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Abstract

The Dawid-Skene estimator has been widely used for inferring the true labels
from the noisy labels provided by non-expert crowdsourcing workers. However,
since the estimator maximizes a non-convex log-likelihood function, it is hard to
theoretically justify its performance. In this paper, we propose a two-stage effi-
cient algorithm for multi-class crowd labeling problems. The first stage uses the
spectral method to obtain an initial estimate of parameters. Then the second stage
refines the estimation by optimizing the objective function of the Dawid-Skene
estimator via the EM algorithm. We show that our algorithm achieves the optimal
convergence rate up to a logarithmic factor. We conduct extensive experiments on
synthetic and real datasets. Experimental results demonstrate that the proposed
algorithm is comparable to the most accurate empirical approach, while outper-
forming several other recently proposed methods.

1 Introduction

With the advent of online crowdsourcing services such as Amazon Mechanical Turk, crowdsourcing
has become an appealing way to collect labels for large-scale data. Although this approach has
virtues in terms of scalability and immediate availability, labels collected from the crowd can be of
low quality since crowdsourcing workers are often non-experts and can be unreliable. As a remedy,
most crowdsourcing services resort to labeling redundancy, collecting multiple labels from different
workers for each item. Such a strategy raises a fundamental problem in crowdsourcing: how to infer
true labels from noisy but redundant worker labels?

For labeling tasks with k different categories, Dawid and Skene [8] propose a maximum likelihood
approach based on the Expectation-Maximization (EM) algorithm. They assume that each worker is
associated with a k × k confusion matrix, where the (l, c)-th entry represents the probability that a
randomly chosen item in class l is labeled as class c by the worker. The true labels and worker con-
fusion matrices are jointly estimated by maximizing the likelihood of the observed worker labels,
where the unobserved true labels are treated as latent variables. Although this EM-based approach
has had empirical success [21, 20, 19, 26, 6, 25], there is as yet no theoretical guarantee for its perfor-
mance. A recent theoretical study [10] shows that the global optimal solutions of the Dawid-Skene
estimator can achieve minimax rates of convergence in a simplified scenario, where the labeling task
is binary and each worker has a single parameter to represent her labeling accuracy (referred to as
a “one-coin model” in what follows). However, since the likelihood function is non-convex, this
guarantee is not operational because the EM algorithm may get trapped in a local optimum. Several
alternative approaches have been developed that aim to circumvent the theoretical deficiencies of the
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EM algorithm, still in the context of the one-coin model [14, 15, 11, 7]. Unfortunately, they either
fail to achieve the optimal rates or depend on restrictive assumptions which are hard to justify in
practice.

We propose a computationally efficient and provably optimal algorithm to simultaneously estimate
true labels and worker confusion matrices for multi-class labeling problems. Our approach is a
two-stage procedure, in which we first compute an initial estimate of worker confusion matrices
using the spectral method, and then in the second stage we turn to the EM algorithm. Under some
mild conditions, we show that this two-stage procedure achieves minimax rates of convergence up
to a logarithmic factor, even after only one iteration of EM. In particular, given any δ ∈ (0, 1),
we provide the bounds on the number of workers and the number of items so that our method can
correctly estimate labels for all items with probability at least 1−δ. We also establish a lower bound
to demonstrate the optimality of this approach. Further, we provide both upper and lower bounds for
estimating the confusion matrix of each worker and show that our algorithm achieves the optimal
accuracy.

This work not only provides an optimal algorithm for crowdsourcing but sheds light on understand-
ing the general method of moments. Empirical studies show that when the spectral method is used
as an initialization for the EM algorithm, it outperforms EM with random initialization [18, 5]. This
work provides a concrete way to theoretically justify such observations. It is also known that starting
from a root-n consistent estimator obtained by the spectral method, one Newton-Raphson step leads
to an asymptotically optimal estimator [17]. However, obtaining a root-n consistent estimator and
performing a Newton-Raphson step can be demanding computationally. In contrast, our initializa-
tion doesn’t need to be root-n consistent, thus a small portion of data suffices to initialize. Moreover,
performing one iteration of EM is computationally more attractive and numerically more robust than
a Newton-Raphson step especially for high-dimensional problems.

2 Related Work

Many methods have been proposed to address the problem of estimating true labels in crowdsourcing
[23, 20, 22, 11, 19, 26, 7, 15, 14, 25]. The methods in [20, 11, 15, 19, 14, 7] are based on the
generative model proposed by Dawid and Skene [8]. In particular, Ghosh et al. [11] propose a
method based on Singular Value Decomposition (SVD) which addresses binary labeling problems
under the one-coin model. The analysis in [11] assumes that the labeling matrix is full, that is,
each worker labels all items. To relax this assumption, Dalvi et al. [7] propose another SVD-based
algorithm which explicitly considers the sparsity of the labeling matrix in both algorithm design
and theoretical analysis. Karger et al. propose an iterative algorithm for binary labeling problems
under the one-coin model [15] and extend it to multi-class labeling tasks by converting a k-class
problem into k − 1 binary problems [14]. This line of work assumes that tasks are assigned to
workers according to a random regular graph, thus imposing specific constraints on the number
of workers and the number of items. In Section 5, we compare our theoretical results with that
of existing approaches [11, 7, 15, 14]. The methods in [20, 19, 6] incorporate Bayesian inference
into the Dawid-Skene estimator by assuming a prior over confusion matrices. Zhou et al. [26,
25] propose a minimax entropy principle for crowdsourcing which leads to an exponential family
model parameterized with worker ability and item difficulty. When all items have zero difficulty, the
exponential family model reduces to the generative model suggested by Dawid and Skene [8].

Our method for initializing the EM algorithm in crowdsourcing is inspired by recent work using
spectral methods to estimate latent variable models [3, 1, 4, 2, 5, 27, 12, 13]. The basic idea in this
line of work is to compute third-order empirical moments from the data and then to estimate param-
eters by computing a certain orthogonal decomposition of a tensor derived from the moments. Given
the special symmetric structure of the moments, the tensor factorization can be computed efficiently
using the robust tensor power method [3]. A problem with this approach is that the estimation er-
ror can have a poor dependence on the condition number of the second-order moment matrix and
thus empirically it sometimes performs worse than EM with multiple random initializations. Our
method, by contrast, requires only a rough initialization from the moment of moments; we show that
the estimation error does not depend on the condition number (see Theorem 2 (b)).
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Algorithm 1: Estimating confusion matrices

Input: integer k, observed labels zij ∈ Rk for i ∈ [m] and j ∈ [n].
Output: confusion matrix estimates Ĉi ∈ Rk×k for i ∈ [m].
(1) Partition the workers into three disjoint and non-empty group G1, G2 and G3. Compute the

group aggregated labels Zgj by Eq. (1).
(2) For (a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, compute the second and the third order moments

M̂2 ∈ Rk×k, M̂3 ∈ Rk×k×k by Eq. (2a)-(2d), then compute Ĉ�c ∈ Rk×k and Ŵ ∈ Rk×k by
tensor decomposition:

(a) Compute whitening matrix Q̂ ∈ Rk×k (such that Q̂T M̂2Q̂ = I) using SVD.

(b) Compute eigenvalue-eigenvector pairs {(α̂h, v̂h)}kh=1 of the whitened tensor M̂3(Q̂, Q̂, Q̂)

by using the robust tensor power method [3]. Then compute ŵh = α̂−2
h and

µ̂�h = (Q̂T )−1(α̂hv̂h).

(c) For l = 1, . . . , k, set the l-th column of Ĉ�c by some µ̂�h whose l-th coordinate has the
greatest component, then set the l-th diagonal entry of Ŵ by ŵh.

(3) Compute Ĉi by Eq. (3).

3 Problem Setup

Throughout this paper, [a] denotes the integer set {1, 2, . . . , a} and σb(A) denotes the b-th largest
singular value of the matrix A. Suppose that there are m workers, n items and k classes. The true
label yj of item j ∈ [n] is assumed to be sampled from a probability distribution P[yj = l] = wl
where {wl : l ∈ [k]} are positive values satisfying

∑k
l=1 wl = 1. Denote by a vector zij ∈ Rk

the label that worker i assigns to item j. When the assigned label is c, we write zij = ec, where ec
represents the c-th canonical basis vector in Rk in which the c-th entry is 1 and all other entries are
0. A worker may not label every item. Let πi indicate the probability that worker i labels a randomly
chosen item. If item j is not labeled by worker i, we write zij = 0. Our goal is to estimate the true
labels {yj : j ∈ [n]} from the observed labels {zij : i ∈ [m], j ∈ [n]}.
In order to obtain an estimator, we need to make assumptions on the process of generating observed
labels. Following the work of Dawid and Skene [8], we assume that the probability that worker i
labels an item in class l as class c is independent of any particular chosen item, that is, it is a constant
over j ∈ [n]. Let us denote the constant probability by µilc. Let µil = [µil1 µil2 · · · µilk]T . The
matrixCi = [µi1 µi2 . . . µik] ∈ Rk×k is called the confusion matrix of worker i. Besides estimating
the true labels, we also want to estimate the confusion matrix for each worker.

4 Our Algorithm

In this section, we present an algorithm to estimate confusion matrices and true labels. Our algorithm
consists of two stages. In the first stage, we compute an initial estimate of confusion matrices via
the method of moments. In the second stage, we perform the standard EM algorithm by taking the
result of the Stage 1 as an initialization.

4.1 Stage 1: Estimating Confusion Matrices

Partitioning the workers into three disjoint and non-empty groups G1, G2 and G3, the outline of
this stage is the following: we use the spectral method to estimate the averaged confusion matrices
for the three groups, then utilize this intermediate estimate to obtain the confusion matrix of each
individual worker. In particular, for g ∈ {1, 2, 3} and j ∈ [n], we calculate the averaged labeling
within each group by

Zgj :=
1

|Gg|
∑
i∈Gg

zij . (1)
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Denoting the aggregated confusion matrix columns by µ�gl := E(Zgj |yj = l) = 1
|Gg|

∑
i∈Gg

πiµil,

our first step is to estimate C�g := [µ�g1, µ
�
g2, . . . , µ

�
gk] and to estimate the distribution of true labels

W := diag(w1, w2, . . . , wk). The following proposition shows that we can solve for C�g and W
from the moments of {Zgj}.

Proposition 1 (Anandkumar et al. [3]). Assume that the vectors {µ�g1, µ�g2, . . . , µ�gk} are linearly
independent for each g ∈ {1, 2, 3}. Let (a, b, c) be a permutation of {1, 2, 3}. Define

Z ′aj := E[Zcj ⊗ Zbj ] (E[Zaj ⊗ Zbj ])−1
Zaj ,

Z ′bj := E[Zcj ⊗ Zaj ] (E[Zbj ⊗ Zaj ])−1
Zbj ,

M2 := E[Z ′aj ⊗ Z ′bj ] and M3 := E[Z ′aj ⊗ Z ′bj ⊗ Zcj ];
then we have M2 =

∑k
l=1 wl µ

�
cl ⊗ µ�cl and M3 =

∑k
l=1 wl µ

�
cl ⊗ µ�cl ⊗ µ�cl.

Since we only have finite samples, the expectations in Proposition 1 have to be approximated by
empirical moments. In particular, they are computed by averaging over indices j = 1, 2, . . . , n. For
each permutation (a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, we compute

Ẑ′aj :=
( 1
n

n∑
j=1

Zcj ⊗ Zbj

)( 1
n

n∑
j=1

Zaj ⊗ Zbj

)−1

Zaj , (2a)

Ẑ′bj :=
( 1
n

n∑
j=1

Zcj ⊗ Zaj

)( 1
n

n∑
j=1

Zbj ⊗ Zaj

)−1

Zbj , (2b)

M̂2 :=
1

n

n∑
j=1

Ẑ′aj ⊗ Ẑ′bj , (2c)

M̂3 :=
1

n

n∑
j=1

Ẑ′aj ⊗ Ẑ′bj ⊗ Zcj . (2d)

The statement of Proposition 1 suggests that we can recover the columns of C�c and the diagonal
entries of W by operating on the moments M̂2 and M̂3. This is implemented by the tensor fac-
torization method in Algorithm 1. In particular, the tensor factorization algorithm returns a set of
vectors {(µ̂�h, ŵh) : h = 1, . . . , k}, where each (µ̂�h, ŵh) estimates a particular column of C�c (for
some µ�cl) and a particular diagonal entry of W (for some wl). It is important to note that the tensor
factorization algorithm doesn’t provide a one-to-one correspondence between the recovered col-
umn and the true columns of C�c . Thus, µ̂�1, . . . , µ̂

�
k represents an arbitrary permutation of the true

columns.

To discover the index correspondence, we take each µ̂�h and examine its greatest component. We
assume that within each group, the probability of assigning a correct label is always greater than
the probability of assigning any specific incorrect label. This assumption will be made precise
in the next section. As a consequence, if µ̂�h corresponds to the l-th column of C�c , then its l-th
coordinate is expected to be greater than other coordinates. Thus, we set the l-th column of Ĉ�c to
some vector µ̂�h whose l-th coordinate has the greatest component (if there are multiple such vectors,
then randomly select one of them; if there is no such vector, then randomly select a µ̂�h). Then, we
set the l-th diagonal entry of Ŵ to the scalar ŵh associated with µ̂�h. Note that by iterating over
(a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, we obtain Ĉ�c for c = 1, 2, 3 respectively. There will be
three copies of Ŵ estimating the same matrix W—we average them for the best accuracy.

In the second step, we estimate each individual confusion matrix Ci. The following proposition
shows that we can recover Ci from the moments of {zij}. Its proof is deferred to Appendix B.

Proposition 2. For any g ∈ {1, 2, 3} and any i ∈ Gg , let a ∈ {1, 2, 3}\{g} be one of the remaining
group index. Then

πiCiW (C�a)T = E[zijZ
T
aj ].
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Proposition 2 suggests a plug-in estimator forCi. We compute Ĉi using the empirical approximation
of E[zijZ

T
aj ] and using the matrices Ĉ�a , Ĉ�b , Ŵ obtained in the first step. Concretely, we calculate

Ĉi := normalize

( 1

n

n∑
j=1

zijZ
T
aj

)(
Ŵ (Ĉ�a)T

)−1

 , (3)

where the normalization operator rescales the matrix columns, making sure that each column sums
to one. The overall procedure for Stage 1 is summarized in Algorithm 1.

4.2 Stage 2: EM algorithm

The second stage is devoted to refining the initial estimate provided by Stage 1. The joint likelihood
of true label yj and observed labels zij , as a function of confusion matrices µi, can be written as

L(µ; y, z) :=

n∏
j=1

m∏
i=1

k∏
c=1

(µiyjc)
I(zij=ec).

By assuming a uniform prior over y, we maximize the marginal log-likelihood function `(µ) :=
log(

∑
y∈[k]n L(µ; y, z)). We refine the initial estimate of Stage 1 by maximizing the objective func-

tion, which is implemented by the Expectation Maximization (EM) algorithm. The EM algorithm
takes the values {µ̂ilc} provided as output by Stage 1 as initialization, then executes the following
E-step and M-step for at least one round.

E-step Calculate the expected value of the log-likelihood function, with respect to the conditional
distribution of y given z under the current estimate of µ:

Q(µ) := Ey|zf,µ̂ [log(L(µ; y, z))] =

n∑
j=1

{
k∑
l=1

q̂jl log

(
m∏
i=1

k∏
c=1

(µilc)
I(zij=ec)

)}
,

where q̂jl ←
exp

(∑m
i=1

∑k
c=1 I(zij = ec) log(µ̂ilc)

)∑k
l′=1 exp

(∑m
i=1

∑k
c=1 I(zij = ec) log(µ̂il′c)

) for j ∈ [n], l ∈ [k].

(4)

M-step Find the estimate µ̂ that maximizes the function Q(µ):

µ̂ilc ←
∑n
j=1 q̂jlI(zij = ec)∑k

c′=1

∑n
j=1 q̂jlI(zij = ec′)

for i ∈ [m], l ∈ [k], c ∈ [k]. (5)

In practice, we alternatively execute the updates (4) and (5), for one iteration or until convergence.
Each update increases the objective function `(µ). Since `(µ) is not concave, the EM update doesn’t
guarantee converging to the global maximum. It may converge to distinct local stationary points for
different initializations. Nevertheless, as we prove in the next section, it is guaranteed that the EM
algorithm will output statistically optimal estimates of true labels and worker confusion matrices if
it is initialized by Algorithm 1.

5 Convergence Analysis

To state our main theoretical results, we first need to introduce some notation and assumptions. Let
wmin := min{wl}kl=1 and πmin := min{πi}mi=1

be the smallest portion of true labels and the most extreme sparsity level of workers. Our first
assumption assumes that both wmin and πmin are strictly positive, that is, every class and every
worker contributes to the dataset.

Our second assumption assumes that the confusion matrices for each of the three groups, namely
C�1 , C�2 and C�3 , are nonsingular. As a consequence, if we define matrices Sab and tensors Tabc for
any a, b, c ∈ {1, 2, 3} as

Sab :=

k∑
l=1

wl µ
�
al ⊗ µ�bl = C�aW (C�b )T and Tabc :=

k∑
l=1

wl µ
�
al ⊗ µ�bl ⊗ µ�cl,
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then there will be a positive scalar σL such that σk(Sab) ≥ σL > 0.

Our third assumption assumes that within each group, the average probability of assigning a correct
label is always higher than the average probability of assigning any incorrect label. To make this
statement rigorous, we define a quantity

κ := min
g∈{1,2,3}

min
l∈[k]

min
c∈[k]\{l}

{µ�gll − µ�glc}

indicating the smallest gap between diagonal entries and non-diagonal entries in the same confusion
matrix column. The assumption requires κ being strictly positive. Note that this assumption is
group-based, thus does not assume the accuracy of any individual worker.

Finally, we introduce a quantity that measures the average ability of workers in identifying distinct
labels. For two discrete distributions P and Q, let DKL (P,Q) :=

∑
i P (i) log(P (i)/Q(i)) repre-

sent the KL-divergence between P and Q. Since each column of the confusion matrix represents a
discrete distribution, we can define the following quantity:

D = min
l 6=l′

1

m

m∑
i=1

πiDKL (µil, µil′) . (6)

The quantity D lower bounds the averaged KL-divergence between two columns. If D is strictly
positive, it means that every pair of labels can be distinguished by at least one subset of workers. As
the last assumption, we assume that D is strictly positive.

The following two theorems characterize the performance of our algorithm. We split the conver-
gence analysis into two parts. Theorem 1 characterizes the performance of Algorithm 1, providing
sufficient conditions for achieving an arbitrarily accurate initialization. See Appendix C for the
proof.

Theorem 1. For any scalar δ > 0 and any scalar ε satisfying ε ≤ min
{

36κk
πminwminσL

, 2
}

, if the
number of items n satisfies

n = Ω

(
k5 log((k +m)/δ)

ε2π2
minw

2
minσ

13
L

)
,

then the confusion matrices returned by Algorithm 1 are bounded as
‖Ĉi − Ci‖∞ ≤ ε for all i ∈ [m],

with probability at least 1− δ. Here, ‖ · ‖∞ denotes the element-wise `∞-norm of a matrix.

Theorem 2 characterizes the error rate in Stage 2. It states that when a sufficiently accurate
initialization is taken, the updates (4) and (5) refine the estimates µ̂ and ŷ to the optimal accuracy.
See Appendix D for the proof.

Theorem 2. Assume that there is a positive scalar ρ such that µilc ≥ ρ for all (i, l, c) ∈ [m]× [k]2.
For any scalar δ > 0, if confusion matrices Ĉi are initialized in a manner such that

‖Ĉi − Ci‖∞ ≤ α := min

{
ρ

2
,
ρD

16

}
for all i ∈ [m], (7)

and the number of workers m and the number of items n satisfy

m = Ω

(
log(1/ρ) log(kn/δ) + log(mn)

D

)
and n = Ω

(
log(mk/δ)

πminwminα2

)
,

then, for µ̂ and q̂ obtained by iterating (4) and (5) (for at least one round), with probability at least
1− δ,

(a) Letting ŷj = arg maxl∈[k] q̂jl, we have that ŷj = yj holds for all j ∈ [n].

(b) ‖µ̂il − µil‖22 ≤
48 log(2mk/δ)

πiwln
holds for all (i, l) ∈ [m]× [k].

In Theorem 2, the assumption that all confusion matrix entries are lower bounded by ρ > 0 is
somewhat restrictive. For datasets violating this assumption, we enforce positive confusion matrix
entries by adding random noise: Given any observed label zij , we replace it by a random label in
{1, ..., k} with probability kρ. In this modified model, every entry of the confusion matrix is lower
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Dataset name # classes # items # workers # worker labels
Bird 2 108 39 4,212
RTE 2 800 164 8,000

TREC 2 19,033 762 88,385
Dog 4 807 52 7,354
Web 5 2,665 177 15,567

Table 1: Summary of datasets used in the real data experiment.

bounded by ρ, so that Theorem 2 holds. The random noise makes the constant D smaller than its
original value, but the change is minor for small ρ.

To see the consequence of the convergence analysis, we take error rate ε in Theorem 1 equal to the
constant α defined in Theorem 2. Then we combine the statements of the two theorems. This shows
that if we choose the number of workers m and the number of items n such that

m = Ω̃

(
1

D

)
and n = Ω̃

(
k5

π2
minw

2
minσ

13
L min{ρ2, (ρD)2}

)
; (8)

that is, if both m and n are lower bounded by a problem-specific constant and logarithmic terms,
then with high probability, the predictor ŷ will be perfectly accurate, and the estimator µ̂ will be
bounded as ‖µ̂il − µil‖22 ≤ Õ(1/(πiwln)). To show the optimality of this convergence rate, we
present the following minimax lower bounds. See Appendix E for the proof.

Theorem 3. There are universal constants c1 > 0 and c2 > 0 such that:

(a) For any {µilc}, {πi} and any number of items n, if the number of workers m ≤ 1/(4D), then

inf
ŷ

sup
v∈[k]n

E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣{µilc}, {πi}, y = v

]
≥ c1n.

(b) For any {wl}, {πi}, any worker-item pair (m,n) and any pair of indices (i, l) ∈ [m]× [k], we
have

inf
µ̂

sup
µ∈Rm×k×k

E
[
‖µ̂il − µil‖22

∣∣∣{wl}, {πi}] ≥ c2 min

{
1,

1

πiwln

}
.

In part (a) of Theorem 3, we see that the number of workers should be at least 1/(4D), otherwise
any predictor will make many mistakes. This lower bound matches our sufficient condition on the
number of workers m (see Eq. (8)). In part (b), we see that the best possible estimate for µil has
Ω(1/(πiwln)) mean-squared error. It verifies the optimality of our estimator µ̂il. It is worth noting
that the constraint on the number of items n (see Eq. (8)) might be improvable. In real datasets we
usually have n� m so that the optimality for m is more important than for n.

It is worth contrasting our convergence rate with existing algorithms. Ghosh et al. [11] and Dalvi et
al. [7] proposed consistent estimators for the binary one-coin model. To attain an error rate δ, their
algorithms require m and n scaling with 1/δ2, while our algorithm only requires m and n scaling
with log(1/δ). Karger et al. [15, 14] proposed algorithms for both binary and multi-class problems.
Their algorithm assumes that workers are assigned by a random regular graph. Moreover, their
analysis assumes that the limit of number of items goes to infinity, or that the number of workers is
many times the number of items. Our algorithm no longer requires these assumptions.

We also compare our algorithm with the majority voting estimator, where the true label is simply
estimated by a majority vote among workers. Gao and Zhou [10] showed that if there are many
spammers and few experts, the majority voting estimator gives almost a random guess. In con-
trast, our algorithm only requires mD = Ω̃(1) to guarantee good performance. Since mD is the
aggregated KL-divergence, a small number of experts are sufficient to ensure it is large enough.

6 Experiments

In this section, we report the results of empirical studies comparing the algorithm we propose in
Section 4 (referred to as Opt-D&S) with a variety of existing methods which are also based on the
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Figure 1: Comparing MV-D&S and Opt-D&S with different thresholding parameter ∆. The label
prediction error is plotted after the 1st EM update and after convergence.

Opt-D&S MV-D&S Majority Voting KOS Ghosh-SVD EigenRatio
Bird 10.09 11.11 24.07 11.11 27.78 27.78
RTE 7.12 7.12 10.31 39.75 49.13 9.00

TREC 29.80 30.02 34.86 51.96 42.99 43.96
Dog 16.89 16.66 19.58 31.72 – –
Web 15.86 15.74 26.93 42.93 – –

Table 2: Error rate (%) in predicting true labels on real data.

generative model of Dawid and Skene. Specifically, we compare to the Dawid & Skene estimator
initialized by majority voting (referred to as MV-D&S), the pure majority voting estimator, the
multi-class labeling algorithm proposed by Karger et al. [14] (referred to as KOS), the SVD-based
algorithm proposed by Ghosh et al. [11] (referred to as Ghost-SVD) and the “Eigenvalues of Ratio”
algorithm proposed by Dalvi et al. [7] (referred to as EigenRatio). The evaluation is made on five
real datasets. See also Appendix A for experiments on synthetic data, where we show that Opt-D&S
converges faster than MV-D&S.

We compare the crowdsourcing algorithms on three binary tasks and two multi-class tasks. Binary
tasks include labeling bird species [22] (Bird dataset), recognizing textual entailment [21] (RTE
dataset) and assessing the quality of documents in the TREC 2011 crowdsourcing track [16] (TREC
dataset). Multi-class tasks include labeling the breed of dogs from ImageNet [9] (Dog dataset) and
judging the relevance of web search results [26] (Web dataset). The statistics for the five datasets
are summarized in Table 1. Since the Ghost-SVD algorithm and the EigenRatio algorithm work on
binary tasks, they are evaluated only on the Bird, RTE and TREC datasets. For the MV-D&S and
the Opt-D&S methods, we iterate their EM steps until convergence.

Since entries of the confusion matrix are positive, we find it helpful to incorporate this prior knowl-
edge into the initialization stage of the Opt-D&S algorithm. In particular, when estimating the con-
fusion matrix entries by Eq. (3), we add an extra checking step before the normalization, examining
if the matrix components are greater than or equal to a small threshold ∆. For components that are
smaller than ∆, they are reset to ∆. The default choice of the thresholding parameter is ∆ = 10−6.
Later, we will compare the Opt-D&S algorithm with respect to different choices of ∆. It is impor-
tant to note that this modification doesn’t change our theoretical result, since the thresholding is not
needed in case that the initialization error is bounded by Theorem 1.

Table 2 summarizes the performance of each method. The MV-D&S and the Opt-D&S algorithms
consistently outperform the other methods in predicting the true label of items. The KOS algorithm,
the Ghost-SVD algorithm and the EigenRatio algorithm yield poorer performance, presumably due
to the fact that they rely on idealized assumptions that are not met by the real data. In Figure 1, we
compare the Opt-D&S algorithm with respect to different thresholding parameters ∆ ∈ {10−i}6i=1.
We plot results for three datasets (RET, Dog, Web), where the performance of MV-D&S is equal to or
slightly better than that of Opt-D&S. The plot shows that the performance of the Opt-D&S algorithm
is stable after convergence. But at the first EM iterate, the error rates are more sensitive to the choice
of ∆. A proper choice of ∆ makes Opt-D&S outperform MV-D&S. The result suggests that a
proper initialization combined with one EM iterate is good enough for the purposes of prediction.
In practice, the best choice of ∆ can be obtained by cross validation.
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Opt-D&S MV-D&S Majority Voting KOS Ghosh-SVD EigenRatio
π = 0.2 7.64 7.65 18.85 8.34 12.35 10.49
π = 0.5 0.84 0.84 7.97 1.04 4.52 4.52
π = 1.0 0.01 0.01 1.57 0.02 0.15 0.15

Table 3: Prediction error (%) on the synthetic dataset. The parameter π indicates the sparsity of data
— it is the probability that the worker labels each task.

1 4 7 10

0.08

0.1

0.12

0.14

0.16

0.18

Number of iterations

La
be

l p
re

di
ct

io
n 

er
ro

r

 

 

Opt−D&S
MV−D&S

1 4 7 10

1

2

3

4

5

6

Number of iterations
C

on
fu

si
on

 m
at

rix
 e

rr
or

 

 

Opt−D&S
MV−D&S

(a) (b)

Figure 2: Comparing the convergence rate of the Opt-D&S algorithm and the MV-D&S estimator
on synthetic dataset with π = 0.2: (a) convergence of the prediction error. (b) convergence of the
squared error

∑m
i=1 ‖Ĉi − Ci‖2F for estimating confusion matrices.

Appendix

A Experiments on synthetic data

For experiments on synthetic data, we generate m = 100 workers and n = 1000 binary tasks. The
true label of each task is uniformly sampled from {1, 2}. For each worker, the 2-by-2 confusion
matrix is generated as follow: the two diagonal entries are independently and uniformly sampled
from the interval [0.3, 0.9], then the non-diagonal entries are determined to make the confusion
matrix columns sum to 1. To simulate a sparse dataset, we make each worker label a task with
probability π. With the choice π ∈ {0.2, 0.5, 1.0}, we obtain three different datasets.

We execute every algorithm independently for 10 times and average the outcomes. For the Opt-
D&S algorithm and the MV-D&S estimator, the estimation is outputted after 10 EM iterates. For the
group partitioning step involved in the Opt-D&S algorithm, the workers are randomly and evenly
partitioned into three groups.

The main evaluation metric is the error of predicting the true label of items. The performance of
various methods are reported in Table 3. On all sparsity levels, the Opt-D&S algorithm achieves
the best accuracy, followed by the MV-D&S estimator. All other methods are consistently worse. It
is not surprising that the Opt-D&S algorithm and the MV-D&S estimator yield similar accuracies,
since they optimize the same log-likelihood objective. It is also meaningful to look at the conver-
gence speed of both methods, as they employ distinct initialization strategies. Figure 2 shows that
the Opt-D&S algorithm converges faster than the MV-D&S estimator, both in estimating the true
labels and in estimating confusion matrices. This is because that Opt-D&S starts from a provably
consistent initialization (recall Theorem 1).
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B Proof of Proposition 2

First, notice that

E[zijZ
T
aj ] = E

[
E[zijZ

T
aj |yj ]

]
=

k∑
l=1

wlE
[
zijZ

T
aj |yj = l

]
. (9)

Since zij for 1 ≤ i ≤ m are conditionally independent given yj , we can write

E
[
zijZ

T
aj |yj = l

]
= E [zij |yj = l]E

[
ZTaj |yj = l

]
= (πiµil)(µ

�
al)

T . (10)

Combining (9) and (10) implies the desired result,

E[zijZ
T
aj ] = πi

k∑
l=1

wlµil(µ
�
al)

T = πiCiW (C�a)T .

C Proof of Theorem 1

If a 6= b, it is easy to verify that Sab = C�aW (C�b )T = E[Zaj ⊗ Zbj ]. Furthermore, we can upper
bound the spectral norm of Sab, namely

‖Sab‖op ≤
k∑
l=1

wl ‖µ�al‖2 ‖µ
�
bl‖2 ≤

k∑
l=1

wl ‖µ�al‖1 ‖µ
�
bl‖1 ≤ 1.

For the same reason, it can be shown that ‖Tabc‖op ≤ 1.

Our proof strategy is briefly described as follow: we upper bound the estimation error for computing
empirical moments (2a)-(2d) in Lemma 1, and upper bound the estimation error for tensor decom-
position in Lemma 2. Then, we combine both lemmas to upper bound the error of formula (3).

Lemma 1. Given a permutation (a, b, c) of (1, 2, 3), for any scalar ε ≤ σL/2, the second and the
third moments M̂2 and M̂3 computed by equation (2c) and (2d) are bounded as

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} ≤ 31ε/σ3
L (11)

with probability at least 1− δ, where δ = 6 exp(−(
√
nε− 1)2) + k exp(−(

√
n/kε− 1)2).

Lemma 2. Suppose that (a, b, c) is permutation of (1, 2, 3). For any scalar ε ≤ κ/2, if the empirical
moments M̂2 and M̂3 satisfy

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} ≤ εH (12)

for H := min

{
1

2
,

2σ
3/2
L

15k(24σ−1
L + 2

√
2)
,

σ
3/2
L

4
√

3/2σ
1/2
L + 8k(24/σL + 2

√
2)

}
then the estimates Ĉ�c and Ŵ are bounded as

‖Ĉ�c − C�c ‖op ≤
√
kε and ‖Ŵ −W‖op ≤ ε.

with probability at least 1− δ, where δ is defined in Lemma 1.

Combining Lemma 1, Lemma 2, if we choose a scalar ε1 satisfying

ε1 ≤ min{κ/2, πminwminσL/(36k)}, (13)

then the estimates Ĉ�g (for g = 1, 2, 3) and Ŵ satisfy that

‖Ĉ�g − C�g‖op ≤
√
kε1 and ‖Ŵ −W‖op ≤ ε1. (14)

with probability at least 1− 6δ, where

δ = (6 + k) exp
(
− (
√
n/kε1Hσ

3
L/31− 1)2

)
.
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To be more precise, we obtain the bound (14) by plugging ε := ε1Hσ
3
L/31 into Lemma 1, then

plugging ε := ε1 into Lemma 2. The high probability statement is obtained by apply union bound.

Assuming inequality (14), for any a ∈ {1, 2, 3}, since ‖C�a‖op ≤
√
k, ‖Ĉ�a − C�a‖op ≤

√
kε1 and

‖W‖op ≤ 1,
∥∥∥Ŵ∥∥∥

op
≤ ε1, Lemma 8 (the preconditions are satisfied by inequality (13)) implies that∥∥∥Ŵ Ĉ�a −WC�a

∥∥∥
op
≤ 4
√
kε1,

Since condition (13) implies

‖Ŵ Ĉ�a −WC�a‖op ≤ 4
√
kε1 ≤

√
wminσL/2 ≤ σk(WC�a)/2

Lemma 7 yields that ∥∥∥∥(Ŵ Ĉ�a

)−1

− (WC�a)
−1

∥∥∥∥
op

≤ 8
√
kε1

wminσL
.

By Lemma 9, for any i ∈ [m], the concentration bound∥∥∥∥∥∥ 1

n

n∑
j=1

zijZ
T
aj − E[zijZ

T
aj ]

∥∥∥∥∥∥
op

≤ ε1

holds with probability at least 1 −m exp(−(
√
nε1 − 1)2). Combining the above two inequalities

with Proposition 2, then applying Lemma 8 with preconditions∥∥(WC�a)−1
∥∥

op
≤ 1

wminσL
and

∥∥E [zijZTaj]∥∥op
≤ 1,

we have ∥∥∥( 1

n

n∑
j=1

zijZ
T
aj

)(
Ŵ Ĉ�a

)−1

︸ ︷︷ ︸
Ĝ

−πiCi
∥∥∥

op
≤ 18

√
kε1

wminσL
. (15)

Let Ĝ ∈ Rk×k be the first term on the left hand side of inequality (15). Each column of Ĝ, denoted
by Ĝl, is an estimate of πiµil. The `2-norm estimation error is bounded by 18

√
kε1

wminσL
. Hence, we have

‖Ĝl − πiµil‖1 ≤
√
k‖Ĝl − πiµil‖2 ≤

√
k‖Ĝ− πiCi‖op ≤

18kε1
wminσL

, (16)

and consequently, using the fact that
∑k
c=1 µilc = 1, we have∥∥∥normalize(Ĝl)− µil
∥∥∥

2
=

∥∥∥∥∥∥ Ĝl

πi +
∑k
c=1

(
Ĝlc − πiµilc

) − µil
∥∥∥∥∥∥

2

≤ ‖Ĝl − πiµil‖2 + ‖Ĝl − πiµil‖1‖µil‖2
πi − ‖Ĝl − πiµil‖1

≤ 72kε1
πminwminσL

(17)

where the last step combines inequalities (15), (16) with the bound 18kε1
wminσL

≤ πi/2 from condi-
tion (13), and uses the fact that ‖µil‖2 ≤ 1.

Note that inequality (17) holds with probability at least

1− (36 + 6k) exp
(
− (
√
n/kε1Hσ

3
L/31− 1)2

)
−m exp(−(

√
nε1 − 1)2).
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It can be verified that H ≥ σ
5/2
L

230k . Thus, the above expression is lower bounded by

1− (36 + 6k +m) exp
(
−
( √

nε1σ
11/2
L

31× 230 · k3/2
− 1
)2)

,

If we represent this probability in the form of 1− δ, then

ε1 =
31× 230 · k3/2

√
nσ

11/2
L

(
1 +

√
log((36 + 6k +m)/δ)

)
. (18)

Combining condition (13) and inequality (17), we find that to make ‖Ĉ − C‖∞ bounded by ε, it is
sufficient to choose ε1 such that

ε1 ≤ min
{επminwminσL

72k
,
κ

2
,
πminwminσL

36k

}
This condition can be further simplified to

ε1 ≤
επminwminσL

72k
(19)

for small ε, that is ε ≤ min
{

36κk
πminwminσL

, 2
}

. According to equation (18), the condition (19) will be
satisfied if

√
n ≥ 72× 31× 230 · k5/2

επminwminσ
13/2
L

(
1 +

√
log((36 + 6k +m)/δ)

)
.

Taking square over both sides of the inequality completes the proof.

C.1 Proof of Lemma 1

Throughout the proof, we assume that the following concentration bound holds: for any distinct
indices (a′, b′) ∈ {1, 2, 3}, we have∥∥∥∥∥∥ 1

n

n∑
j=1

Za′j ⊗ Zb′j − E[Za′j ⊗ Zb′j ]

∥∥∥∥∥∥
op

≤ ε (20)

By Lemma 9 and the union bound, this event happens with probability at least 1− 6 exp(−(
√
nε−

1)2). By the assumption that ε ≤ σL/2 ≤ σk(Sab)/2 and Lemma 7, we have∥∥∥∥∥∥ 1

n

n∑
j=1

Zcj ⊗ Zbj − E[Zcj ⊗ Zbj ]

∥∥∥∥∥∥
op

≤ ε and

∥∥∥∥∥∥∥
 1

n

n∑
j=1

Zaj ⊗ Zbj

−1

− (E[Zaj ⊗ Zbj ])−1

∥∥∥∥∥∥∥
op

≤ 2ε

σ2
k(Sab)

Under the preconditions

‖E[Zcj ⊗ Zbj ]‖op ≤ 1 and
∥∥(E[Zaj ⊗ Zbj ])−1

∥∥
op
≤ 1

σk(Sab)
,

Lemma 8 implies that∥∥∥∥∥∥
 1

n

n∑
j=1

Zcj ⊗ Zbj

( 1

n
Zaj ⊗ Zbj

)−1

− E[Zcj ⊗ Zbj ](E[Zaj ⊗ Zbj ])−1

∥∥∥∥∥∥
op

≤ 2

(
ε

σk(Sab)
+

2ε

σ2
k(Sab)

)
≤ 6ε/σ2

L (21)
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and for the same reason, we have∥∥∥∥∥∥
 1

n

n∑
j=1

Zcj ⊗ Zaj

( 1

n
Zbj ⊗ Zaj

)−1

− E[Zcj ⊗ Zaj ](E[Zbj ⊗ Zaj ])−1

∥∥∥∥∥∥
op

≤ 6ε/σ2
L (22)

Now, let matrices F2 and F3 be defined as

F2 := E[Zcj ⊗ Zbj ](E[Zaj ⊗ Zbj ])−1,

F3 := E[Zcj ⊗ Zaj ](E[Zbj ⊗ Zaj ])−1,

and let the matrix on the left hand side of inequalities (21) and (22) be denoted by ∆2 and ∆3, we
have∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3

∥∥∥
op

=

∥∥∥∥(F2 + ∆2

)
(Zaj ⊗ Zbj)

(
F3 + ∆3

)T
− F2 (Zaj ⊗ Zbj)FT3

∥∥∥∥
op

≤ ‖Zaj ⊗ Zbj‖op

(
‖∆2‖op ‖F3 + ∆2‖op + ‖F2‖op ‖∆3‖op

)
≤ 30ε ‖Zaj ⊗ Zbj‖op /σ

3
L.

where the last steps uses inequality (21), (22) and the fact that max{‖F2‖op , ‖F3‖op} ≤ 1/σL and

‖F3 + ∆2‖op ≤ ‖F3‖op + ‖∆2‖op ≤ 1/σL + 6ε/σ2
L ≤ 4/σL.

To upper bound the norm ‖Zaj ⊗ Zbj‖op, notice that

‖Zaj ⊗ Zbj‖op ≤ ‖Zaj‖2 ‖Zbj‖2 ≤ ‖Zaj‖1 ‖Zbj‖1 ≤ 1.

Consequently, we have ∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3
∥∥∥

op
≤ 30ε/σ3

L. (23)

For the rest of the proof, we use inequality (23) to bound M̂2 and M̂3. For the second moment, we
have∥∥∥M̂2 −M2

∥∥∥
op
≤ 1

n

n∑
j=1

∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3
∥∥∥

op
+

∥∥∥∥∥∥F2

 1

n

n∑
j=1

Zaj ⊗ Zbj

FT3 −M2

∥∥∥∥∥∥
op

≤ 30ε/σ3
L +

∥∥∥∥∥∥F2

 1

n

n∑
j=1

Zaj ⊗ Zbj − E[Zaj ⊗ Zbj ]

FT3

∥∥∥∥∥∥
op

≤ 30ε/σ3
L + ε/σ2

L ≤ 31ε/σ3
L.

For the third moment, we have

M̂3 −M3 =
1

n

n∑
j=1

(
Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3

)
⊗ Zcj

+

 1

n

n∑
j=1

F2 (Zaj ⊗ Zbj)FT3 ⊗ Zcj − E
[
F2 (Zaj ⊗ Zbj)FT3 ⊗ Zcj

] . (24)

We examine the right hand side of equation (24). The first term is bounded as∥∥∥(Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3
)
⊗ Zcj

∥∥∥
op
≤
∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)FT3

∥∥∥
op
‖Zcj‖2

≤ 30ε/σ3
L. (25)

For the second term, since ‖F2Zaj‖2 ≤ 1/σL, ‖F3Zbj‖2 ≤ 1/σL and ‖Zcj‖2 ≤ 1, Lemma 9
implies that∥∥∥∥∥∥ 1

n

n∑
j=1

F2 (Zaj ⊗ Zbj)FT3 ⊗ Zcj − E
[
F2 (Zaj ⊗ Zbj)FT3 ⊗ Zcj

]∥∥∥∥∥∥
op

≤ ε/σ2
L (26)
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with probability at least 1−k exp(−(
√
n/kε−1)2). Combining inequalities (25) and (26), we have∥∥∥M̂3 −M3

∥∥∥
op
≤ 30ε/σ3

L + ε/σ2
L ≤ 31ε/σ3

L.

Applying union bound to all high-probability events completes the proof.

C.2 Proof of Lemma 2

Chaganty and Liang (Lemma 4 in [5]) have proved that when condition (12) holds, the tensor de-
composition method of Algorithm 1 outputs {µ̂�h, ŵh}kh=1, such that with probability at least 1− δ,
a permutation π satisfies

‖µ̂�h − µ�cπ(h)‖2 ≤ ε and
∥∥ŵh − wπ(h)

∥∥
∞ ≤ ε.

Note that the constant H in Lemma 2 is obtained by plugging upper bounds ‖M2‖op ≤ 1 and
‖M3‖op ≤ 1 into Lemma 4 of Chaganty and Liang [5].

The π(h)-th component of µ�cπ(h) is greater than other components of µ�cπ(h), by a margin of κ.
Assuming ε ≤ κ/2, the greatest component of µ̂�h is its π(h)-th component. Thus, Algorithm 1
is able to correctly estimate the π(h)-th column of Ĉ�c by the vector µ̂�h. Consequently, for every
column of Ĉ�c , the `2-norm error is bounded by ε. Thus, the spectral-norm error of Ĉ�c is bounded
by
√
kε. Since W is a diagonal matrix and

∥∥ŵh − wπ(h)

∥∥
∞ ≤ ε, we have ‖Ŵ −W‖op ≤ ε.

D Proof of Theorem 2

We define two random events that will be shown holding with high probability:

E1 :

m∑
i=1

k∑
c=1

I(zij = ec) log(µiyjc/µilc) ≥ mD/2 for all j ∈ [n] and l ∈ [k]\{yj}.

E2 :
∣∣∣ n∑
j=1

I(yj = l)I(zij = ec)− nwlπiµilc
∣∣∣ ≤ ntilc for all (i, l, c) ∈ [m]× [k]2.

where tilc > 0 are scalars to be specified later. We define tmin to be the smallest element among
{tilc}. Assuming that E1∩E2 holds, the following lemma shows that performing updates (4) and (5)
attains the desired level of accuracy. See Section D.1 for the proof.

Lemma 3. Assume that E1 ∩ E2 holds. Also assume that µilc ≥ ρ for all (i, l, c) ∈ [m]× [k]2. If Ĉ
is initialized such that inequality (7) holds, and scalars tilc satisfy

2 exp
(
−mD/4 + log(m)

)
≤ tilc ≤ πminwmin min

{
ρ

8
,
ρD

64

}
(27)

Then by alternating updates (4) and (5) for at least one round, the estimates Ĉ and q̂ are bounded
as

|µ̂il − µilc| ≤ 4tilc/(πiwl). for all i ∈ [m], l ∈ [k], c ∈ [k].

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−mD/4 + log(m)

)
for all j ∈ [n].

Next, we characterize the probability that events E1 and E2 hold. For measuring P[E1], we de-
fine auxiliary variable si :=

∑k
c=1 I(zij = ec) log(µiyjc/µilc). It is straightforward to see that

s1, s2, . . . , sm are mutually independent on any value of yj , and each si belongs to the interval
[0, log(1/ρ)]. it is easy to verify that

E

[
m∑
i=1

si

∣∣∣yi] =

m∑
i=1

πiDKL

(
µiyj , µil

)
.

We denote the right hand side of the above equation by D. The following lemma shows that the
second moment of si is bounded by the KL-divergence between labels.
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Lemma 4. Conditioning on any value of yj , we have

E[s2
i |yi] ≤

2 log(1/ρ)

1− ρ
πiDKL

(
µiyj , µil

)
.

According to Lemma 4, the aggregated second moment of si is bounded by

E

[
m∑
i=1

s2
i

∣∣∣yi] ≤ 2 log(1/ρ)

1− ρ

m∑
i=1

πiDKL

(
µiyjc, µilc

)
=

2 log(1/ρ)

1− ρ
D

Thus, applying the Bernstein inequality, we have

P
[∑
i=1

si ≥ D/2|yi
]
≥ 1− exp

(
−

1
2 (D/2)2

2 log(1/ρ)
1−ρ D + 1

3 (2 log(1/ρ))(D/2)

)
,

Since ρ ≤ 1/2 and D ≥ mD, combining the above inequality with the union bound, we have

P[E1] ≥ 1− kn exp

(
− mD

33 log(1/ρ)

)
. (28)

For measuring P[E2], we observe that
∑n
j=1 I(yj = l)I(zij = ec) is the sum of n i.i.d. Bernoulli

random variables with mean p := πiwlµilc. Since tilc ≤ πminwminρ/8 ≤ p, applying the Chernoff
bound implies

P

∣∣∣ n∑
j=1

I(yj = l)I(zij = ec)− np
∣∣∣ ≥ ntilc

 ≤ 2 exp(−nt2ilc/(3p)) = 2 exp

(
− nt2ilc

3πiwlµilc

)
,

Summarizing the probability bounds on E1 and E2, we conclude that E1 ∩ E2 holds with probability
at least

1− kn exp

(
− mD

33 log(1/ρ)

)
−

m∑
i=1

k∑
l=1

2 exp

(
− nt2ilc

3πiwlµilc

)
. (29)

Proof of Part (a) According to Lemma 3, for ŷj = yj being true, it sufficient to have
exp(−mD/4 + log(m)) < 1/2, or equivalently

m > 4 log(2m)/D. (30)

To ensure that this bound holds with probability at least 1 − δ, expression (29) needs to be lower
bounded by δ. It is achieved if we have

m ≥ 33 log(1/ρ) log(2kn/δ)

D
and n ≥ 3πiwlµilc log(2mk/δ)

t2ilc
(31)

If we choose

tilc :=

√
3πiwlµilc log(2mk/δ)

n
. (32)

then the second part of condition (31) is guaranteed. To ensure that tilc satisfies condition (27). We
need to have √

3πiwlµilc log(2mk/δ)

n
≥ 2 exp

(
−mD/4 + log(m)

)
and√

3πiwlµilc log(2mk/δ)

n
≤ πminwminα/4.

16



The above two conditions requires that m and n satisfy

m ≥
4 log(m

√
2n/(3πminwmin log(2mk/δ)))

D
(33)

n ≥ 48 log(2mk/δ)

πminwminα2
(34)

The four conditions (30), (31), (33) and (34) are simultaneously satisfied if we have

m ≥ max{33 log(1/ρ) log(2kn/δ), 4 log(2mn)}
D

and

n ≥ 48 log(2mk/δ)

πminwminα2
.

Under this setup, ŷj = yj holds for all j ∈ [n] with probability at least 1− δ.

Proof of Part (b) If tilc is set by equation (32), combining Lemma 3 with this assignment, we
have

(µ̂ilc − µilc)2 ≤ 48µilc log(2mk/δ)

πiwln

with probability at least 1− δ. Summing both sides of the inequality over c = 1, 2, . . . , k completes
the proof.

D.1 Proof of Lemma 3

To prove Lemma 3, we look into the consequences of update (4) and update (5). We prove two
important lemmas, which show that both updates provide good estimates if they are properly initial-
ized.

Lemma 5. Assume that event E1 holds. If µ and its estimate µ̂ satisfies

µilc ≥ ρ and |µ̂ilc − µilc| ≤ δ1 for all i ∈ [m], l ∈ [k], c ∈ [k], (35)

and q̂ is updated by formula (4), then q̂ is bounded as:

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−m

(
D

2
− 2δ1
ρ− δ1

)
+ log(m)

)
for all j ∈ [n]. (36)

Proof. For an arbitrary index l 6= yj , we consider the quantity

Al :=
m∑
i=1

k∑
c=1

I(zij = ec) log(µ̂iyjc/µ̂ilc)

By the assumption that E1 and inequality (35) holds, we obtain that

Al =

m∑
i=1

k∑
c=1

I(zij = ec) log(µiyjc/µilc) +

m∑
i=1

k∑
c=1

I(zij = ec)

[
log
( µ̂iyjc
µiyjc

)
− log

( µ̂ilc
µilc

)]

≥

(
m∑
i=1

πiDKL

(
µiyj , µil

)
2

)
− 2m log

( ρ

ρ− δ1

)
≥ m

(
D

2
− 2δ1
ρ− δ1

)
. (37)

Thus, for every index l 6= yj , combining formula (4) and inequality (37) implies that

q̂jl ≤
1

exp(Al)
≤ exp

(
−m

(
D

2
− 2δ1
ρ− δ1

))
.

Consequently, we have

q̂jyj ≥ 1−
∑
l 6=yj

q̂jl ≥ 1− exp

(
−m

(
D

2
− 2δ1
ρ− δ1

)
+ log(m)

)
.

Combining the above two inequalities completes the proof.
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Lemma 6. Assume that event E2 holds. If q̂ satisfies

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ δ2 for all j ∈ [n], (38)

and µ̂ is updated by formula (5), then µ̂ is bounded as:

|µ̂ilc − µilc| ≤
2ntilc + 2nδ2

(7/8)nπiwl − nδ2
. for all i ∈ [m], l ∈ [k], c ∈ [k]. (39)

Proof. By formula (5), we can write µ̂il = A/B, where

A :=

n∑
j=1

q̂jlI(zij = ec) and B :=

k∑
c′=1

n∑
j=1

q̂jlI(zij = ec′).

Combining this definition with inequality (38), we find that

|A− nπiwlµilcµilc| ≤
∣∣∣ n∑
j=1

I(qjl = yj)I(zij = ec)− nπiwlµilcµilc

∣∣∣+ ∣∣∣ n∑
j=1

q̂jlI(zij = ec)−
n∑

j=1

I(qjl = yj)I(zij = ec)
∣∣∣

≤ ntilc + nδ2.

By the same argument, we have

|B − nπiwlµilc| ≤

(
k∑
c=1

ntilc

)
+ nδ2.

Combining the bound for A and B, we obtain that

|µ̂il − µilc| =
∣∣∣∣nπiwlµilc + (A− nπiwlµilc)

nπiwl + (B − nπiwl)
− µilc

∣∣∣∣ =

∣∣∣∣ (A− nπiwlµilc) + µilc(B − nπiwl)
nπiwl + (B − nπiwl)

∣∣∣∣
≤ 2ntilc + 2nδ2

nπiwl − n
∑k
c=1 tilc − nδ2

Condition (27) implies that
∑k
c=1 tilc ≤ πminwmin

∑k
c=1 ρ/8 ≤ πminwmin/8, where the last step

follow from kρ ≤ 1. Plugging this upper bound into the above inequality completes the proof.

To proceed with the proof, we assign specific values to δ1 and δ2. Let

δ1 := min

{
ρ

2
,
ρD

16

}
and δ2 := tmin/2. (40)

We claim that at any step in the update, the preconditions (35) and (38) always hold.

We prove the claim by induction. Before the iteration begins, µ̂ is initialized such that the accuracy
bound (7) holds. Thus, condition (35) is satisfied at the beginning. We assume by induction that
condition (35) is satisfied at time 1, 2, . . . , τ−1 and condition (38) is satisfied at time 2, 3, . . . , τ−1.
At time τ , either update (4) or update (5) is performed. If update (4) is performed, then by the
inductive hypothesis, condition (35) holds before the update. Thus, Lemma 5 implies that

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−m

(
D

2
− 2δ1
ρ− δ1

)
+ log(m)

)
.

The assignment (40) implies D
2 −

2δ1
ρ−δ1 ≥

D
4 , which yields that

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp(−mD/4 + log(m)) ≤ tmin/2 = δ2,

where the last inequality follows from condition (27). It suggests that condition (38) holds after the
update.

On the other hand, we assume that update (5) is performed at time τ . Since update (5) follows
update (4), we have τ ≥ 2. By the inductive hypothesis, condition (38) holds before the update, so

18



Lemma 6 implies

|µ̂il − µilc| ≤
2ntilc + 2nδ2

(7/8)nπiwl − nδ2
=

2ntilc + ntmin

(7/8)nπiwl − ntmin/2
≤ 3ntilc

(7/8)nπiwl − ntmin/2
,

where the last step follows since tmin ≤ tilc. Noticing ρ ≤ 1, condition (27) implies that tmin ≤
πminwmin/8. Thus, the right hand side of the above inequality is bounded by 4tilc/(πiwl). Using
condition (27) again, we find

4tilc
πiwl

≤ 4tilc
πminwmin

≤ min

{
ρ

2
,
ρD

16

}
= δ1,

which verifies that condition (35) holds after the update. This completes the induction.

Since preconditions (35) and (38) hold for any time τ ≥ 2, Lemma 5 and Lemma 6 implies that
the concentration bounds (36) and (39) always hold. These two concentration bounds establish the
lemma’s conclusion.

D.2 Proof of Lemma 4

By the definition of si, we have

E[s2
i ] = πi

k∑
c=1

µiyjc(log(µiyjc/µilc))
2 = πi

k∑
c=1

µiyjc(log(µilc/µiyjc))
2

We claim that for any x ≥ ρ and ρ < 1, the following inequality holds:

log2(x) ≤ 2 log(1/ρ)

1− ρ
(x− 1− log(x)) (41)

We defer the proof of inequality (41), focusing on its consequence. Let x := µilc/µiyjc, then
inequality (41) yields that

E[s2
i ] ≤

2 log(1/ρ)

1− ρ
πi

(
k∑
c=1

µilc − µiyjc − µiyjc log(µilc/µiyjc)

)
=

2 log(1/ρ)

1− ρ
πiDKL

(
µiyj , µil

)
.

It remains to prove the claim (41). Let f(x) := log2(x)− 2 log(1/ρ)
1−ρ (x− 1− log(x)). It suffices to

show that f(x) ≤ 0 for x ≥ ρ. First, we have f(1) = 0 and

f ′(x) =
2(log(x)− log(1/ρ)

1−ρ (x− 1))

x
.

For any x > 1, we have

log(x) < x− 1 ≤ log(1/ρ)

1− ρ
(x− 1)

where the last inequality holds since log(1/ρ) ≥ 1−ρ. Hence, we have f ′(x) < 0 and consequently
f(x) < 0 for x > 1.

For any ρ ≤ x < 1, notice that log(x)− log(1/ρ)
1−ρ (x− 1) is a concave function of x, and equals zero

at two points x = 1 and x = ρ. Thus, f ′(x) ≥ 0 at any point x ∈ [ρ, 1), which implies f(x) ≤ 0.

E Proof of Theorem 3

In this section we prove Theorem 3. The proof separates into two parts.
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E.1 Proof of Part (a)

Throughout the proof, probabilities are implicitly conditioning on {πi} and {µilc}. We assume that
(l, l′) are the pair of labels such that

D =
1

m

m∑
i=1

πiDKL (µil, µil′) .

Let Q be a uniform distribution over the set {l, l′}n. For any predictor ŷ, we have

max
v∈[k]n

E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣y = v

]
≥

∑
v∈{l,l′}n

Q(v) E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣y = v

]

=
n∑
j=1

∑
v∈{l,l′}n

Q(v) E
[
I(ŷj 6= yj)

∣∣∣y = v
]
. (42)

Thus, it is sufficient to lower bound the right hand side of inequality (42).

For the rest of the proof, we lower bound the quantity
∑
y∈{l,l′}n Q(v) E[I(ŷj 6= yj)|y] for every

item j. Let Z := {zij : i ∈ [m], j ∈ [n]} be the set of all observations. We define two probability
measures P0 and P1, such that P0 is the measure of Z conditioning on yj = l, while P1 is the
measure of Z conditioning on yj = l′. By applying Le Cam’s method [24] and Pinsker’s inequality,
we have∑

v∈{l,l′}n
Q(v) E

[
I(ŷj 6= yj)

∣∣∣y = v
]

= Q(yj = l)P0(ŷj 6= l) + Q(yj = l′)P1(ŷj 6= l′)

≥ 1

2
− 1

2
‖P0 − P1‖TV

≥ 1

2
− 1

4

√
DKL (P0,P1). (43)

The remaining arguments upper bound the KL-divergence between P0 and P1. Conditioning on yj ,
the set of random variables Zj := {zij : i ∈ [m]} are independent of Z\Zj for both P0 and P1.
Letting the distribution of X with respect to probability measure P be denoted by P(X), we have

DKL (P0,P1) = DKL (P0(Zj),P1(Zj)) + DKL (P0(Z\Zj),P1(Z\Zj)) = DKL (P0(Zj),P1(Zj)) ,
(44)

where the last step follows since P0(Z\Zj) = P1(Z\Zj). Next, we observe that z1j , z2j , . . . , zmj
are mutually independent given yj , which implies

DKL (P0(Zj),P1(Zj)) =

m∑
i=1

DKL (P0(zij),P1(zij))

= (1− πi) log

(
1− πi
1− πi

)
+

k∑
c=1

πiµilc log

(
πiµilc
πiµil′c

)

=

k∑
c=1

πiDKL (µilc, µil′c) = mD. (45)

Combining inequality (43) with equations (44) and (45), we have∑
v∈{l,l′}n

Q(v) E
[
I(ŷj 6= yj)

∣∣∣y = v
]
≥ 1

2
− 1

4

√
mD.

Thus, if m ≤ 1/(4D), then the above inequality is lower bounded by 3/8. Plugging this lower
bound into inequality (42) completes the proof.
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E.2 Proof of Part (b)

Throughout the proof, probabilities are implicitly conditioning on {πi} and {wl}. We define two
vectors

u0 :=

(
1

2
,

1

2
, 0, . . . , 0

)T
∈ Rk and u1 :=

(
1

2
+ δ,

1

2
− δ, 0, . . . , 0

)T
∈ Rk

where δ ≤ 1/4 is a scalar to be specified. Consider a m-by-k random matrix V whose entries are
uniformly sampled from {0, 1}. We define a random tensor uV ∈ Rm×k×k, such that (uV )il := uVil

for all (i, l) ∈ [m]× [k]. Givan an estimator µ̂ and a pair of indices (̄i, l̄), we have

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥
∑
v∈[k]n

P(y = v)

(∑
V

P(V ) E
[
‖µ̂īl̄ − µīl̄‖22

∣∣∣µ = uV , y = v
])

.

(46)

For the rest of the proof, we lower bound the term
∑
V P(V ) E[‖µ̂īl̄ − µīl̄‖22|µ = uV , y = v] for

every v ∈ [k]n. Let V̂ be an estimator defined as

V̂ =

{
0 if ‖µ̂īl̄ − u0‖2 ≤ ‖µ̂īl̄ − u1‖2.
1 otherwise.

If µ = uV , then V̂ 6= Vīl̄ ⇒ ‖µ̂īl̄ − µīl̄‖2 ≥
√

2
2 δ. Consequently, we have∑

V

P(V ) E[‖µ̂īl̄ − µīl̄‖22|µ = uV , y = v] ≥ δ2

2
P[V̂ 6= Vīl̄|y = v]. (47)

Let Z := {zij : i ∈ [m], j ∈ [n]} be the set of all observations. We define two probability measures
P0 and P1, such that P0 is the measure of Z conditioning on y = v and µīl̄ = u0, and P1 is the
measure of Z conditioning on y = v and µīl̄ = u1. For any other pair of indices (i, l) 6= (̄i, l̄),
µil = uVil

for both P0 and P1. By this definition, the distribution of Z conditioning on y = v and
µ = uV is a mixture of distributions Q := 1

2P0 + 1
2P1. By applying Le Cam’s method [24] and

Pinsker’s inequality, we have

P[V̂ 6= Vīl̄|y = v] ≥ 1

2
− 1

2
‖P0 − P1‖TV

≥ 1

2
− 1

4

√
DKL (P0,P1). (48)

Conditioning on y = v, the set of random variables Zi := {zij : j ∈ [n]} are mutually independent
for both P0 and P1. Letting the distribution of X with respect to probability measure P be denoted
by P(X), we have

DKL (P0,P1) =

m∑
i=1

DKL (P0(Zi),P1(Zi)) = DKL (P0(Zī),P1(Zī)) (49)

where the last step follows since P0(Zi) = P1(Zi) for all i 6= ī. Next, we let J := {j : vj = l̄}
and define a set of random variables ZiJ := {zij : j ∈ J}. It is straightforward to see that ZiJ is
independent of Zi\ZiJ for both P0 and P1. Hence, we have

DKL (P0(Zī),P1(Zī)) = DKL (P0(ZīJ),P1(ZīJ)) + DKL (P0(Zī\ZīJ),P1(Zī\ZīJ))

= DKL (P0(ZīJ),P1(ZīJ)) (50)

where the last step follows since P0(Zī\ZīJ) = P1(Zī\ZīJ). Finally, since µīl̄ is explicitly given
in both P0 and P1, the random variables contained in ZīJ are mutually independent. Consequently,
we have

DKL (P0(ZīJ),P1(ZīJ)) =
∑
j∈J

DKL

(
P0(zīj),P1(zīj)

)
= |J | πī

1

2
log

(
1

1− 4δ2

)
≤ 5

2
|J | πīδ2. (51)
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Here, we have used the fact that log(1/(1− 4x2)) ≤ 5x2 holds for any x ∈ [0, 1/4].

Combining the lower bound (48) with upper bounds (49), (50) and (51), we find

P[V̂il 6= Vil|y = v] ≥ 3

8
I
(

5

2
|J | πīδ2 ≤ 1

4

)
.

Plugging the above lower bound into inequalities (46) and (47) implies that

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥ 3δ2

16
P
[
|{j : yj = l̄}| ≤ 1

10πīδ
2

]
.

Note than |{j : yj = l̄}| ∼ Binomial(n,wl̄). Thus, if we set

δ2 := min

{
1

16
,

1

10πīwl̄n

}
,

then 1
10πīδ

2 is greater than or equal to the median of |{j : yj = l̄}|, and consequently,

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥ min

{
3

512
,

3

320πīwl̄n

}
,

which establishes the theorem.

F Basic Lemmas

In this section, we prove some standard lemmas that we use for proving technical results.

Lemma 7 (Matrix Inversion). Let A,E ∈ Rk×k be given, where A is invertible and E satisfies that
‖E‖op ≤ σk(A)/2. Then

‖(A+ E)−1 −A−1‖op ≤
2‖E‖op

σ2
k(A)

.

Proof. A little bit of algebra reveals that

(A+ E)−1 −A−1 = (A+ E)−1EA−1.

Thus, we have

‖(A+ E)−1 −A−1‖op ≤
‖E‖op

σk(A)σk(A+ E)

We can lower bound the eigenvalues of A+ E by σk(A) and ‖E‖op. More concretely, since

‖(A+ E)θ‖2 ≥ ‖Aθ‖2 − ‖Eθ‖2 ≥ σk(A)− ‖E‖op

holds for any ‖θ‖2 = 1, we have σk(A+ E) ≥ σk(A)− ‖E‖op. By the assumption that ‖E‖op ≤
σk(A)/2, we have σk(A+ E) ≥ σk(A)/2. Then the desired bound follows.

Lemma 8 (Matrix Multiplication). Let Ai, Ei ∈ Rk×k be given for i = 1, . . . , n, where the matrix
Ai and the perturbation matrix Ei satisfy ‖Ai‖op ≤ Ki, ‖Ei‖op ≤ Ki. Then∥∥∥∥∥

n∏
i=1

(Ai + Ei)−
n∏
i=1

Ai

∥∥∥∥∥
op

≤ 2n−1

(
n∑
i=1

‖Ei‖op

Ki

)
n∏
i=1

Ki
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Proof. By triangular inequality, we have∥∥∥∥∥
n∏
i=1

(Ai + Ei)−
n∏
i=1

Ai

∥∥∥∥∥
op

=

∥∥∥∥∥∥
n∑
i=1

i−1∏
j=1

Aj

( n∏
k=i+1

(Ak + Ek)

)
Ei

∥∥∥∥∥∥
op

≤
n∑
i=1

‖Ei‖op

i−1∏
j=1

‖Aj‖op

( n∏
k=i+1

‖Ak + Ek‖op

)

≤
n∑
i=1

2n−i
‖Ei‖op

Ki

n∏
i=1

Ki

= 2n−1

(
n∑
i=1

‖Ei‖op

Ki

)
n∏
i=1

Ki

which completes the proof.

Lemma 9 (Matrix and Tensor Concentration). Let {Xj}nj=1, {Yj}nj=1 and {Zj}nj=1 be i.i.k. samples
from some distribution over Rk with bounded support (‖X‖2 ≤ 1, ‖Y ‖2 ≤ 1 and ‖Z‖2 ≤ 1 with
probability 1). Then with probability at least 1− δ,∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj − E[X1 ⊗ Y1]

∥∥∥∥∥∥
F

≤
1 +

√
log(1/δ)√
n

. (52)

∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj ⊗ Zj − E[X1 ⊗ Y1 ⊗ Z1]

∥∥∥∥∥∥
F

≤
1 +

√
log(k/δ)√
n/k

. (53)

Proof. Inequality (52) is proved in Lemma D.1 of [1]. To prove inequality (53), we note that for any
tensor T ∈ Rk×k×k, we can define k-by-k matrices T1, . . . , Tk such that (Ti)jk := Tijk. As a result,
we have ‖T‖2F =

∑k
i=1 ‖Ti‖

2
F . If we set T to be the tensor on the left hand side of inequality (53),

then

Ti =
1

n

n∑
j=1

(Z
(i)
j Xj)⊗ Yj − E[(Z

(i)
j X1)⊗ Y1]

By applying the result of inequality (52), we find that with probability at least 1− kδ′, we have∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj ⊗ Zj − E[X1 ⊗ Y1 ⊗ Z1]

∥∥∥∥∥∥
2

F

≤ k

(
1 +

√
log(1/δ′)√
n

)2

.

Setting δ′ = δ/k completes the proof.

23


