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Abstract

Sequence comparison across multiple organisms aids in the detection of regions under selection.

However, resource limitations require a prioritization of genomes to be sequenced. This priori-

tization should be grounded in two considerations: the lineal scope encompassing the biological

phenomena of interest, and the optimal species within that scope for detecting functional elements.

We introduce a statistical framework for optimal species subset selection, based on maximizing

power to detect conserved sites. Analysis of a phylogenetic star topology shows theoretically

that the optimal species subset is not in general the most evolutionarily diverged subset. We then

demonstrate this empirically in a study of vertebrate species. Our results suggest that marsupials

are prime sequencing candidates.
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1 Introduction

Comparative genomic methods can reveal conserved regions in multiple organisms, including

functional elements undetected by single-sequence analyses [1, 2]. Individual studies have demon-

strated the effectiveness of genomic comparison for specific regions and elements [3, 4, 5, 6, 7].

Such successes indicate that comparative considerations should play a major role in decisions

about what unsequenced species to sequence next. For comparative purposes, sequencing choices

must first of all be guided by specification of the widest range of species sharing the function or

character in question, which we call the lineal scope [8]. Boffelli et al. [10] discuss the utility of

comparisons in lineal scopes ranging from the primate clade to the vertebrate tree.

Most lineal scopes selected in practice will include far more extant species than can be se-

quenced with today’s resources. Thus, sequencing prioritization is an unavoidable issue, both

for smaller-scale efforts targeting particular regions and for whole-genome projects, whose focus

should reflect in part the aggregate needs of comparative analyses. Few studies on comparative

methods provide a quantitative framework for decision-making about what to sequence. An ex-

ception is the work of Sidow and others [9, 11]: given a set of sequenced organisms and an inferred

phylogeny, Cooper et al. [9] argue that decisions should be based on maximizing additive evolu-

tionary divergence in a phylogenetic tree.

While additive divergence captures part of the problem underlying organism choice, it fails

to reflect the inherent tradeoff that characterizes the problem. On the one hand, the success of

procedures for assessing conservation does depend on sufficient evolutionary distance among the

sequences [5, 4, 12]. On the other hand, a given set of species may have diverged too far from

one another to be useful, even when orthology is preserved: in the limit of large evolutionary

distance, conservation and nonconservation are just as indistinguishable as at distance zero [13].

Furthermore, phylogenetic topology affects the power of comparative methods in counterintuitive

ways.
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Here, we present a decision-theoretic framework which captures these issues, providing a pro-

cedure for making systematic, quantitative choices of species to sequence. Statistical power is our

optimality criterion for species selection. Thus, we measure the effectiveness of a species subset

directly in terms of error rates for detecting and overlooking conservation at a single orthologous

site. Measuring power disentangles effects due to the number of species used from effects due to

relative evolutionary distances in the phylogeny. We illustrate these ideas theoretically, in an analy-

sis of a star phylogeny, and practically, with an empirically-derived phylogeny on 21 representative

vertebrate species. The results indicate that adding the dunnart or a closely-related marsupial to

finished and underway vertebrate sequences would most increase the power to detect conservation

at single-nucleotide resolution.

2 Decision-Theoretic Setting

We study conservation detection in the following decision-theoretic setting. The datax are the

nucleotides at an orthologous site across a set of species, i.e., an ungapped alignment column. We

view these bases as corresponding to the leaves of a phylogeny with unobserved ancestral bases.

We take as given the phylogenetic topology, the Markov substitution process along the branches,

and the branch lengths. The phylogeny induces the observed-data probability distributionp(x; r)

as the marginal distribution on its leaves, which can be evaluated efficiently for anyx andr [14].

The parameterr > 0 is an unknown global mutation rate shared among all branches. We choose

two threshold valuesrN > rC for r: an actual mutation rate of at leastrN corresponds by definition

to a nonconserved site, whereas a rate no more thanrC means the site is strongly conserved. When

rN > r > rC , the conservation is too weak to interest us.

The decision-theoretic goals are now twofold. First, fixing a set of species, we wish to select a

decision ruleδ(x) which declares the site either nonconserved (δ(x) = 0) or conserved (δ(x) = 1)

using only data from those species. Every nontrivialδ(x) will have positive probability of making
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two mistakes: whenr ≥ rN , Pr(δ(X) = 1) is the probability it erroneously detects conservation,

and whenr ≤ rC , Pr(δ(X) = 0) is the probability it overlooks conservation. Minimizing these

probabilities guides our choice ofδ(x). We formulate a Neyman-Pearson hypothesis test [15]

of the null hypothesisH0 : r ≥ rN versus the alternative hypothesisHA : r ≤ rC , stipulating a

maximum allowed probabilityα of falsely rejectingH0 (falsely declaring conservation). While

control of this error probability is a central concern [9], we also want to find a testδ(x) with large

power to detect conservation, or equivalently small probability of overlooking conservation.

The second goal is to maximize the power ofδ(x) over the choice of species subset in the

larger phylogeny determined by the chosen lineal scope. This amounts to choosing a subtree in the

phylogeny, with the chosen species as its leaves. The choice of subtree determines the distribution

of x and hence the power ofδ(x). For example, we might optimize over all subtrees onk existing

species within the anthropoid clade, wherek is determined by sequencing resource limitations.

3 Symmetric Star Topology

We first develop intuition for the species selection problem in a phylogenetic setting called the

symmetric star topology (SST). Here,k existing species are connected to a single ancestor by

branches of common lengtht > 0. Choosingk andt in theSST is like choosingk existing species

within a larger phylogeny, such that each pair of chosen species is at a distance of approximately2t.

We consider the fully-observedSST(FOSST), where the ancestral basex0 is known, and the hidden-

ancestorSST (HASST), where it is not. TheHASST is of some practical interest, and theFOSSTis

useful because it approximates theHASST for small to moderatet. This follows because there is

little uncertainty about the ancestral base at short evolutionary distances: with high probability, it

equals the most-occurring base among the descendants.

We use the Jukes-Cantor substitution process along each branch in theSST. For eachk andt,
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the probability associated with theFOSSTobservation(x0,x) is

p(x0,x; r) =
1

4

(
1 + 3e−4rt

4

)n(x0,x) (
3(1− e−4rt)

4

)k−n(x0,x)

. (1)

Here,r is the unknown mutation rate at the site, andn(x0,x) counts the number of descendant

bases that agree with the ancestral base. We use the Jukes-Cantor equilibrium distribution (the

uniform distribution) onx0.

The FOSSTlikelihood-ratio statistic for testingH0 : r ≥ rN vs.HA : r ≤ rC therefore has the

form
(1 + 3e−4rCt)n(x0,x)(1− e−4rCt)k−n(x0,x)

(1 + 3e−4rN t)n(x0,x)(1− e−4rN t)k−n(x0,x)
. (2)

The likelihood-ratio testTα(x0,x) rejectsH0 and declares conservation for large values of Eq. 2,

with the rejection threshold chosen to insure a false-positive probability of at mostα. As detailed

in section 5, this test is uniformly most powerful. In other words, the likelihood-ratio test has the

largest possible power to detect conservation in theFOSST, no matter what the unknown mutation

rater. This answers the question raised in section 2 of finding an optimal decision rule.

We derive two more properties of theFOSSTlikelihood-ratio test in section 5. First, its power is

lower against the alternativer = rC than against any other alternativer < rC , so studying the case

r = rC provides conservative power bounds. Second, it is equivalent to the intuitive test which

declares conservation whenn(x0,x) is large, that is, when many descendant bases agree with the

ancestral base.

The power of theFOSST and HASST likelihood-ratio tests can be computed exactly, as de-

scribed in section 6. Figure 1 shows an example for fixed(rC , rN , α), ast andk vary. For each

t, power increases monotonically ink, as one would expect. However, for eachk, power does not

increase monotonically int. Instead, there is a unique power-maximizing branch lengtht∗(k). The

existence oft∗(k) implies that maximizing additive divergence, as in [9], is suboptimal: for each

k, the optimal tree has finite divergencek · t∗(k), rather than arbitrarily large divergence. On the

other hand, ask increases,t∗(k) stabilizes at a positive value (Figure 2), so the optimal divergence
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k · t∗(k) does grow without bound as a function ofk.

We can explain the existence oft∗(k) in the SST, using the Jukes-Cantor process or any other

substitution process which is stationary, Markov, and continuous, as follows. Fixk. At t = 0, the

distributionp(x; r) in an SST is the same for everyr. ThusH0 andHA coincide. In this circum-

stance, the power is equal toα. As t → ∞, the distribution of each descendant base approaches

the process’s stationary distribution, independent of the ancestral base. Since the stationary distri-

bution does not involver, all distributions inH0 andHA converge to the same limit. The limiting

power int is therefore againα. The fact that power begins atα whent = 0 and approachesα as

t →∞, plus the fact that power is continuous int and greater thanα on(0,∞), implies a maximal

powert∗(k) must be attained.

Comparing Figures 1A and 1B shows that the likelihood-ratio test’s power in theFOSSTclosely

matches its power in theHASST, in a large interval aroundt∗(k). For a givent andk, no HASST

testing procedure can have higher power than theFOSSTlikelihood-ratio test, because the latter is

optimal in theFOSSTand uses more data (namely,x0). These facts suggest the likelihood-ratio

test should have very good power properties in theHASST. By analogy, we expect it to have good

power in general phylogenies as well. We therefore proceed with likelihood-ratio testing in our

empirical analysis.

4 Empirical Power Analysis

We explored subtree power maximization empirically, using the previously-reported CFTR se-

quence data [6] on 21 representative vertebrates (see Table 3, which is published as supporting

information on the PNAS website). We constructed a multiple alignment usingMAVID [16]. We

then used maximum likelihood [17, 14] to fit a phylogenetic tree topology and branch lengths

to the alignment. The fitted branch lengths were initially measured as expected substitutions at

a neutrally-evolving site. However, we wanted the tree to have unscaled branch lengths (branch
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lengths underr = 1) corresponding to a typical evolutionary rate for exons in vertebrate genomes,

which is around half the neutral rate. This allows us to userC = 1 as an exonic conserved rate

threshold, withrN = 2 corresponding to neutral evolution andrN > 2 to positive selection. We

therefore divided all branch lengths in the initial tree by two. The result is shown in Figure 3, which

is published as supporting information on the PNAS website. Both the phylogeny estimation and

subsequent power analysis employed the nucleotide substitution process of Felsenstein [18], using

a transition-transversion ratio of 2:1 and a uniform equilibrium nucleotide distribution.

There are two assumptions required to apply the testing procedure globally. First, we assume

we can restrict the candidate phylogenetic distributions for a previously-unobserved alignment

column to those with a certain fixed topology and relative branch lengths. Second, we assume the

fixed topology and relative branch lengths can be inferred from data in a region which might not

contain the column being tested. The first assumption validates the formulation of the test in terms

of the scaling parameterr. It can be checked, for example, by fitting one tree for each of several

rate categories, in cases where the appropriate rate category for a collection of sites is known with

confidence. If the trees from each rate category happen to have the same topology and relative

branch lengths, the first assumption appears reasonable. The second assumption validates the use

of a tree estimated in one region for a test in another. It can be checked by fitting trees to different

regions and comparing their topologies and relative branch lengths.

Cooper et al. [9] have checked both assumptions empirically in two regions, with three different

rate categories: codons, UTRs, and non-exonic DNA. Fixing the consensus topology for their eight

species, they found strong evidence that relative branch lengths are stable across rates and between

regions. Similarly, Yap and Pachter [19] studied the stability of relative branch lengths in a whole-

genome human/mouse/rat alignment, where the topology is known. They considered four rate

categories: ancient repeats, exons, rodent-specific insertions, and strongly conserved sequence.

They too found stable relative branch lengths across most regions, genome-wide. These results

tend to justify the assumptions behind the subtree-power testing procedure. The fact that topologies
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were not inferred in these studies reflects the reality that, in practice, much is usually known about

topology in advance.

The goal is now to maximize the likelihood-ratio test’s power over subsets of sizek chosen

from the 21 species, for various values ofk. This entails searching for the maximal-power family

subtree, ork-most-powerful Steiner subtree (k-MPSS), among the
(
21
k

)
subtrees withk leaves. A

Steiner subtree onk leaves is the unique smallest subtree rooted at their last common ancestor.

Finding thek-MPSS is a combinatorial optimization problem, which we solve in small to

moderate-sized cases by evaluating the power of the likelihood-ratio test using every candidate

Steiner subtree. We can also solve the problem for largerk, by constraining the species at many of

the leaves in the subtree. The power computation for a particular subtree is described in section 6.3.

Table 1 shows thek-MPSS(starred) in comparison to the subtree onk leaves with largest addi-

tive divergence (thek-most-divergent Steiner subtree, ork-MDSS, daggered). The latter has been

the focus of previous work [4, 20, 9]. These two subtree selection criteria do not coincide. For

instance, atrN = 2, the 5-MPSS includes the dunnart, whereas the 5-MDSS instead uses the platy-

pus. Thet-statistic on the difference in power is2.06, so variability in the power estimate is not a

likely explanation. A more extreme example isrN = 10: the 4-MPSSand 4-MDSS have only one

species in common, and the absolute loss in power that results from using the 4-MDSS is nearly

8.5% (t-statistic 105.7). Here, more than 4,400 subtrees have higher power than the 4-MDSS. The

disagreement at larger values ofk, where subtree topology becomes more complicated, highlights

the importance of including a realistic phylogenetic topology in the species selection procedure.

We carried out a similar comparison, under the constraint that the nine completely or partially

sequenced vertebrates in the data set appear in the subtree (Table 2). This reveals the species

whose addition to the current sequencing mix would most improve the power to detect single-

site conservation. As in Table 1, the most-powerful and most-divergent subtrees generally differ.

The differences in power are smaller than in Table 1. This may be because forcing half of the

phylogeny’s leaves to appear in the subtree limits the possible power increase from any subtree
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selection method.

The pattern of disagreement betweenMDSS and MPSS in Table 2 is not systematic: when

rN = 5, for example, they disagree at 10 and 11 species, agree at 12 and 13, and disagree at 14.

Table 1 exhibits similar properties. Thus, theMDSS is not a reliable approximation to theMPSS.

Table 2 reveals that the single most beneficial species to sequence next is the dunnart (improving

power by a relative 12.5%), whereas the species which adds the most evolutionary divergence is

the platypus.

Our fitted phylogenetic topology differs slightly from estimates based on considerations of

large-scale indel mutations and morphology, for example in its placement of the chicken and platy-

pus. At issue here, however, is its suitability for a single-site power analysis under a substitutional

mutation model. We chose our tree estimation procedure to obtain a phylogeny directed to this

goal.

5 Monotone Likelihood Ratio in the FOSST

Here we derive properties of theFOSSTlikelihood-ratio test, using the notion of a monotone likeli-

hood ratio [15]. Fixk andt. LetP = {p(x0,x; r) : r > 0} be the family ofFOSSTprobability mass

functions using the Jukes-Cantor substitution process, indexed by rate parameterr. ThenP has a

monotone likelihood ratio in the statisticn(x0,x): for each pair of rate parametersrN > rC > 0,

Eq. 2 is an increasing function ofn = n(x0,x) ∈ {0, 1, . . . , k}. This follows upon observing that,

becauserN > rC ,
1 + 3e−4rCt

1 + 3e−4rN t
> 1 and

1− e−4rCt

1− e−4rN t
< 1 .

It is now a standard result of monotone likelihood-ratio theory that the likelihood-ratio test is uni-

formly most powerful. The theory also implies that the power functionr 7→ Pr

{
Tα(X0,X) rejects

}

is monotonic inr. From this we conclude that the sizeα is attained at the null distributionr = rN ,

and the lowest power is attained at the alternative distributionr = rC . As a further consequence of
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the monotone likelihood ratio, the likelihood-ratio test is equivalent to rejecting for large values of

n(x0,x). This is an intuitive procedure, which declares conservation when few descendant bases

have mutated.

6 Power Calculations

6.1 FOSST

In this section we employ the Jukes-Cantor substitution process. The power ofTα(x0,x) against

the particular alternativer = rC can be written explicitly as a function ofk andt:

ρ(k, t) = GA(nα + 1; k) +

(
α−G0(nα + 1; k)

f0(nα; k)

)
fA(nα; k) . (3)

The notation in Eq. 3 is defined as follows.f0(·; k) is the probability mass function of a binomial

random variable withk trials and success probabilityd(rN , t) = (1 + 3 exp(−4rN t))/4. fA(·; k)

is the same, but usingd(rC , t). G0(·; k) andGA(·; k) are the corresponding cumulative binomial

right-tail probabilities, andnα is a known critical value. To derive Eq. 3, recall from section 5

thatTα(x0,x) is equivalent to the test which rejectsH0 when the statisticn(x0,x) exceeds a cor-

respondingnα. Both tests thus have the same powerρ(k, t). Let P0 andPA denote the distribution

of n(X0,X) underr = rN (the size-determining distribution) andr = rC , respectively. Because

n(x0,x) can take on only finitely many values, we use randomized rejection to achieve level ex-

actly α. The critical value isnα = min{n : P0(n(X0,X) > n) ≤ α}. Whenn(x0,x) > nα, we

reject. Whenn(x0,x) = nα, we reject with probabilityγ(α) satisfying

P0(n(X0,X) > nα) + γ(α)P0(n(X0,X) = nα) = α . (4)

This implies that setting

γ(α) =
α− P0(n(X0,X) > nα)

P0(n(X0,X) = nα)
(5)
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guarantees a test with sizeα. It now follows that

ρ(k, t) = PA(n(X0,X) > nα) + γ(α)PA(n(X0,X) = nα) . (6)

Each descendant nucleotideXi has probabilityd(r, t) of differing fromX0, independent of all other

descendants. Thusn(X0,X) is a binomial random variable withk trials and success probability

d(r, t). Eq. 3 follows upon substitutingG0(nα + 1; k) for P0(n(X0,X) > nα), f0(nα; k) for

P0(n(X0,X) = nα), and similarly forPA.

Eq. 3 involves only known constants and binomial probabilities, which can be evaluated quickly

to desired accuracy [21]. This allows us to computeρ(k, t) for many choices ofk andt, leading

to the power curves in Figure 1A. The kinks in each power curve correspond to values oft at

which the critical value of the likelihood-ratio test changes. The locations of the kinks are easily

determined, and the power curves are smooth between kinks. Thus, we can findt∗(k) andρ∗(k)

rapidly using numerical optimization (Figure 1A, Figure 2A).

6.2 HASST

We use the Jukes-Cantor substitution process in this section also. Here, the likelihood-ratio statistic

has the form ∑
x0

(1 + 3e−4rCt)n(x0,x)(1− e−4rCt)k−n(x0,x)

∑
x0

(1 + 3e−4rN t)n(x0,x)(1− e−4rN t)k−n(x0,x)
. (7)

This is more difficult to deal with than Eq. 2. It is clear that Eq. 7 depends only on the occurrence

counts of the four different bases, not on the leaf configuration which gives rise to the counts.

Furthermore, Eq. 7 is invariant when the bases associated with the counts are permuted. This

means that there are only as many distinct values of Eq. 7 as there are integer partitions ofk into

four parts(n1, n2, n3, n4), with partition values of zero allowed. The number of leaf configurations

corresponding to each integer partition is the combinatorial quantity

(
4

ñ1 ñ2 ñ3 ñ4

)(
k

n1 n2 n3 n4

)
, (8)
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where(ñ1, ñ2, ñ3, ñ4) counts repetitions in(n1, n2, n3, n4). For example, if(n1, n2, n3, n4) =

(11, 6, 4, 4), then(ñ1, ñ2, ñ3, ñ4) = (2, 1, 1, 0). We can generate all the required integer partitions

quickly, even fork in the hundreds.

Multiplying the HASSTprobability mass at each integer partition by the partition’s correspond-

ing value of Eq. 8 results in the exact probability mass function of the likelihood-ratio statistic.

Thus, we can compute the null distribution (r = rN ) and alternative distribution (r = rC) of Eq. 7,

for each required setting of(α, rN , k, t). This yields the power of theHASST likelihood-ratio test,

using Eq. 5 and Eq. 6 with theHASST distribution functions substituted forP0 andPA. We then

maximize each curveρ(k, ·) numerically to determinet∗(k) andρ∗(k) (Figure 1B, Figure 2B).

6.3 General Phylogenies

The empirical analysis of section 4 uses a general topology, with the Felsenstein substitution pro-

cess. Letx1, . . . , xk be a leaf subset of sizek in such a phylogeny, and letak+1, . . . , a2k−1 be the

k − 1 ancestral nodes in the corresponding Steiner subtree. The likelihood-ratio statistic based on

the leaf subset has the form
∑

ak+1
· · ·∑a2k−1

∏2k−1
i=k+1 p(ai| aπ(i), rCti)

∏k
j=1 p(xj| aπ(j), rCtj)∑

ak+1
· · ·∑a2k−1

∏2k−1
i=k+1 p(ai| aπ(i), rN ti)

∏k
j=1 p(xj| aπ(j), rN tj)

. (9)

Here π(m) is the index of nodem’s parent,tm is the length of the branch coming into node

m, andp(y|x, rt) is the Felsenstein substitution probability for basey starting from basex over

evolutionary distancert [18]. The numerator and denominator can be computed efficiently using

the Felsenstein pruning algorithm [14].

To compute the power of a test based on Eq. 9 in section 4, we used a Monte Carlo strategy.

For each setting ofrN , with α = 0.05, we generated 100,000 realizations from the null (r = rN )

and alternative (r = rC) distributions on the leaves of the full phylogeny. This induced null and

alternative empirical distributions on the leaves of every possible subtree. From these we obtained

approximations to the true null and alternative distributions of the likelihood-ratio statistic. This
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yielded approximate critical values, as well as power estimates. We repeated the whole process ten

times for each parameter setting, to assess variability in the Monte Carlo procedure.

7 Discussion

Our decision-theoretic point of view puts the focus on the important issue in detecting conser-

vation: the two kinds of discrimination errors and their probabilities. The probability of falsely

declaring conservation is controlled at a specified levelα, and subject to this constraint the prob-

ability of overlooking conservation is minimized (power is maximized). Within a given lineal

scope, species chosen according to the decision-theoretic power criterion generally differ from

those chosen to maximize total evolutionary divergence. We have demonstrated this difference

both theoretically and empirically.

Even when the most powerful set of species coincides with the most divergent set, the power

calculation is more relevant: it measures the marginal benefit of additional sequenced species

as an increase in detection probability. This lets us choose a species countk which optimizes

the tradeoff between the benefit of detecting conservation and the cost of additional sequencing.

Additive divergence, on the other hand, does not directly measure anything intrinsic to the problem

of conservation detection.

Since the phylogeny and substitution process are parameters of our procedure, their choice

can and should be tailored to particular investigations. Our emphasis on single-site detection of

conservation will lead to conservative power estimates in situations where conservation is tested

for simultaneously across multiple sites. However, modeling multiple-site detection requires addi-

tional assumptions on the form of across-site dependence, which we have avoided.
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Figure 1. Power to detect conservation as a function of common branch length for the fully-

observed (A) and hidden-ancestor (B)SSTs, usingrC = 1, rN = 2, andα = 0.05. Each power

curve corresponds to an even numberk of observed descendant species, from two (bottommost

curve) to 100 (topmost). The maximum power attained for eachk is indicated by a grey dot. The

power against the alternativer = rC is shown; power against any other alternative is larger. Curves

computed with other values ofrN andα remain qualitatively the same (not shown).

Figure 2. The optimal common branch lengtht∗(k) in the fully-observed (A) and hidden-

ancestor (B)SSTs, as a function of the number of descendant speciesk. Each black curve uses

the indicated nonconserved raterN = 2, 3, 5, 7 with α = 0.05; grey curves are analogous with

α = 0.01. As k increases,t∗(k) stabilizes at a value depending onrN but notα. For the larger

rN ’s, the curves are terminated when power reaches 99.9%.
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Table 1. Thek-MPSSandk-MDSS as a function of the nonconserved raterN and the
sizek of the subtree, withα = 0.05 throughout. Results are across 10 repetitions of the
Monte Carlo power estimation procedure. The last three columns display the average
power (and standard error), thet-statistic for the power difference between thek-MDSS

and thek-MPSS(in cases where they differ), and the average power ranking (among all
subtrees). SincerC is calibrated to exonic conservation, the settings ofrN range from
a neutral rate (rN = 2) (19) towards extreme single-site mutability.

t vs.
rN Size Species:? = MPSS, † = MDSS Power% (SE) MPSS Rank

2 Rat, Zebrafish?† 6.79 (0.01) 1.3
3 Rat, Zebrafish, Chicken?† 8.30 (0.01) 1.6

2 4 Rat, Zebrafish, Chicken, Dog?† 9.61 (0.02) 3.3
5 Rat, Zebrafish, Chicken, Dog, Dunnart? 10.88 (0.03) 4.4

Rat, Zebrafish, Chicken, Dog, Platypus† 10.80 (0.02) 2.06 21.7
2 Rat, Zebrafish?† 10.60 (0.02) 3.2
3 Rat, Zebrafish, Chicken?† 21.61 (0.06) 1.8

5 4 Rat, Zebrafish, Chicken, Dog?† 39.33 (0.17) 5.2
5 Rabbit, Cat, Dunnart, Chicken, Hedgehog? 49.96 (0.07) 12.2

Rat, Zebrafish, Chicken, Dog, Platypus† 47.31 (0.07) 25.82 3894.4
2 Dunnart, Lemur? 13.30 (0.03) 21.0

Rat, Zebrafish† 12.67 (0.02) 16.67 153.0
3 Dunnart, Cat, Zebrafish? 37.53 (0.11) 10.4

10 Rat, Zebrafish, Chicken† 36.83 (0.12) 4.13 77.2
4 Dunnart, Chicken, Hedgehog, Opossum? 64.69 (0.05) 4.4

Rat, Zebrafish, Chicken, Dog† 56.21 (0.06) 105.70 4439.3
5 Macaque, Lemur, Dog, Cow, Pig? 69.75 (0.11) 8.6

Rat, Zebrafish, Chicken, Dog, Platypus† 66.86 (0.07) 22.28 4867.4



Table 2. Thek-MPSSandk-MDSS, under the constraint that the following nine species
are included in the subtree: human, mouse, rat, chimpanzee, dog, chicken, fugu, ze-
brafish, and tetraodon. The scheme of the table is the same as Table 1.

t vs.

rN Size New species:? = MPSS, † = MDSS Power% (SE) MPSS Rank

9 {clamped species only} 12.81 (0.03)

10 Dunnart? 14.42 (0.04) 1.1

Platypus† 14.25 (0.04) 2.92 3.4

2 11 Dunnart, Platypus? 16.08 (0.05) 1.6

Platypus, Hedgehog† 15.85 (0.04) 3.62 6.2

12 Dunnart, Platypus, Hedgehog?† 17.88 (0.06) 1.5

13 Dunnart, Platypus, Hedgehog, Rabbit?† 19.80 (0.08) 1.1

14 Dunnart, Platypus, Hedgehog, Rabbit, Cow?† 21.41 (0.08) 1.6

9 {clamped species only} 56.44 (0.16)

10 Dunnart? 65.59 (0.20) 1.0

Platypus† 64.74 (0.17) 3.18 3.0

11 Dunnart, Opossum? 71.05 (0.09) 2.3

5 Platypus, Hedgehog† 70.54 (0.06) 4.74 14.6

12 Dunnart, Platypus, Hedgehog?† 72.77 (0.08) 1.2

13 Dunnart, Platypus, Hedgehog, Rabbit?† 76.02 (0.13) 1.0

14 Dunnart, Platypus, Hedgehog, Rabbit, Opossum? 80.41 (0.10) 2.2

Dunnart, Platypus, Hedgehog, Rabbit, Cow† 80.08 (0.14) 1.88 2.1

9 {clamped species only} 86.61 (0.06)

10 Platypus?† 91.67 (0.06) 1.3

11 Dunnart, Opossum? 94.07 (0.02) 3.3

Platypus, Hedgehog† 93.96 (0.03) 2.66 10.7

10 12 Dunnart, Platypus, Rabbit? 95.84 (0.03) 2.4

Dunnart, Platypus, Hedgehog† 95.79 (0.30) 1.30 4.4

13 Dunnart, Platypus, Rabbit, Opossum? 97.31 (0.02) 4.6

Dunnart, Platypus, Rabbit, Hedgehog† 97.29 (0.02) 0.85 6.6

14 Dunnart, Platypus, Rabbit, Hedgehog, Opossum? 97.99 (0.01) 2.4

Dunnart, Platypus, Rabbit, Hedgehog, Cow† 97.95 (0.02) 1.83 7.6
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