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Abstract
We study the behavior of block `1/`2 regularization for multivariate regression,
where a K-dimensional response vector is regressed upon a fixed set of p co-
variates. The problem of support union recovery is to recover the subset of
covariates that are active in at least one of the regression problems. Study-
ing this problem under high-dimensional scaling (where the problem parame-
ters as well as sample size n tend to infinity simultaneously), our main result
is to show that exact recovery is possible once the order parameter given by
θ`1/`2(n, p, s) : = n/[2ψ(B∗) log(p− s)] exceeds a critical threshold. Here n is
the sample size, p is the ambient dimension of the regression model, s is the size
of the union of supports, and ψ(B∗) is a sparsity-overlap function that measures a
combination of the sparsities and overlaps of the K-regression coefficient vectors
that constitute the model. This sparsity-overlap function reveals that block `1/`2
regularization for multivariate regression never harms performance relative to a
naive `1-approach, and can yield substantial improvements in sample complexity
(up to a factor of K) when the regression vectors are suitably orthogonal rela-
tive to the design. We complement our theoretical results with simulations that
demonstrate the sharpness of the result, even for relatively small problems.

1 Introduction
A recent line of research in machine learning has focused on regularization based on block-structured
norms. Such structured norms are well motivated in various settings, among them kernel learn-
ing [3, 8], grouped variable selection [12], hierarchical model selection [13], simultaneous sparse
approximation [10], and simultaneous feature selection in multi-task learning [7]. Block-norms that
compose an `1-norm with other norms yield solutions that tend to be sparse like the Lasso, but the
structured norm also enforces blockwise sparsity, in the sense that parameters within blocks are
more likely to be zero (or non-zero) simultaneously.

The focus of this paper is the model selection consistency of block-structured regularization in the
setting of multivariate regression. Our goal is to perform model or variable selection, by which we
mean extracting the subset of relevant covariates that are active in at least one regression. We refer
to this problem as the support union problem. In line with a large body of recent work in statistical
machine learning (e.g., [2, 9, 14, 11]), our analysis is high-dimensional in nature, meaning that we
allow the model dimension p (as well as other structural parameters) to grow along with the sample
size n. A great deal of work has focused on the case of ordinary `1-regularization (Lasso) [2, 11, 14],
showing for instance that the Lasso can recover the support of a sparse signal even when p À n.
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Some more recent work has studied consistency issues for block-regularization schemes, including
classical analysis (p fixed) of the group Lasso [1], and high-dimensional analysis of the predic-
tive risk of block-regularized logistic regression [5]. Although there have been various empirical
demonstrations of the benefits of block regularization, the generalizations of the result of [11] ob-
tained by [6, 4] fail to capture the improvements observed in practice. In this paper, our goal is to
understand the following question: under what conditions does block regularization lead to a quan-
tifiable improvement in statistical efficiency, relative to more naive regularization schemes? Here
statistical efficiency is assessed in terms of the sample complexity, meaning the minimal sample size
n required to recover the support union; we wish to know how this scales as a function of prob-
lem parameters. Our main contribution is to provide a function quantifying the benefits of block
regularization schemes for the problem of multivariate linear regression, showing in particular that,
under suitable structural conditions on the data, the block-norm regularization we consider never
harms performance relative to naive `1-regularization and can lead to substantial gains in sample
complexity.

More specifically, we consider the following problem of multivariate linear regression: a group of
K scalar outputs are regressed on the same design matrix X ∈ Rn×p. Representing the regression
coefficients as a p×K matrix B∗, the regression model takes the form

Y = XB∗ + W, (1)

where Y ∈ Rn×K and W ∈ Rn×K are matrices of observations and zero-mean noise respectively
and B∗ has columns β∗(1), . . . , β∗(K) which are the parameter vectors of each univariate regression.

We are interested in recovering the union of the supports of individual regressions, more specifically
if Sk =

{
i ∈ {1, . . . , p}, β∗(k)

i 6= 0
}

we would like to recover S = ∪kSk. The Lasso is often
presented as a relaxation of the so-called `0 regularization, i.e., the count of the number of non-zero
parameter coefficients, an intractable non-convex function. More generally, block-norm regulariza-
tions can be thought of as the relaxation of a non-convex regularization which counts the number of
covariates i for which at least one of the univariate regression parameters β

∗(k)
i is non-zero. More

specifically, let β∗i denote the ith row of B∗, and define, for q ≥ 1,

‖B∗‖`0/`q
= |{i ∈ {1, . . . , p}, ‖β∗i ‖q > 0}| and ‖B∗‖`1/`q

=
p∑

i=1

‖β∗i ‖q

All `0/`q norms define the same function, but differ conceptually in that they lead to different `1/`q

relaxations. In particular the `1/`1 regularization is the same as the usual Lasso. The other conceptu-
ally most natural block-norms are `1/`2 and `1/`∞. While `1/`∞ is of interest, it seems intuitively
to be relevant essentially to situations where the support is exactly the same for all regressions, an
assumption that we are not willing to make.

In the current paper, we focus on the `1/`2 case and consider the estimator B̂ obtained by solving
the following disguised second-order cone program:

min
B∈Rp×K

{
1
2n
|||Y −XB|||2F + λn ‖B‖`1/`2

}
, (2)

where |||M |||F : = (
∑

i,j m2
ij)

1/2 denotes the Frobenius norm. We study the support union problem
under high-dimensional scaling, meaning that the number of observations n, the ambient dimen-
sion p and the size of the union of supports s can all tend to infinity. The main contribution of
this paper is to show that under certain technical conditions on the design and noise matrices, the
model selection performance of block-regularized `1/`2 regression (2) is governed by the control
parameter θ`1/`2(n, p ; B∗) : = n

2 ψ(B∗,ΣSS) log(p−s) , where n is the sample size, p is the ambient
dimension, s = |S| is the size of the union of the supports, and ψ(·) is a sparsity-overlap function
defined below. More precisely, the probability of correct support union recovery converges to one for
all sequences (n, p, s, B∗) such that the control parameter θ`1/`2(n, p ; B∗) exceeds a fixed critical
threshold θcrit < +∞. Note that θ`1/`2 is a measure of the sample complexity of the problem—that
is, the sample size required for exact recovery as a function of the problem parameters. Whereas
the ratio (n/ log p) is standard for high-dimensional theory on `1-regularization (essentially due to
covering numberings of `1 balls), the function ψ(B∗, ΣSS) is a novel and interesting quantity, which
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measures both the sparsity of the matrix B∗, as well as the overlap between the different regression
tasks (columns of B∗).

In Section 2, we introduce the models and assumptions, define key characteristics of the problem and
state our main result and its consequences. Section 3 is devoted to the proof of this main result, with
most technical results deferred to the appendix. Section 4 illustrates with simulations the sharpness
of our analysis and how quickly the asymptotic regime arises.

1.1 Notations

For a (possibly random) matrix M ∈ Rp×K , and for parameters 1 ≤ a ≤ b ≤ ∞, we distinguish
the `a/`b block norms from the (a, b)-operator norms, defined respectively as

‖M‖`a/`b
: =

{ p∑

i=1

( K∑

k=1

|mik|b
) a

b
} 1

a

and |||M |||a, b : = sup
‖x‖b=1

‖Mx‖a, (3)

although `∞/`p norms belong to both families (see Lemma B.0.1). For brevity, we denote the
spectral norm |||M |||2, 2 as |||M |||2, and the `∞-operator norm |||M |||∞,∞ = maxi

∑
j |Mij | as |||M |||∞.

2 Main result and some consequences

The analysis of this paper applies to multivariate linear regression problems of the form (1), in which
the noise matrix W ∈ Rn×K is assumed to consist of i.i.d. elements Wij ∼ N(0, σ2). In addition,
we assume that the measurement or design matrices X have rows drawn in an i.i.d. manner from a
zero-mean Gaussian N(0, Σ), where Σ Â 0 is a p× p covariance matrix.

Suppose that we partition the full set of covariates into the support set S and its complement Sc, with
|S| = s, |Sc| = p − s. Consider the following block decompositions of the regression coefficient
matrix, the design matrix and its covariance matrix:

B∗ =
[

B∗
S

B∗
Sc

]
, X = [XS XSc ] , and Σ =

[
ΣSS ΣSSc

ΣScS ΣScSc

]
.

We use β∗i to denote the ith row of B∗, and assume that the sparsity of B∗ is assessed as follows:

(A0) Sparsity: The matrix B∗ has row support S : = {i ∈ {1, . . . , p} | β∗i 6= 0}, with s = |S|.
In addition, we make the following assumptions about the covariance Σ of the design matrix:

(A1) Bounded eigenspectrum: There exist a constant Cmin > 0 (resp. Cmax < +∞) such that all
eigenvalues of ΣSS (resp. Σ) are greater than Cmin (resp. smaller than Cmax).

(A2) Mutual incoherence: There exists γ ∈ (0, 1] such that
∣∣∣∣∣∣ΣScS(ΣSS)−1

∣∣∣∣∣∣
∞ ≤ 1− γ.

(A3) Self incoherence: There exists a constant Dmax such that
∣∣∣∣∣∣(ΣSS)−1

∣∣∣∣∣∣
∞ ≤ Dmax.

Assumption A1 is a standard condition required to prevent excess dependence among elements of
the design matrix associated with the support S. The mutual incoherence assumption A2 is also
well known from previous work on model selection with the Lasso [10, 14]. These assumptions are
trivially satisfied by the standard Gaussian ensemble (Σ = Ip) with Cmin =Cmax =Dmax =γ =1.
More generally, it can be shown that various matrix classes satisfy these conditions [14, 11].

2.1 Statement of main result

With the goal of estimating the union of supports S, our main result is a set of sufficient conditions
using the following procedure. Solve the block-regularized problem (2) with regularization param-
eter λn > 0, thereby obtaining a solution B̂ = B̂(λn). Use this solution to compute an estimate
of the support union as Ŝ(B̂) : =

{
i ∈ {1, . . . , p} | β̂i 6= 0

}
. This estimator is unambiguously

defined if the solution B̂ is unique, and as part of our analysis, we show that the solution B̂ is indeed
unique with high probability in the regime of interest. We study the behavior of this estimator for a
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sequence of linear regressions indexed by the triplet (n, p, s), for which the data follows the general
model presented in the previous section with defining parameters B∗(n) and Σ(n) satisfying A0-
A3. As (n, p, s) tends to infinity, we give conditions on the triplet and properties of B∗ for which B̂

is unique, and such that P[Ŝ = S] → 1.

The central objects in our main result are the sparsity-overlap function, and the sample complexity
parameter, which we define here. For any vector βi 6= 0, define ζ(βi) : = βi

‖βi‖2 . We extend the
function ζ to any matrix BS ∈ Rs×K with non-zero rows by defining the matrix ζ(BS) ∈ Rs×K

with ith row [ζ(BS)]i = ζ(βi). With this notation, we define the sparsity-overlap function ψ(B)
and the sample complexity parameter θ`1/`2(n, p ; B∗) as

ψ(B) :=
∣∣∣∣∣∣ ζ(BS)T (ΣSS)−1ζ(BS)

∣∣∣∣∣∣
2

and θ`1/`2(n, p ; B∗) : =
n

2 ψ(B∗) log(p−s)
. (4)

Finally, we use b∗min : = mini∈S ‖β∗i ‖2 to denote the minimal `2 row-norm of the matrix B∗
S . With

this notation, we have the following result:
Theorem 1. Consider a random design matrix X drawn with i.i.d. N(0,Σ) row vectors, an obser-
vation matrix Y specified by model (1), and a regression matrix B∗ such that (b∗min)2 decays strictly
more slowly than f(p)

n max {s, log(p− s)}, for any function f(p) → +∞. Suppose that we solve

the block-regularized program (2) with regularization parameter λn = Θ
(√

f(p) log(p)/n
)

.

For any sequence (n, p, B∗) such that the `1/`2 control parameter θ`1/`2(n, p ; B∗) exceeds the
critical threshold θcrit(Σ) := Cmax

γ2 , then with probability greater than 1− exp(−Θ(log p)),

(a) the block-regularized program (2) has a unique solution B̂, and

(b) its support set Ŝ(B̂) is equal to the true support union S.

Remarks: (i) For the standard Gaussian ensemble (Σ = Ip), the critical threshold is simply
θcrit(Σ) = 1. (ii) A technical condition that we require on the regularization parameter is

λ2
nn

log(p− s)
→ ∞ (5)

which is satisfied by the choice given in the statement.

2.2 Some consequences of Theorem 1

It is interesting to consider some special cases of our main result. The simplest special case is the
univariate regression problem (K = 1), in which case the function ζ(β∗) outputs an s-dimensional
sign vector with elements z∗i = sign(β∗i ), so that ψ(β∗) = z∗T (ΣSS)−1z∗ = Θ(s). Consequently,
the order parameter of block `1/`2-regression for univariate regresion is given by Θ(n/(2s log(p−
s)), which matches the scaling established in previous work on the Lasso [11].

More generally, given our assumption (A1) on ΣSS , the sparsity overlap ψ(B∗) always lies in the
interval [ s

KCmax
, s

Cmin
]. At the most pessimistic extreme, suppose that B∗ : = β∗~1T

K—that is, B∗

consists of K copies of the same coefficient vector β∗ ∈ Rp, with support of cardinality |S|= s.
We then have [ζ(B∗)]ij = sign(β∗i )/

√
K, from which we see that ψ(B∗) = z∗T (ΣSS)−1z∗, with

z∗ again the s-dimensional sign vector with elements z∗i = sign(β∗i ), so that there is no benefit in
sample complexity relative to the naive strategy of solving separate Lasso problems and construct-
ing the union of individually estimated supports. This might seem a pessimistic result, since under
model (1), we essentially have Kn observations of the coefficient vector β∗ with the same design
matrix but K independent noise realizations. However, the thresholds as well as the rates of conver-
gence in high-dimensional results such as Theorem 1 are not determined by the noise variance, but
rather by the number of interfering variables (p− s).

At the most optimistic extreme, consider the case where ΣSS = Is and (for s > K) suppose that
B∗ is constructed such that the columns of the s×K matrix ζ(B∗) are all orthogonal and of equal
length. Under this condition, we have
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Corollary 1 (Orthonormal tasks). If the columns of the matrix ζ(B∗) are all orthogonal with equal
length and ΣSS = Is×s then the block-regularized problem (2) succeeds in union support recovery
once the sample complexity parameter n/(2 s

K log(p− s)) is larger than 1.

For the standard Gaussian ensemble, it is known [11] that the Lasso fails with probability one for
all sequences such that n < (2 − ν)s log(p − s) for any arbitrarily small ν > 0. Consequently,
Corollary 1 shows that under suitable conditions on the regression coefficient matrix B∗, `1/`2 can
provides a K-fold reduction in the number of samples required for exact support recovery.

As a third illustration, consider, for ΣSS = Is×s, the case where the supports Sk of individual
regression problems are all disjoint. The sample complexity parameter for each of the individual
Lassos is n/(2sk log(p− sk)) where |Sk| = sk, so that the sample size required to recover the
support union from individual Lassos scales as n = Θ(maxk[sk log(p − sk)]). However, if the
supports are all disjoint, then the columns of the matrix Z∗S = ζ(B∗

S) are orthogonal, and Z∗S
TZ∗S =

diag(s1, . . . , sK) so that ψ(B∗) = maxk sk and the sample complexity is the same. In other words,
even though there is no sharing of variables at all there is surprisingly no penalty from regularizing
jointly with the `1/`2-norm. However, this is not always true if ΣSS 6= Is×s and in many situations
`1/`2-regularization can have higher sample complexity than separate Lassos.

3 Proof of Theorem 1
In addition to previous notations, the proofs use the shorthands: Σ̂SS= 1

nXT
S XS , Σ̂ScS= 1

nXT
ScXS

and ΠS = XS(Σ̂SS)−1XT
S denotes the orthogonal projection onto the range of XS .

High-level proof outline: At a high level, our proof is based on the notion of what we refer to as
a primal-dual witness: we first formulate the problem (2) as a second-order cone program (SOCP),
with the same primal variable B as in (2) and a dual variable Z whose rows coincide at optimality
with the subgradient of the `1/`2 norm. We then construct a primal matrix B̂ along with a dual
matrix Ẑ such that, under the conditions of Theorem 1, with probability converging to 1:

(a) The pair (B̂, Ẑ) satisfies the Karush-Kuhn-Tucker (KKT) conditions of the SOCP.

(b) In spite of the fact that for general high-dimensional problems (with p À n), the SOCP need
not have a unique solution a priori, a strict feasibility condition satisfied by the dual variables Ẑ

guarantees that B̂ is the unique optimal solution of (2).

(c) The support union Ŝ of B̂ is identical to the support union S of B∗.

At the core of our constructive procedure is the following convex-analytic result, which characterizes
an optimal primal-dual pair for which the primal solution B̂ correctly recovers the support set S:

Lemma 1. Suppose that there exists a primal-dual pair (B̂, Ẑ) that satisfy the conditions:

ẐS = ζ(B̂S) (6a)

Σ̂SS(B̂S −B∗
S)− 1

n
XT

S W = −λnẐS (6b)

λn

∥∥∥ẐSc

∥∥∥
`∞/`2

: =
∥∥∥∥Σ̂ScS(B̂S −B∗

S)− 1
n

XT
ScW

∥∥∥∥
`∞/`2

< λn (6c)

B̂Sc = 0. (6d)

Then (B̂, Ẑ) is the unique optimal solution to the block-regularized problem, with Ŝ(B̂) = S by
construction.

Appendix A proves Lemma 1, with the strict feasibility of ẐSc given by (6c) to certify uniqueness.

3.1 Construction of primal-dual witness

Based on Lemma 1, we construct the primal dual pair (B̂, Ẑ) as follows. First, we set B̂Sc = 0, to
satisfy condition (6d). Next, we obtain the pair (B̂S , ẐS) by solving a restricted version of (2):

B̂S = arg min
BS∈Rs×K

{
1
2n

∣∣∣∣
∣∣∣∣
∣∣∣∣Y −X

[
BS

0Sc

]∣∣∣∣
∣∣∣∣
∣∣∣∣
2

F

+ λn‖BS‖`1/`2

}
. (7)
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Since s < n, the empirical covariance (sub)matrix Σ̂SS = 1
nXT

S XS is strictly positive definite
with probability one, which implies that the restricted problem (7) is strictly convex and therefore
has a unique optimum B̂S . We then choose ẐS to be the solution of equation (6b). Since any
such matrix ẐS is also a dual solution to the SOCP (7), it must be an element of the subdifferential
∂‖B̂S‖`1/`2 . It remains to show that this construction satisfies conditions (6a) and (6c). In order to
satisfy condition (6a), it suffices to show that β̂i 6= 0, i ∈ S. From equation (6b) and since Σ̂SS is
invertible, we may solve as follows

(B̂S −B∗
S) =

(
Σ̂SS

)−1
[
XT

S W

n
− λnẐS

]
= : US . (8)

For any row i ∈ S, we have ‖β̂i‖2 ≥ ‖β∗i ‖2 − ‖US‖`∞/`2
. Thus, it suffices to show that the

following event occurs with high probability

E(US) : =
{
‖US‖`∞/`2

≤ 1
2

b∗min

}
(9)

to show that no row of B̂S is identically zero. We establish this result later in this section.

Turning to condition (6c), by substituting expression (8) for the difference (B̂S − B∗
S) into equa-

tion (6c), we obtain a (p− s)×K random matrix VSc , whose row j ∈ Sc is given by

Vj : = XT
j

(
[ΠS − In]

W

n
− λn

XS

n
(Σ̂SS)−1ẐS

)
. (10)

In order for condition (6c) to hold, it is necessary and sufficient that the probability of the event

E(VSc) :=
{
‖VSc‖`∞/`2

< λn

}
(11)

converges to one as n tends to infinity.

Correct inclusion of supporting covariates: We begin by analyzing the probability of E(US).
Lemma 2. Under assumption A3 and conditions (5) of Theorem 1, with probability 1 −
exp(−Θ(log s)), we have

‖US‖`∞/`2
≤ O

(√
(log s)/n

)
+ λn

(
Dmax +O

(√
s2/n

))
.

This lemma is proved in in the Appendix. With the assumed scaling n = Ω (s log(p− s)), and the
assumed slow decrease of b∗min, which we write explicitly as (b∗min)2 ≥ 1

ε2
n

f(p) max{s,log(p−s)}
n for

some εn → 0, we have
‖US‖`∞/`2

b∗min

≤ O(εn), (12)

so that the conditions of Theorem 1 ensure that E(US) occurs with probability converging to one.

Correct exclusion of non-support: Next we analyze the event E(VSc). For simplicity, in the
following arguments, we drop the index Sc and write V for VSc . In order to show that ‖V ‖`∞/`2

<

λn with probability converging to one, we make use of the decomposition

1
λn

‖V ‖`∞/`2
≤

3∑

i=1

T ′i where T ′1 : =
1
λn

‖E [V | XS ]‖`∞/`2
,

T ′2 : =
1
λn

‖E [V |XS , W ]− E [V |XS ]‖`∞/`2
and T ′3 : =

1
λn

‖V − E [V |XS ,W ]‖`∞/`2
.

Lemma 3. Under assumption A2, T ′1 ≤ 1− γ . Under conditions (5) of Theorem 1, T ′2 = op(1).

Therefore, to show that 1
λn
‖V ‖`∞/`2

< 1 with high probability, it suffices to show that T ′3 < γ

with high probability. Until now, we haven’t appealed to the sample complexity parameter
θ`1/`2(n, p ;B∗). In the next section, we prove that θ`1/`2(n, p ; B∗) > θcrit(Σ) implies that T ′3 < γ
with high probability.
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Lemma 4. Conditionally on W and XS , we have
( ‖Vj − E [Vj | XS , W ]‖22 |W,XS

) d=
(
ΣSc |S

)
jj

ξT
j Mnξj ,

where ξj ∼ N(~0K , IK) and where the K ×K matrix Mn = Mn(XS ,W ) is given by

Mn : =
λ2

n

n
ẐT

S (Σ̂SS)−1ẐS +
1
n2

WT (ΠS − In)W. (13)

But the covariance matrix Mn is itself concentrated. Indeed,
Lemma 5. Under the conditions (5) of Theorem 1, for any δ > 0, the following event T (δ) has
probability converging to 1:

T (δ) : =
{
|||Mn|||2 ≤ λ2

n

ψ(B∗)
n

(1 + δ)
}

. (14)

For any fixed δ > 0, we have P[T ′3 ≥ γ] ≤ P[T ′3 ≥ γ | T (δ)] + P[T (δ)c], but, from lemma 5,
P[T (δ)c] → 0, so that it suffices to deal with the first term.

Given that (ΣSc |S)jj ≤ (ΣScSc)jj ≤ Cmax for all j, on the event T (δ), we have

max
j∈Sc

(ΣSc |S)jj ξT
j Mnξj ≤ Cmax |||Mn|||2 max

j∈Sc
‖ξj‖22 ≤ Cmax λ2

n

ψ(B∗)
n

max
j∈Sc

‖ξj‖22 and

P[T ′3 ≥ γ |T (δ)] ≤ P
[
max
j∈Sc

‖ξj‖22 ≥ 2t∗(n,B∗)
]

with t∗(n,B∗) :=
1
2

γ2

Cmax

n

ψ(B∗) (1 + δ)
.

Finally using the union bound and a large deviation bound for χ2 variates we get the following
condition which is equivalent to the condition of Theorem 1: θ`1/`2(n, p ;B∗) > θcrit(Σ):

Lemma 6. P
[
max
j∈Sc

‖ξj‖22 ≥ 2t∗(n,B∗)
]
→ 0 if t∗(n,B∗) > (1 + ν) log(p− s) for some ν > 0.

4 Simulations
In this section, we illustrate the sharpness of Theorem 1 and furthermore ascertain how quickly
the predicted behavior is observed as n, p, s grow in different regimes, for two regression tasks
(i.e., K = 2). In the following simulations, the matrix B∗ of regression coefficients is designed
with entries β∗ij in {−1/

√
2, 1/

√
2} to yield a desired value of ψ(B∗). The design matrix X is

sampled from the standard Gaussian ensemble. Since |β∗ij | = 1/
√

2 in this construction, we have
B∗

S = ζ(B∗
S), and b∗min = 1. Moreover, since Σ = Ip, the sparsity-overlap ψ(B∗) is simply∣∣∣∣∣∣ ζ(B∗)T ζ(B∗)

∣∣∣∣∣∣
2

. From our analysis, the sample complexity parameter θ`1/`2 is controlled by the
“interference” of irrelevant covariates, and not by the variance of a noise component.

We consider linear sparsity with s = αp, for α = 1/8, for various ambient model dimen-
sions p ∈ {32, 256, 1024}. For each value of p, we perform simulations varying the sample
size n to match corresponding values of the basic Lasso sample complexity parameter, given
by θLas : = n/(2s log(p− s)), in the interval [0.25, 1.5]. In each case, we solve the block-
regularized problem (2) with sample size n = 2θLass log(p− s) using the regularization parameter
λn =

√
log(p− s) (log s)/n. In all cases, the noise level is set at σ = 0.1.

For our construction of matrices B∗, we choose both p and the scalings for the sparsity so that the
obtained values for s that are multiples of four, and construct the columns Z(1)∗ and Z(2)∗ of the
matrix B∗ = ζ(B∗) from copies of vectors of length 4. Denoting by ⊗ the usual matrix tensor
product, we consider:

Identical regressions: We set Z(1)∗ = Z(2)∗ = 1√
2
~1s, so that the sparsity-overlap is ψ(B∗) = s.

Orthogonal regression: Here B∗ is constructed with Z(1)∗ ⊥ Z(2)∗, so that ψ(B∗) = s
2 , the most

favorable situation. To achieve this, we set Z(1)∗ = 1√
2
~1s and Z(2)∗ = 1√

2
~1s/2⊗(1,−1)T .

Intermediate angles: In this intermediate case, the columns Z(1)∗ and Z(2)∗ are at a 60◦ angle,
which leads to ψ(B∗) = 3

4s. We set Z(1)∗ = 1√
2
~1s and Z(2)∗ = 1√

2
~1s/4 ⊗ (1, 1, 1,−1)T .

Figure 1 shows plots of all three cases and the reference Lasso case for the three different values
of the ambient dimension and the two types of sparsity described above. Note how the curves all
undergo a threshold phenomenon, with the location consistent with the predictions of Theorem 1.
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Figure 1. Plots of support recovery probability P[Ŝ = S] versus the basic `1 control parameter
θLas=n/[2s log(p− s)] for linear sparsity s=p/8, and for increasing values of p ∈ {32, 256, 1024}
from left to right. Each graph shows four curves corresponding to the case of independent `1 regular-
ization (pluses), and for `1/`2 regularization, the cases of identical regression (crosses), intermediate
angles (nablas), and orthogonal regressions (squares). As plotted in dotted vertical lines, Theorem 1
predicts that identical case should succeed for θLas>1 (same as ordinary Lasso), intermediate case for
θLas>0.75, and orthogonal case for θLas>0.50. The shift of these curves confirms this prediction.

5 Discussion
We studied support union recovery under high-dimensional scaling with the `1/`2 regularization,
and shown that its sample complexity is determined by the function ψ(B∗). The latter integrates
the sparsity of each univariate regression with the overlap of all the supports and the discrepancies
between each of the vectors of parameter estimated. In favorable cases, for K regressions, the
sample complexity for `1/`2 is K times smaller than that of the Lasso. Moreover, this gain is not
obtained at the expense of an assumption of shared support over the data. In fact, for standard
Gaussian designs, the regularization seems “adaptive” in sense that it doesn’t perform worse than
the Lasso for disjoint supports. This is not necessarily the case for more general designs and in some
situations, which need to be characterized in future work, it could do worse than the Lasso.
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