remark 2.3(i)) and the convergence  � ↑ p∗ = −0�25 is
very slow.

3. Multivariate polynomials. In this section, we consider the (considerably more dif-
ficult) multivariate case,

� →min
x
�g0�x	 � gk�x	≥ 0� k = 1� � � � �m��(3.1)

where gk�x	� �
n → � is a real-valued polynomial for all k = 0�1� � � � �m. In the generic

problem considered in Sherali and Tuncbilek (1997), one assumes that the constraints x ∈
�0�1�n are included in the constraints �gk�x	≥ 0�. Equality constraints are also allowed (via
the constraints gk�x	≥ 0 and −gk�x	≥ 0).
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3.1. SDP relaxations. Let

1� x1� x2� � � � � xn� x
2
1� x1x2� � � � � x1xn� x2x3� � � � � x

2
n� � � � � x

r
1� � � � � x

r
n(3.2)

be a basis for the real-valued polynomials of degree at most r and let s�r	 be its dimension.
Therefore, an r-degree polynomial p�x	� �n → � is written

p�x	=∑
*

p*x
*� x ∈ �n�

where x* = x
*1
1 x

*2
2 · · ·x*nn , with �*� �=∑n

i=1*i = k, is a monomial of degree k with coeffi-
cient p*. Denote by p = �p*� ∈ �s�r	 the vector of coefficients of p�x	 in the basis (3.2).
Let � �= �x ∈ �n � gk�x	 ≥ 0� k = 1� � � � �m� be the feasible set of the problem � in

(1.1). The degree of each polynomial gk�x	 is written 2vk − 1 if odd and 2vk if even, for
all k = 1� � � � �m. Again, with no loss of generality, we will assume that the constant term
g0�0	= 0.
For i ≥ maxk vk, consider the following family ��i� of convex SDPs, introduced in

Lasserre (2001)

�i



min
y

∑
*

�g0	*y*�

Mi�y	� 0�
Mi−vk �gky	� 0� k = 1� � � � �m�

(3.3)

with respective dual problems

�∗
i



min
X�Zk�0

−X�1�1	−
m∑
k=1

gk�0	Zk�1�1	�

�X�B*�+
m∑
k=1

�Zk�C
k
*� = �g0	*� ∀* �= 0�

(3.4)

where we have written

Mi�y	=
∑
*

B*y*� Mi−vk �gky	=
∑
*

Ck
*y*� k = 1� � � � �m

for appropriate real-valued symmetric matrices B*, C
k
*, k = 1� � � � �m+ n. The matrices

Mi�y	 and Mi−vk �gky	 are called moment and localizing matrices, respectively (for more
details, see, e.g., Lasserre 2001a, b and Curto and Fialkow 1991, 2000). To see that �i is
a relaxation of � , let x ∈ �n be a feasible solution of � , let ui�x	 be the vector in �s�i	

of the basis (3.2) for r �= i, and let yx �= u2i�x	 (with y
x
0 = 1) so that yx*1···*n = x

*1
1 · · ·x*nn .

Then, from the definition of the moment and localizing matrices in Lasserre (2001a), and
as gk�x	≥ 0 for all k = 1� � � � �m, we have

Mi�y
x	= ui�x	ui�x	

′ � 0 and Mi−vk �gky
x	= gk�x	ui−vk �x	ui−vk �x	

′ � 0
for all k = 1� � � � �m; that is, yx is feasible for �i.
It was shown in Lasserre (2001a) that under some conditions on the feasible set �,

inf�i ↑ p∗ as i→��(3.5)

and p∗ =min�i for some i, whenever

g0�x	−p∗ =∑
j

qj�x	
2+

m∑
k=1

gk�x	

[∑
j

qkj�x	
2

]
(3.6)
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for some polynomials �qj�x	� of degree at most i and some polynomials �qkj�x	� of degree
at most i− vk. The above representation (3.6) is guaranteed for polynomials p�x	 that are
strictly positive on �, provided � is such that there is some polynomial u�x	 that can be
written as in (3.6) and such that �x � u�x	 ≥ 0� is compact (see, e.g., Putinar 1993). This
condition is satisfied in many cases (like 0-1 nonlinear programs, or � compact with linear
constraints). It suffices that �x � gk�x	≥ 0� be compact for some index k ∈ �1� � � � �m�, and if
not, one way to ensure the above condition on � is to add the quadratic constraint �x�2 ≤M
for some M large enough (see Lasserre 2001a). In the case of constraints x ∈ �0�1�n, the
condition is satisfied (take u�x	 �=∑

i xi�1−xi	).
As for the univariate case, when (3.6) holds, the vectors of coefficients of the polynomials

�qj�x	� qkj�x	� are provided by the eigenvectors of optimal solutions �X
∗�Z∗

k� of the dual
problem �∗

i (see Lasserre 2001).

3.2. LP relaxations. In the multivariate case, we will consider the generic LP relax-
ations obtained from the linearization of all possible mixed products of the original con-
straints, that is, constraints of the form

g1�x	
*1g2�x	

*2 · · ·gm�x	*m ≥ 0� �*� �=
m∑
i=1

*i ≤ ��(3.7)

After developing, each monomial term x* in (3.7) is replaced with a variable y*, so as to
obtain a linear inequality in the y*s.
Observe that the constraints (3.7) contain the so-called bound-factor product constraints

(when one considers only the bound-constraints 0≤ xi ≤ 1) as well as the constraint factor-
based restrictions of the RLT procedure of Sherali and Tuncbilek (1997).
Again, as in the univariate case, and after linearization, the bound-factor product con-

straints are nothing less than a finite subset of the infinitely many (multivariate analogs)
necessary and sufficient Hausdorff moment conditions on the variables y* to be moments
of a probability measure � supported in �0�1�n (see, e.g., Shohat and Tamarkin 1943). The
additional linear restrictions coming from the mixed products (3.7) are (only) necessary
conditions for � to be supported in �.
Hence, the � LP relaxation is the linear program ��:

�� →min
y
�c′�y � A�y ≥ b� deduced from (3.7) for every �*� ≤ ���(3.8)

Thus, the constraints (3.7) for all possible values of � are only necessary conditions for
the variables y*s to be the moments of some probability measure � with support contained
in �. There is a case where those conditions guarantee convergence of the LP relaxations
if one allows �→� and all possible products (3.7) are considered. If all the polynomials
gk defining the constraint set are linear and define a convex polytope � with nonempty
interior, then by a theorem of Handelman (1988), every polynomial p (strictly) positive on
� has the representation

p = ∑
�*�≤m

b*g
*1
1 · · ·g*mm(3.9)

for some m, and real-valued coefficients b* ∈ �+ (see also Powers and Reznick 2000,
Theorem 2). Therefore, in the linear case, for every " > 0, as g0�x	−p∗ + " > 0 on �,
there is some m�"	 such that

g0�x	−p∗ + " = ∑
�*�≤m�"	

b*g1�x	
*1 · · ·gm�x	*m� x ∈ �n�(3.10)
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and thus, for sufficiently large �, the LP relaxation ��, with � �=m�"	, provides an optimal
value  � within " of p∗, and an optimal solution of the dual � ∗

� provides the coefficients
�b*� in (3.10). The proof is similar to the univariate case and is omitted. As soon as some
gk is not linear, there is no longer a guarantee of convergence because the representation
(3.9) does not necessarily hold.
Note in passing that Handelman’s (1988) result provides a rationale for the use of valid

inequalities in nonconvex optimization on polytopes, the valid inequalities being various
products of the original constraints.
Again, we may and will assume with no loss of generality that the constant term of g0�x	

is zero, i.e., g0�0	= 0.
Theorem 3.1. Consider the problem � in (3.1) and the LP relaxation �� in (3.8)

defined from the constraints (3.7). Let  � be its optimal value:
(a) For every �,  � ≤ p∗ and

g0�x	− � =
∑
�*�≤�

b*��	g1�x	
*1 · · ·gm�x	*m� x ∈ �n(3.11)

for some nonnegative scalars �b*��	�. Let x∗ be a global minimizer of � and let I�x∗	 be
the set of active constraints at x∗. If I�x∗	=� (i.e., x∗ is in the interior of �) or if there
is some feasible, nonoptimal solution x ∈� with gi�x	= 0�∀ i ∈ I�x∗	, then  � < p∗ for all
�, that is, no relaxation �� can be exact.
(b) If all the gi are linear, that is, if � is a convex polytope, then (3.11) holds and  � ↑ p∗

as �→�. If I�x∗	=� for some global minimizer x∗, then in (3.11),

∑
*

b*��	→ 0 as �→��(3.12)

Proof. (a) The representation (3.11) follows from the definition of the dual of the
LP relaxation �� (and strong duality in linear programming, as soon as the primal has
finite value), in the same manner as was done for the univariate case. Next, let x∗ be
a global minimizer of � , in the interior of �, that is, gk�x

∗	 > 0 for all k = 1� � � � �m.
Then, from (3.11), it follows that p∗ − � > 0, because g1�x

∗	*1 · · ·gm�x∗	*m > 0 for every
* = �*1� � � � �*m	. More generally, let I�x

∗	 be the set of active constraints at a global
minimizer x∗ ∈�, that is, gi�x

∗	= 0 whenever i ∈ I�x∗	 and gi�x∗	 > 0 for i �∈ I�x∗	. Then,
for the LP relaxation �� to be exact, one needs to have  � = p∗ in (3.11), and

b*��	 > 0⇒ *i > 0� for some i ∈ I�x∗	�

otherwise, if there is some b*��	> 0 with *i = 0, ∀ i ∈ I�x∗	, then from (3.11), g0�x∗	−p∗>
0, which is a contradiction. However then, let x ∈ � be any feasible nonoptimal solution
with gi�x	= 0, ∀ i ∈ I�x∗	. With the same argument, it follows that g0�x	−p∗ = 0, which
contradicts x nonoptimal. Thus,  � < p∗ for every �.
(b) The proof that  � ↑ p∗ follows from Handelman’s (1988) result. For every " > 0 (3.10)

holds for some m�"	, and thus, if we take � ≥ m�"	 with m�"	 as in (3.10), the optimal
value of the dual of the LP relaxation will be  � = p∗ −", and the result follows as �→�.
Finally, to get (3.12), let x0 be such that gk�x0	 > 0 for all k= 1� � � � �m. With no loss of

generality, after division of each gk�x	 by gk�x0	, we may have assumed from the beginning
that gk�x0	= 1 for all k= 1� � � � �m. With the same arguments as in the univariate case, the
sequence of coefficients �b*��	� is bounded, for we have

g0�x0	− � =
∑
�*�≤�

b*��	g1�x0	
*1 · · ·gm�x0	*m = ∑

�*�≤�
b*��	� ∀��
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Hence, extended with zeros, the sequence �b*��	� is considered as an element of l
+
�. There-

fore, taking a sequence �k → �, the corresponding sequence �b*��k	� ∈ l� has a (point-
wise) converging subsequence �b*��kn	�→ �b∗*� ∈ l�. With x ∈� being fixed and arbitrary,
consider (3.11). By Fatou’s Lemma, and from  � ↑ p∗,

g0�x	−p∗ = lim inf
n→�

∑
*

b*��kn	g1�x	
*1 · · ·gm�x	*m ≥∑

*

b∗*g1�x	
*1 · · ·gm�x	*m�

which, taking x = x∗, shows that �b∗*� ≡ �0� (as gi�x
∗	 > 0 for all i). Hence, the whole

sequence �b*��k	� converges to the null sequence �0�, and
∑

* b*��	→ 0 as �→�. �

Hence, again, in both SDP and LP relaxations, the vector y has the same interpretation,
namely, the moment vector of some probability measure �. The constraints in (3.3) and (3.8)
are different necessary conditions for y to be the moment vector of a probability measure
� with support contained in the feasible set �. Similarly, the respective duals �∗

i and � ∗
�

aim at representing the polynomial g0�x	−p∗ + " in two different ways:
• as a sum of the gks, weighted by sum of squares, for SDP relaxations (see (3.6)) and
• as a sum of products g*11 · · ·g*mm of the constraints, weighted by nonnegative scalars

(see 3.10).
Thus the main difference between SDP and LP relaxations is their pursuit (or vocation)

(via their respective dual relaxations �∗
i and � ∗

� ) in representing g0−p∗ + " as in (3.6) or
(3.10), respectively, with " as small as possible (and " = 0 if possible).
Recent results of real algebraic geometry tell us that for arbitrary " > 0, the first repre-

sentation is indeed legitimate in a rather general framework (see Putinar 1993 and Jacobi
and Prestel 2001), whereas the second representation is guaranteed only if � is a convex
polytope (by Handelman’s 1988 result). For the important special case of 0-1 nonlinear
programs, both SDP and LP relaxations exhibit finite convergence (as proved in Lasserre
2001b for SDP relaxations and in Sherali and Adams 1990 for LP relaxations).
Remark 3.2. Theorem 3.1 has important consequences that we summarize here:
(a) In the case of nonlinear constraints, the LP relaxation cannot be exact in general,

no matter how large � is. Moreover, in general,  � will be bounded away from p∗, since
the representation (3.11) with  � > p∗ − ", and " arbitrary small, does not hold in general.
A notable exception is the case of 0-1 programs (i.e., with the constraints x2i = xi for all
i = 1� � � � � n) and some special 0-1 constrained programs, as demonstrated in Sherali and
Adams (1990), where the (adapted) � �=n	 LP relaxation is exact. Observe that in this case,
the bound-constraints xi ≥ 0, �1−xi	≥ 0 are such that the set of active constraints I�x∗	 at
x∗ determines a unique point x∗, and the last statement of Theorem 3.1(a) does not apply.
Moreover, in a recent paper, Laurent (2001) has shown that for 0-1 programs, the SDP
relaxation �i is tighter than the corresponding LP relaxation of Sherali and Adams (1990).
(b) In the linear case, that is, when � is a convex polytope, the asymptotic (and in gen-

eral, not finite) convergence  � ↑ p∗ holds. However, in this case, the primal LP relaxation
is ill conditioned in view of the (large) binomial coefficients involved. Therefore, in prac-
tice, it is preferable to fix � and use this relaxation in a branch-and-bound procedure as,
e.g., in Sherali and Tuncbilek (1997) or Audet et al. (2000). Moreover, if there is a global
minimizer in the interior of the feasible set �, the dual LP relaxation (also ill conditioned)
yields an almost null solution, for all the coefficients b*��	 in the representation (3.11)
vanish as �→�.
We illustrate the preceding result on the following example.
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Example 3.3. This example is the global minimization of a fourth-degree polynomial
on �4, found in Bartholomew-Biggs (1976) and also considered in Audet et al. (2000).



min
x∈�4

x3+x21x4+x1x2x4+x1x3x4

x21+x22+x23+x24 = 40�
x1x2x3x4 ≥ 25�

xi ∈ �1�5�� i = 1� � � � �4�
A global optimum is

x∗ = �1�4�74319�3�8209�1�37944	

and is found exactly at the first SDP relaxation �2 (the first to consider as we have poly-
nomials of degree 4). It is also found in the branch-and-bound procedure of Audet et al.
(2000), based on the LP relaxation of Sherali and Adams’s (1990) RLT procedure.
There are 11 polynomial constraints, gk�x	 ≥ 0, k = 1� � � � �11 (the equality constraint

�x�2 = 40 being written as two opposite inequalities g1�x	 �= 40− �x�2 ≥ 0, g2�x	 �=
−g1�x	≥ 0). We show that g0�x	−p∗ cannot have the representation

g0−p∗ =∑
*

b*g
*1
1 · · ·g*1111(3.13)

for some nonnegative scalars �b*�. Indeed, for the representation (3.13) to hold, there must
be some products with *1 = *2 = 0; otherwise, every x ∈� would satisfy g0�x	−p∗ = 0.
Moreover, as the constraints g3�x	 �= x1x2x3x4− 25 ≥ 0 and g4�x	 �= x1− 1 ≥ 0 are the
only ones binding at x∗ (except g1� g2), we should have *3+*4 > 0 whenever *1 = *2 = 0
(otherwise, g0�x

∗	− p∗ = 0 > 0, which is a contradiction). However then, every feasible
point x with x1 = 1 and x1x2x3x4 = 25 would satisfy g0�x	−p∗ = 0! (Take, for example,
the (nonoptimal) feasible point x = �1�5�3�44949�1�44949	.)
The next trivial example shows that the absence of bound constraints may imply that the

lower bounds of the LP relaxations can be bounded away from the optimal value p∗.
Example 3.4. Consider the following trivial one-dimensional example:


min
x∈�

−x�
x2−1= 0�
1
2
−x ≥ 0�

with global optimum p∗ = 1 at the optimal solution x∗ =−1. The feasible set � is compact,
but we cannot have the representation

g0�x	−p∗ = −x−1=∑
*

b*�x
2−1	*1

(
1
2
−x

)*2

�

with b* ≥ 0 whenever *1 = 0. Indeed, g0�−1	−1= 0 implies *1 > 0 for all *. However, on
the other hand, this would yield g0�1	−1=−2= 0, which is a contradiction. Thus, every
LP relaxation �� cannot be exact, so that  � < p∗. However, from the interpretation of an
optimal solution of its dual, we have the representation

g0�x	− � =
∑
�*�≤�

b*�x
2−1	*1

(
1
2
−x

)*2

�

with  � < p∗. Hence, necessarily, there will be terms like b*�1/2− x	*; otherwise, in the
representation of g0�x	− �, we would have 0<p∗− � = 0. However, this implies that the
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best lower bound  � of the LP relaxation is 0 because we must have (writing  � = 1− "	
for some " > 0:

−x− �1− "	=
�∑

*=0
b*�1/2−x	*+ ∑

�1�≤�
b1�x

2−1	11
(
1
2
−x

)12

�

with �* ≥ 0, which yields (for x =−1 and x = 1),

" =
�∑

*=0
b*�3/2	

*� −2+ " =
�∑

*=0
b*�−1/2	*�

summing up yields 2" = 2+∑�
*=0 b*��3/2	

*+ �−1/2	*� ≥ 2, so that " ≥ 1, and thus  � ≤
0< p∗ = 1.
However, if we include the bound constraints �1+x	≥ 0 and �1−x	≥ 0, as required in

the RLT approach (Sherali and Tuncbilek 1997), then we have

−x−1= 2
(
1
2
−x

)
�1+x	+2�x2−1	�

and the LP relaxation with � = 2 will indeed provide the optimal value −1. Observe
that the global minimizer saturates a bound constraint (cf., Sherali and Tuncbilek 1997,
Remark 3.2(b)).
On the other hand, we have the representation

−x−1= �x2−1	
(
x+ 7

4

)2
+ �1−x2	

(
x+ 5

4

)2
+
(
1
2
−x

)
�x+1	2�

Thus, the SDP relaxation �2 yields the optimal value p
∗.

4. Conclusion. We have shown that there is a common natural framework for compar-
ing SDP and LP relaxations, namely, the theory of moments and its dual theory of repre-
sentation of polynomials, positive on a compact semi-algebraic set. Each relaxation aims at
representing the polynomial g0�x	−p∗ in a specific manner. For the SDP relaxations, the
polynomials gk of the constraints are weighted by sums of squares of polynomials, whereas
for the LP relaxations, all possible products of the gk’s are weighted by nonnegative scalars.
From results in algebraic geometry, it appears that the former representation is far more
general than the latter, which even in the case of convergence, has some drawbacks. How-
ever, the present status of SDP software packages is not as advanced as that of their LP
counterparts, so that high-order SDP relaxations are not yet a viable alternative for large-
size or even medium-size problems. We hope this paper will contribute stimulating efforts
toward improving SDP-solving procedures.
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