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Abstract

A very important problem in survival analysis is the accurate selection of the relevant prog-
nostic explanatory variables. We propose a novel approach, based on mixtures of products of
Dirichlet process priors, that provides a formal inferential tool to compare the explanatory power
of each covariate, in terms of the marginal likelihood attached to the induced partitions of the
observations. Our proposed model is Bayesian nonparametric, and, thus, keeps the amount of
model speci1cation to a minimum, increasing robustness of the 1nal inferences.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Background and motivation

Consider a collection of n survival times, possibly censored, let Ti be a random
variable representing the failure time of subject i, and ci a censoring time. For each
subject we observe Xi = min(Ti; ci), and an indicator variable �i = I{Ti6Xi}, indicating
weather the ith subject has a censored event or an event of interest. Let Fi denote
the cumulative distribution function of the ith individual. For each individual we have
a set of observed covariates, describing possible prognostic e9ects on survival times.
Our motivation is to understand whether such covariates do a9ect the observed survival
times, so as to construct a predictive model for future occurrences.

We propose an approach that provides a formal inferential tool to compare the ex-
planatory power of each covariate, and, therefore, to select a good model for predictive
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purposes. Our proposed model is Bayesian nonparametric, and, thus, keeps the amount
of model speci1cation to a minimum.

We 1rst consider the case in which information from the covariates is at the nominal
level and, therefore, the covariates are potential prognostic factors. For each given
factor, we partition the individuals in as many groups as the number of observed
levels of the factor. We then assume individual survival times to be homogeneous
within each group and heterogeneous across groups.

Our aim is to compare the partition structures resulting from consideration of the
di9erent explanatory factors. The metric we choose for the comparison is the calculation
of the marginal likelihood of each partition.

Once the groupings are accomplished, there are two important assumption that the
researcher has to make, conditionally on the assumed partition. The 1rst one concerns
the dependence structure between the individual observations yi within the same group.
The second one regards the dependence structure between observations for individuals
belonging to di9erent groups.

We believe that a natural and simple modeling assumption is that, within each group,
observations are considered exchangeable. This implies that the observations as a whole
follow the partial exchangeable scheme proposed by De Finetti (1938).

Let g be the partition, and k the number of groups. We consider a hierarchical non-
parametric approach. More speci1cally, we assign the distribution of the random vector
(F1; : : : ; Fk), assuming that F1; : : : ; Fk are conditionally independent given a vector of
parameters �= (�1; : : : ; �k) with

(Fi|�) ∼ D(�(�i));

where D(�(�i)) is a Dirichlet process with parameter �(�i) (see Ferguson, 1973).
Furthermore, the parametric vector � is taken to be a random vector with distribution

function H , so that

(F1; : : : ; Fk) ∼
∫
Rk

k∏
i

D(�(�i))H (d�): (1)

The resulting process is precisely a mixture of products of Dirichlet processes (MPDP),
as introduced in the literature by Cifarelli and Regazzini (1978).

Some applications of MPDP processes are: Cifarelli (1979), Cifarelli et al. (1981),
Consonni (1981), Muliere and Scarsini (1983), Muliere and Petrone (1993), Mira and
Petrone (1996), Carota and Parmigiani (2000).

The methodology can be generalized to take into account continuous covariates.
Following Cifarelli et al. (1981), the prior structure allows inclusion of continuous
covariates. Comparison between continuous covariates can be addressed by looking
at the marginal likelihood of each exchangeability structure determined by the design
matrix corresponding to the covariate. More speci1cally, having observed, for each
individual, besides xi, a p-dimensional vector covariates zi, possibly continuous, we
shall assume that

(Fi|�) ∼ D(�(zi′�));
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where � is a p-dimensional vector of real-valued random parameters (p6 n), with
distribution function G, so that

(F1; : : : ; Fn) ∼
∫

Rp

n∏
i

D(�(zi′�))G(d�):

In this paper we shall mainly refer to the model in (1).
Note that the partition g can be induced by the combination of the levels of more

than one explanatory variable, allowing the evaluation of di9erent prognostic e9ects at
the same time as well as the consideration of confounding e9ects.

We also remark that the approach underlying our method is also related to that
pervading survival trees models (see for instance, Mallick et al., 1999), which also
leads to the identi1cation of an optimal partition structure, starting from a di9erent,
recursive, modelization of the survival function.

The performance of our methodology will be illustrated by means of two well-known
data sets. The 1rst one is Veteran’s cancer data set from Prentice (1973), the second
one is the Mice data set from Grieve (1987). The former has been modeled by means
of simple exponential failure time models and, thus, is well suited to illustrate our
methodology, mostly by means of exact computations. The latter has often been con-
sidered in the Markov Chain Monte Carlo (MCMC) literature, to illustrate applications
to Bayesian parametric survival analysis (see, e.g. Dellaportas and Smith, 1993). We
shall demonstrate that our methodology can be extended to this context, and compare
the results obtained with our approach with the parametric Bayesian analysis, using
MCMC methods.

The paper is organized as follows: in Section 2 we present and discuss our proposed
methodology; in Section 3 we consider the exponential and Weibull regression models
and apply them to the two considered data sets; 1nally, Section 4 contains some further
remarks and discussion.

2. The method

In order to investigate the possible dependencies among the observations, a well-
known strategy in survival analysis is to build up a causal model which relates the
survival times to a proper collection of covariates, say Z = (Z1; : : : ; Zp), whose realiza-
tions zi, for i = 1; : : : ; n, are known. The most frequently employed of such models is
Cox’s proportional hazard model.

However, in situations in which a very large number of potential explanatory vari-
ables are available, it is important to pre-screen a subset of actual explanatory vari-
ables. Otherwise, if a selection procedure is run on the whole data set, severe instability
problems of the results may occur. See for instance Altman and Andersen (1989) and
Sauerbrei and Schumacher (1992).

Our approach provides a formal inferential tool to tackle the above problem. In
particular, we shall consider mixtures of products of Dirichlet processes. This allows to
evaluate, in a simple and exploratory fashion, the relative importance of each potential
prognostic factor.



104 P. Giudici et al. / Journal of Statistical Planning and Inference 111 (2003) 101–115

Consider a generic explanatory covariate, say Zl. Such a covariate partitions the data
in k groups, according to its observed levels. We assume that, in each partition, obser-
vations can be deemed exchangeable, according to the partial exchangeability scheme
proposed by de Finetti (1938). In other terms, each Zl corresponds to a sequence
{X li; j ; i = 1; : : : ; k; j = 1; 2; : : : ; nk} of partially exchangeable random variables. We re-
mark that the partial exchangeability scheme speci1es the type of dependence between
observations within each population group X li , but does not specify anything on the
nature of the stochastic dependence between observations belonging to di9erent groups.

To ease the notation, suppose one covariate is implicitly 1xed, and drop the corre-
sponding index. Let X i = (Xi1; : : : ; Xini), for i= 1; 2; : : : ; k be the ni observations of the
ith population group which are assumed to be distributed according to an unknown
cumulative distribution function (cdf) Fi(x).

Assume that, conditionally on the k cdfs F1; : : : ; Fk , independence between observa-
tions in di9erent groups holds, namely

P(X 16 x1; : : : ; X k6 xk |F1; : : : ; Fk) =
n1∏
j=1

F1(x1; j) · · ·
nk∏
j=1

Fk(xk; j):

We remark that, as the cdf F1; : : : ; Fk are random quantities, the group observations
X i are not independent, even conditionally to the knowledge of the allocation into the
groups. We now have to specify a distributional mechanism for the unknown cumulative
distribution functions.

First of all, we assume that each cdf is distributed according to a Dirichlet process,
with base measure �(ui; ·); i = 1; : : : ; k, with ui an unknown parameter. In order to
facilitate comparisons with parametric models commonly employed in survival analysis
we shall assume that

�(ui; ·) = �(ui;R)�(ui; ·);
where � is the cdf of a distribution of a known form up to an unknown parameter ui.
Furthermore, for parsimony, and without any loss of generality, in the following we
shall take �(ui;R) = M; i = 1; : : : ; k. Note that �(�i; ·) can be interpreted as a prior
guess on Fi and M as a “measure of faith” in such guess.

The main assumption we make is to consider F1; : : : ; Fk as random quantities drawn
from a mixture of products of Dirichlet processes. This means to assume that, con-
ditionally on u = (u1; : : : ; uk), (F1; : : : ; Fk) is a product of Dirichlet processes, with
base measures (�(u1; ·); : : : ; �(�k ; ·)). In other words, observations are taken to be in-
dependent between di9erent groups, conditionally on a random vector u, which will
determine the degree of dependency.

Finally, concerning the parameters u, we assume that

u1; : : : ; uk ∼ �(·);
where � is a suitable multidimensional prior distribution. Note that � need not assume
the ui to be independent.

Our task is to calculate the marginal distribution of the observations X =(X1; : : : ; Xk),
namely the marginal likelihood of the considered partition. Suppose 1rst that, for each
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individual, we simply observe (xij; �ij = 1), namely, no censoring is present for the
time being.

Consider 1rst the contribution of the observations belonging to group i. It turns out
that

P(Xi6 xi|ui) =
∫
P(Xi6 xi|ui; Fi) dP(Fi|ui)

= E




ni∏
j=1

Fi(xi; j)|ui




=
ni∏
j=1

M�(xi( j); ui) + j − 1
M + j − 1

; (2)

where xi(1); : : : ; xi(ni) indicates the sequence of the realized observations of the ith group,
xi;1; : : : ; xi;ni , in nondecreasing order.

From (2) it follows that

P(Xi6 xi) =
∫

R




ni∏
j=1

M�(xi( j); ui) + j − 1
M + j − 1


 d (ui);

and, when the whole vector of observations is considered:

P(X 16 x1; : : : ; X k6 xk) =
∫

Rk

k∏
i=1

ni∏
j=1

M�(xi; ( j); ui) + j − 1
M + j − 1

d (u1; : : : :uk):

In order to compare alternative partitions, as induced by the available covariates,
we need to derive the above expression to obtain the marginal likelihood. This can
be done following the procedure illustrated in Antoniak (1973); see also Petrone and
Raftery (1997).

Suppose that, among the ni observations in the ith partition group, the number
of distinct observations is equal to ri, organized in nondecreasing order, as follows:
x∗i(1); x

∗
i(2); : : : ; x

∗
i(ri), with each of them repeated, respectively: ni1; ni2; : : : ; niri times, with∑ri

j=1 nij = ni.

Fact. The (conditional) likelihood of the observations in the ith group is then equal
to

fi(xi|ui) =
Mri

Mni

ri∏
j=1

(ni( j) − 1)!f0(x∗i( j)):

Note that the previous expression can be factorized in two components. The 1rst
component is the term (Mri =Mni)

∏ri
j=1(ni( j) − 1)! which is the probability that the

data follow a speci1c pattern of distinct and repeated values in each group, with a
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given ordering. The second component
∏ri
j=1 f0(x∗i( j)) is the joint density (likelihood)

corresponding to the distinct values.
Now, according to our assumptions, the likelihood of g, conditional on u=(u1; : : : ; uk),

can be expressed as the product of k independent terms as the previous one:

P(X1 = x1; : : : ; Xk = xk |u) =
k∏
i=1

fi(xi|ui):

In order to obtain the marginal likelihood of the observations in each group, we
need to integrate the previous expression with respect to the prior distribution on u, so
that the marginal likelihood of g, denoted with L(g), is

L(g) =
∫

Rk
P(X1 = x1; : : : ; Xk = xk |u) (du);

where � is an appropriate prior distribution for u.
Consider now the more realistic situation in which data are censored, namely let

Xij = (xij; �ij). Furthermore, let U = {(i; j) : �ij = 1} be the uncensored subjects and
C = LU the censored subjects.

We shall assume that, when tied observations contain both censored and uncensored
cases, �ij = max(�ij : xij = x∗ij) = 1; in other words, the repeated observation is assumed
to be uncensored. When censoring is considered, the marginal likelihood of a partition
g turns out to be equal to

L(g) =
∫
u1

· · ·
∫
uk

k∏
i=1

Mn∗i

M [ni]

n∗i∏
j=1

[IUfui(x
∗
ij) + IC(1 − Fui(x∗ij))]�(u1; : : : ; uk) du; (3)

where IC and IU are indicator functions, respectively, for censored and uncensored
subjects and � is a suitable prior distribution for u= u1; : : : ; uk .

Remark 1. The above integral is; apart from simple models and prior distributions;
generally intractable. We need to approximate L(g) with

1
R

R∑
r=1

k∏
i=1

Mn∗i

M [ni]

n∗i∏
j=1

[IUfuri (x
∗
ij) + IC(1 − Furi (x∗ij))]

n∗i∏
j=1

(ni( j) − 1)!;

with R the number of draws of the k-dimensional random vector u. Such vector is
distributed according to  ; which may depend on a parameter vector *. We need to
choose a suitable grid of prior values for M (overall weight of the prior) and *. In
Section 3 we shall give examples; based; respectively; on static Monte Carlo and on
MCMC methods.

Remark 2. In our exploratory approach; we shall compare a number of partition struc-
tures equal to the number of available covariates; and evaluate their relative importance
by means of the score of each partition model. Therefore; we remark that the number
of considered partitions is not random; but 1xed in advance. We choose to report; as
a model score; the marginal likelihood of each partition. More speci1cally; for each
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partition g we calculate; D=−logp(X |g); namely the negative marginal loglikelihood
of each model.

Remark 3. Note that the degree of dependence between observations in di9erent groups
is governed by the prior �(u). The previous speci1cation leaves the ui independently
distributed; which amount to independence between observations in di9erent groups.
Alternatively; a hierarchical prior can be taken; for instance; taking m0 to be random;
so to model Pexibly the dependence.

Remark 4. As discussed in the previous Section; a more general form of dependence
can be induced by means of a linear model. Let Fi|ui ∼ D(�(ui)); where �(ui) =M ∗
�(ui; ·). We now assume that the ui’s can be expressed as linear functions of p6 k
unknown; but common between groups; parameters; such as

ui = �1xi1 + · · · + �pxip;

with �i a collection of random coeQcients and the xi’s functions of the covariates. For
our exploratory purposes; we will be typically interested in considering a simple linear
model with p= 1.

A simple prior on the random coeQcients � can be deduced through the prior on
the u, speci1ed as previously discussed. The main substantial advantage in employ-
ing a linear model formulation lies in the possibility to take a fairer account of the
explanatory power of quantitative explanatory variables through a more parsimonious
linear formulation of the prognostic e9ect. Indeed, the previous model is a special case
of this when p= k and each xij corresponds to an indicator variable for the jth group
of the considered partition.

3. Application to failure time models

In this section we 1rst assume that �(ui; ·) are exponential lifetime distributions, so
that

�(ui; ·) =M ∗ (1 − e−uixi):

This simple modelization will allow us to obtain analytical results, and, therefore, better
illustrate our proposed methodology.

From (3) it can be shown that the marginal likelihood of the observed times, con-
ditionally on a known partition g, is

∫
u1

· · ·
∫
uk

k∏
i=1

Mn∗i

M [ni]

n∗i∏
j=1

(ni( j) − 1)![IU(ui ∗ e−uixi( j) ) + IC(e−ui xi( j) )]�(u) du;

where M [ni] =M (M + 1) · · · (M + ni− 1) and n∗i is the number of distinct observations
in each group.

The above integral can be solved analytically if the prior distribution �(u) is taken of
a simple form. For instance, take the ui to be i.i.d gamma(r0m0; r0). Then the marginal
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likelihood of g is equal to

L(g) =
k∏
i=1

Mn∗i

M [ni]

rrm

-(rm)
-(rm+ d∗i )

(V ∗
i + r)rm+d∗i

n∗i∏
j=1

(ni( j) − 1)!;

where di =
∑n∗i
j=1 �

∗
ij is the number of distinct observed events (deaths) in group i and

Vi =
∑ni
j=1 x

∗
ij is the total time at risk in each group, considering only distinct events.

Consider the application of our proposed methodology to the Veteran’s data set
discussed in Prentice (1973). In order to compare our results with the classical ones,
we take a product of independent gamma priors for u, each with prior expectation
(m0) equal to 1 and prior variance (m0=r0) also equal to 1, corresponding to one
prior event. We remark that, when an independent prior for u is taken, the most
important di9erential factor between the parametric and the nonparametric approach is
the ratio Mn∗i =M [ni], which appears, for each group, only in the nonparametric case. As
a consequence, as M → ∞, the nonparametric results get closer and closer to those
obtained with the parametric approach. Furthermore, the independence partition will be
scored equivalently by both approaches.

In the data set six explanatory covariables are considered as potential prognostic
e9ects for the survival times: performance status (perf), months from diagnosis (diag),
age, prior therapy (ther), cell type (cell) and treatment (trt). Prentice (1973) and
Raftery et al. (1996), under, respectively, a non-Bayesian and a Bayesian parametric
approach, found that the two relevant explanatory variables are cell type and perfor-
mance status. These results are also con1rmed by the Bayesian parametric analysis of
Giudici (1996).

We now apply our approach by computing the score D of the six partitions induced
by the levels of the available covariates, and choosing those is relevant by means of a
comparison between the obtained partition model scores. We also include the partitions
corresponding to complete exchangeability and independence of the survival times, as
useful comparison benchmarks.

Table 1a gives the model scores D of the partitions, for M = 10; 100 and 1000. We
also report results from a parametric model. M is a measure of “con1dence” on the
parametric model. We remark that there is no general guideline on the choice of M ,
it does depend subjectively on the problem at hand, as well as on the amount of prior
information available. We retain extremely important, when prior information is weak
or absent, to carry out a sensitivity analysis of the results with respect to the choice
of M . This allows to evaluate the e9ect of alternative choices of M explicitly. An
alternative approach would be to take a prior on M as well (see, e.g., Escobar and
West, 1995).

From Table 1a, note that the marginal likelihoods are sensible to M , which suggest
that taking a parametric model is a strong assumption. We remark that in Table 1a we
have adopted an ANOVA-like model, where the partitions corresponding to variables,
age and month from the diagnosis are the most complicated ones. However, low values
of M lead to a strong weight on the empirical cdf, and, therefore, more complex
models are less penalised. On the other hand, as M increases, parsimonious partitions
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Table 1
Model scores, −logp(X |g), associated to the entertained partitions, for di9erent values of M and an
exponential failure model

Partition k(g) M = 10 M = 100 M = 1000 Param

(a) Independent priors
gexc 1 944.90 838.1 862.84 757.60
gtrt 2 921.06 827.9 847.07 763.15
gther 2 930.30 831.34 846.41 762.31
gcell 4 880.35 803.15 811.52 756.59
gperf 12 851.06 795.41 796.67 772.81
gdiag 28 895.52 860.01 860.98 841.52
gage 40 899.21 877.19 874.54 874.54
gind 137 1091.77 1091.77 1091.77 1091.77

(b) Dependent priors
gexc 1 838.01 944.50 863.20
gtrt 2 826.99 921.11 846.95
gther 2 829.73 929.27 847.73
gcell 4 804.57 879.81 809.86
gperf 12 793.1 842.07 797.91
gdiag 28 860.54 885.76 862.77
gage 40 866.73 873.85 856.64
gind 137 912.92 1082.35 1019.64

(c) Linearized priors
gexc 1 945.04 837.63 862.61
gtrt 2 920.60 826.99 846.53
gther 2 930.84 833.23 845.63
gcell 4 878.18 801.55 812.87
gperf 12 850.17 805.13 795.91
gdiag 28 892.29 836.8 854.46
gage 40 886.73 864.12 867.90
gind 137 1006.42 1054.51 999.24

are more supported, especially when they correspond to within-groups homogeneity of
the survival times, as is the case for cell type, therapy and treatment.

Concerning the search for prognostic variables, the parametric model seems to cap-
ture the importance of cell type, but not that of performance status, which instead
emerge in the nonparametric models. Recall that both Prentice (1973) and Raftery et al.
(1996), assuming a more parsimonious linear modeling formulation, select performance
status and cell as the most relevant prognostic variables.

We also remark that, apart from very low values of M , the two partitions which are
mostly supported are always performance status and cell. This suggests robustness of
the model score with respect to M . On the other hand, we believe that a small value
of M means doing no modeling at all, as one would do better in considering only the
empirical cdf.

We now introduce a dependent prior for u, and, consequently, make observations in
di9erent groups become marginally dependent. A simple way to induce such
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dependence is by means of a hierarchical prior. For instance, let ui ∼ 0(r0m0; r0)
independently; 1x r0 at 1, as previously done, but let the prior expected hazard m0

become a random quantity, such as 0(1; 1). The marginal likelihood is then evaluated
by means of static Monte Carlo. At each iteration step each ui is drawn from a 0(1; 1)
distribution, and the marginal likelihood is evaluated in the corresponding realizations.
Finally, we calculate the mean marginal likelihood over the considered iterations. Table
1b reports the corresponding results, with the nonparametric model, M = 1; 1000 and
a simulation size of I = 100 iterations.

Comparing Tables 1a and b, we essentially obtain, as most relevant, the same two
partitions as before. However, we believe that the higher complexity of the hierarchi-
cal model requires the researcher to assign coherently a greater value for M . As a
consequence, the value of M required to reach a stable selection is higher in Table 1b.

Finally, consider the stronger type of dependence induced by a linear model. In
order to specify the prior model, we take a simple linear regression model, namely,
for a covariate Zj, xij = �zij, so that the prior hazard of the ith group becomes ui =
�
∑ni
j=1 zij. In analogy with the previous prior model, we then take �i as a -(1; 1)

random variable. This induces a prior on � which is a gamma random variable, with
parameters (1; 1=

∑ni
j=1 zij)) so that in order to obtain the marginal likelihood we need

to perform a static Monte Carlo simulation, as previously.
Table 1c reports the corresponding results, with the nonparametric model, M = 10;

1000 and a simulation size of I = 100 iterations.
From Table 1c, note that the results are essentially intermediate between Table 1a

and b, as the complexity of the hierarchical model is also in between. In any case,
as M is suQciently large, we obtain, as relevant covariates, always performance status
and cell type.

In particular, note that, di9erently from what happens in Table 1a, in the regression-
like linear model in Table 1c continuous variables have only one parameter and, there-
fore, age and months from diagnosis are less penalized.

We shall now apply our methodology to a more complex situation, where the
group-speci1c hazard function is described by a Weibull regression model. Further-
more, di9erent from what is done in the exponential linear model considered in the
end of the previous section, the prior distribution is assigned directly on the regression
coeQcients. Clearly, such a prior is easier to specify, but makes calculations more
complex.

Assume that �(ui; ·) are Weibull lifetime distributions, so that

�(ui; ·) =M ∗ (1 − e−uix
r
i )

with r ¿ 0. Obviously, for r=1 we obtain the exponential failure time model. Further-
more, let

log(ui) = z′i� = �1zi1 + · · · + �pzip (4)

with each �i a random coeQcients and each zij the observed realization of a known
covariate for each individual.
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Indeed, for the data at hand, we shall consider a simpli1ed version of (4), with p=4,
and each covariate corresponding to the indicator function for one of four treatment
groups.

As a prior distribution on � we shall take �i i.i.d. N (0; *), with *¿ 0.
It can be shown that the marginal likelihood of g is

∫
u1

· · ·
∫
uk

k∏
i=1

Mn∗i

M [ni]

n∗i∏
j=1

(ni( j) − 1)!(r exp{z′i�})d
∗
i

×
n∗i∏
j=1

(xi( j))r−1(e−exp{z′i �}
∑n∗i
j=1 x

r
i( j) )�(u) du; (5)

where n∗i are the number of distinct observations in each group, M [ni] = M (M +
1) · · · (M + ni − 1); n∗i is the number of distinct observations and di =

∑n∗i
j=1 �

∗
ij is

the number of distinct observed events (deaths) in each group i. The above integral
cannot be solved analytically and, therefore, we will employ MCMC methods to ap-
proximate it.

To illustrate our methodology, we shall now consider a data set which is used in the
(parametric) Bayesian literature to illustrate how MCMC methods can be employed to
analyze complex parametric survival models, such as Weibull regression ones. We shall
apply our methodology to such data set and compare our results with the parametric
ones.

The data set is described in Dellaportas and Smith (1993), who analyze mice data
from Grieve (1987) on photocarcinogenicity in four groups, each containing 20 mice,
for all of which survival time in weeks and censoring are recorded. An objective of
interest is to evaluate whether there is an e9ect of the covariate treatment against the
no-e9ect situation, corresponding to complete exchangeability.

In order to approximate the marginal likelihood of interest, we will consider, in all
cases, and for the sake of stable results, MCMC simulations length of n= 10; 000 plus
n= 1000 of burn-in.

We 1rst compare the performance of an exponential and a Weibull regression model.
The former is obtained taking r = 1. Take *= 0:0001, and compare the results for the
parametric model with the nonparametric model with M = 10, 100, and 1000.

Let D(g) indicate the marginal likelihood of a partition. For each partition we have
calculated, as a summary performance measure, the di9erence with the marginal like-
lihood of the exchangeability partition: Dexc = D(exc) − D(g).

Fig. 1 shows the behavior of such Dexc, for the considered models. The top left
1gure reports the results obtained with a Bayesian parametric model, the other three
results with the Bayesian nonparametric model.

From Fig. 1 we note that there is clear evidence against a treatment e9ect, apart from
strong prior opinion in such model (e.g. in the nonparametric case, with M = 1000).
Note that the parametric model is more unstable, as its posterior variance is more than
twice the nonparametric ones. The latter are equal, as we have run all simulations with
the same initial seed, and the e9ect of M on Dexc is constant.
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Fig. 1. D-scores against exchangeability, for the exponential regression model on the mice data set.

In order to evaluate also the robustness of the results with respect to the Weibull
parameter r, consider running the same simulation, with r = 3:25, which is the (ap-
proximate) posterior mean of the Weibull parameter from the analysis of Dellaportas
and Smith (1993).

Fig. 2 shows the approximate score Dexc, corresponding to the covariate treatment,
against the exchangeability partition, for the considered Weibull regression model, with
r= 3:25. The top 1gure reports the results obtained with a Bayesian parametric model,
the bottom one with the Bayesian nonparametric model, for M = 100.

Comparing Figs. 1 and 2 it appears that our results are not sensible to the choice
of the Weibull parameter r. This is con1rmed by taking a grid of di9erent values of
r. In fact, presence of a treatment e9ect is now even less supported. Note again the
higher posterior variance for the parametric model.

Furthermore, note that the location of the two distributions is rather similar. This
signals that the parametric model we are using is well supported by the data. Note that,
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Fig. 2. D-scores against exchangeability, for the Weibull regression model on the mice data set.

although this conclusion is somewhat obvious, as the choice of r was suggested by the
parametric Bayesian analysis, it further shows that the nonparametric model performs
quite well.

4. Concluding remarks

Our main contribution is the introduction of a nonparametric Bayesian methodology
to compare explanatory variables in survival analysis on the basis of their predictive
power. To achieve this aim, we have considered mixtures of products of Dirichlet
processes, and provided formulae to compute the marginal likelihood of each partition,
according to di9erent dependence assumptions.

Our model can be extended in several ways, but particularly we foresee two important
extensions. A 1rst extension would be to deal with general proportional hazard models,



114 P. Giudici et al. / Journal of Statistical Planning and Inference 111 (2003) 101–115

with the aim of selecting not only the relevant covariates but also their best linear
combination for use in the model.

A second extension would be to consider how to eQciently employ the selected
covariates. For instance, in a model averaging perspective, research work should be
devoted on the important topic of choosing the weights of the mixture density, with
each component being described by a partition induced by a relevant covariate. See,
in this respect, Walker et al. (2000).

We 1nally remark that the main objective of our analysis is to choose a covariate so
as to improve the predictive ability of the model. We would like to stress that, when a
hierarchical mixture of products of Dirichlet process priors is considered, the predictive
cumulative distribution function of each group does depend not only on the past data
from that group, but borrows strength from all observations. This can be stated more
formally as follows.

Indicate with Yi the random variable that represents the realization of a future ob-
servation in the ith group, and assume all observations are distinct. The predictive
distribution of Yi is

Pr(Yi6yi|x1; : : : ; xk)

=
M

M + ni

∫
Rk
�(yi)�(�|x1; : : : ; xk) d� +

ni
M + ni

Fi(yi);

where �(�|x1; : : : ; xk) is the posterior distribution of the hyperparameter � and Fi is the
empirical cdf of the ith group.

From the above expression note that the predictive cdf depends, through the posterior
distribution of �, on all past data. Another interesting remark is that such predictive
presents discrete jumps only in correspondence of the distinct observations of the ith
population.
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