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Abstract
Dyadic data refers to a domain with two �nite sets of objects in
which observations are made for dyads, i.e., pairs with one element
from either set. This type of data arises naturally in many ap-
plication ranging from computational linguistics and information
retrieval to preference analysis and computer vision. In this paper,
we present a systematic, domain-independent framework of learn-
ing from dyadic data by statistical mixture models. Our approach
covers di�erent models with 
at and hierarchical latent class struc-
tures. We propose an annealed version of the standard EM algo-
rithm for model �tting which is empirically evaluated on a variety
of data sets from di�erent domains.

1 Introduction

Over the past decade learning from data has become a highly active �eld of re-
search distributed over many disciplines like pattern recognition, neural compu-
tation, statistics, machine learning, and data mining. Most domain-independent
learning architectures as well as the underlying theories of learning have been fo-
cusing on a feature-based data representation by vectors in an Euclidean space. For
this restricted case substantial progress has been achieved. However, a variety of
important problems does not �t into this setting and far less advances have been
made for data types based on di�erent representations.

In this paper, we will present a general framework for unsupervised learning from
dyadic data. The notion dyadic refers to a domain with two (abstract) sets of ob-
jects, X = fx1; : : : ; xNg and Y = fy1; : : : ; yMg in which observations S are made for
dyads (xi; yk). In the simplest case { on which we focus { an elementary observation
consists just of (xi; yk) itself, i.e., a co-occurrence of xi and yk, while other cases
may also provide a scalar value wik (strength of preference or association). Some ex-
emplary application areas are: (i) Computational linguistics with the corpus-based
statistical analysis of word co-occurrences with applications in language modeling,
word clustering, word sense disambiguation, and thesaurus construction. (ii) Text-
based information retrieval, where X may correspond to a document collection, Y
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to keywords, and (xi; yk) would represent the occurrence of a term yk in a document
xi. (iii) Modeling of preference and consumption behavior by identifying X with
individuals and Y with objects or stimuli as in collaborative �ltering. (iv) Computer
vision, in particular in the context of image segmentation, where X corresponds to
image locations, Y to discretized or categorical feature values, and a dyad (xi; yk)
represents a feature yk observed at a particular location xi.

2 Mixture Models for Dyadic Data

Across di�erent domains there are at least two tasks which play a fundamental role
in unsupervised learning from dyadic data: (i) probabilistic modeling, i.e., learning
a joint or conditional probability model over X�Y, and (ii) structure discovery, e.g.,
identifying clusters and data hierarchies. The key problem in probabilistic modeling
is the data sparseness: How can probabilities for rarely observed or even unobserved
co-occurrences be reliably estimated? As an answer we propose a model-based ap-
proach and formulate latent class or mixture models. The latter have the further
advantage to o�er a unifying method for probabilistic modeling and structure dis-
covery. There are at least three (four, if both variants in (ii) are counted) di�erent
ways of de�ning latent class models:

i. The most direct way is to introduce an (unobserved) mapping c : X �Y !
fc1; : : : ; cKg that partitions X � Y into K classes. This type of model is
called aspect-based and the pre-image c�1(c�) is referred to as an aspect.

ii. Alternatively, a class can be de�ned as a subset of one of the spaces X (or Y
by symmetry, yielding a di�erent model), i.e., c : X ! fc1; : : : ; cKg which
induces a unique partitioning on X � Y by c(xi; yk) � c(xi). This model is
referred to as one-sided clustering and c�1(c�) � X is called a cluster.

iii. If latent classes are de�ned for both sets, c : X ! fcx1 ; : : : ; c
x
Kg and c :

Y ! fcy1; : : : ; c
y
Lg, respectively, this induces a mapping c which is a K �L {

partitioning of X � Y. This model is called two-sided clustering.

2.1 Aspect Model for Dyadic Data

In order to specify an aspect model we make the assumption that all co-occurrences
in the sample set S are i.i.d. and that xi and yk are conditionally independent given
the class. With parameters P (xijc�), P (ykjc�) for the class-conditional distributions
and prior probabilities P (c�) the complete data probability can be written as

P (S; c) =
Y
i;k

[P (cik)P (xijcik)P (ykjcik)]
n(xi;yk) ; (1)

where n(xi; yk) are the empirical counts for dyads in S and cik � c(xi; yk). By
summing over the latent variables c the usual mixture formulation is obtained

P (S) =
Y
i;k

P (xi; yk)
n(xi;yk); where P (xi; yk) =

X
�

P (c�)P (xijc�)P (ykjc�) : (2)

Following the standard Expectation Maximization approach for maximumlikelihood
estimation [Dempster et al., 1977], the E-step equations for the class posterior prob-
abilities are given by1

Pfcik = c�g / P (c�)P (xijc�)P (yj jc�) : (3)

1In the case of multiple observations of dyads it has been assumed that each observation
may have a di�erent latent class. If only one latent class variable is introduced for each
dyad, slightly di�erent equations are obtained.
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Figure 1: Some aspects of the Bible (bigrams).

It is straightforward to derive the M-step re-estimation formulae

P (c�) /
X
i;k

n(xi; yk)Pfcik = c�g; P (xijc�) /
X
k

n(xi; yk)Pfcik = c�g; (4)

and an analogous equation for P (ykjc�). By re-parameterization the aspect model
can also be characterized by a cross-entropy criterion. Moreover, formal equiva-
lence to the aggregate Markov model, independently proposed for language model-
ing in [Saul, Pereira, 1997], has been established (cf. [Hofmann, Puzicha, 1998] for
details).

2.2 One-Sided Clustering Model

The complete data model proposed for the one-sided clustering model is

P (S; c) = P (c)P (Sjc) =

 Y
i

P (c(xi))

!0@Y
i;k

[P (xi)P (ykjc(xi))]
n(xi;yk)

1
A ; (5)

where we have made the assumption that observations (xi; yk) for a particular xi
are conditionally independent given c(xi). This e�ectively de�nes the mixture

P (S) =
Y
i

P (Si); P (Si) =
X
�

P (c�)
Y
k

[P (xi)P (ykjc�)]
n(xi;yk) ; (6)

where Si are all observations involving xi. Notice that co-occurrences in Si are not
independent (as they are in the aspect model), but get coupled by the (shared)
latent variable c(xi). As before, it is straightforward to derive an EM algorithm
with update equations

Pfc(xi)=c�g/P (c�)
Y
k

P (ykjc�)
n(xi;yk); P (ykjc�)/

X
i

n(xi; yk)Pfc(xi)=c�g (7)

and P (c�) /
P

i Pfc(xi) = c�g, P (xi) /
P

j n(xi; yj). The one-sided clustering

model is similar to the distributional clustering model [Pereira et al., 1993], how-
ever, there are two important di�erences: (i) the number of likelihood contributions
in (7) scales with the number of observations { a fact which follows from Bayes' rule
{ and (ii) mixing proportions are missing in the original distributional clustering
model. The one-sided clustering model corresponds to an unsupervised version of
the naive Bayes' classi�er, if we interpret Y as a feature space for objects xi 2 X .
There are also ways to weaken the conditional independence assumption, e.g., by
utilizing a mixture of tree dependency models [Meila, Jordan, 1998].

2.3 Two-Sided Clustering Model

The latent variable structure of the two-sided clustering model signi�cantly reduces
the degrees of freedom in the speci�cation of the class conditional distribution. We
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Figure 2: Exemplary segmentation results on Aerial by one{sided clustering.

propose the following complete data model

P (S; c) =
Y
i;k

P (c(xi))P (c(yk))
�
P (xi)P (yk)�c(xi);c(yk)

�n(xi;yk)
(8)

where �cx�;c
y


are cluster association parameters. In this model the latent variables

in the X and Y space are coupled by the �{parameters. Therefore, there exists
no simple mixture model representation for P (S). Skipping some of the technical
details (cf. [Hofmann, Puzicha, 1998]) we obtain P (xi) /

P
k
n(xi; yk), P (yk) /P

i n(xi; yk) and the M-step equations

�cx�;c
y


=

P
i;k n(xi; yk)Pfc(xi) = cx� ^ c(yk) = cy
g

[
P

i Pfc(xi) = cx�g
P

k n(xi; yk)] [
P

k Pfc(yk) = c
y

g
P

i n(xi; yk)]
(9)

as well as P (cx�) =
P

i Pfc(xi) = cx�g and P (cy
) =
P

k Pfc(xk) = cy
g. To preserve
tractability for the remaining problem of computing the posterior probabilities in
the E-step, we apply a factorial approximation (mean �eld approximation), i.e.,
Pfc(xi) = cx� ^ c(yk) = cy
g � Pfc(xi) = cx�gPfc(yk) = cy
g. This results in the
following coupled approximation equations for the marginal posterior probabilities

Pfc(xi) = cx�g / P (cx�) exp

"X
k

n(xi; yk)
X



Pfc(yk) = cy
g log�cx�;c
y



#
(10)

and a similar equation for Pfc(yk) = cy
g. The resulting approximate EM algorithm
performs updates according to the sequence (cx{post., �, cy{post., �). Intuitively
the (probabilistic) clustering in one set is optimized in alternation for a given clus-
tering in the other space and vice versa. The two{sided clustering model can also
be shown to maximize a mutual information criterion [Hofmann, Puzicha, 1998].

2.4 Discussion: Aspects and Clusters

To better understand the di�erences of the presented models it is elucidating to
systematically compare the conditional probabilities P (c�jxi) and P (c�jyk):

Aspect One-sided One-sided Two-sided
Model X Clustering Y Clustering Clustering

P (c�jxi)
P (xijc�)P (c�)

P (xi)
Pfc(xi) = c�g

P (xijc�)P (c�)
P (xi)

Pfc(xi) = cx�g

P (c�jyk)
P (ykjc�)P (c�)

P (yk)
P (ykjc�)P (c�)

P (yk)
Pfc(yk) = c�g Pfc(yk) = cy�g

As can be seen from the above table, probabilities P (c�jxi) and P (c�jyk) correspond
to posterior probabilities of latent variables if clusters are de�ned in the X{ and
Y{space, respectively. Otherwise, they are computed from model parameters. This
is a crucial di�erence as, for example, the posterior probabilities are approaching



T. Hofmann, J. Puzicha, M. Jordan: Learning from Dyadic Data, NIPS*98 5

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1:

voice
face
body
head
light

2:

work
idea
book
job
manner

3:

word
line
impression
statement
style

4:

power
war
size
test
weapon

5:

behaviour
floor
trip
leave
companion

6:

place
field
person
section
study

7:

life
nature
being
spirit
name

8:

worker
demand
informant
acid
glance

9:
party

country
system
sense
market

10:
society

family
court
child
community

11:
experience
reason
result
knowledge
feature

12:
position
course
unit
trade
control

13:
expression
desire
atmosphere
space
note

14:
world

town
method
movement
view

15:
water

eye
hair
fish
milk

16:
attitude
thought
tradition
programme
division

17:
deal
friend
example

night
bird

18:
land
music
metal

blow
stone

19:
way
thing
hand

area

side

20:
authority
government
paper

council

committee

21:
figure
piece
shape

sound

wind

22:
soil
spot
iron

ship

drink

23:
number
amount
scale

report

majority

24:
change
term
property

action

effort

25:
man
time
people
year

day

26:
value
level
rate
price

cost

27:
smile
frame
crowd
baby

phrase

28:
effect
quality
solution
picture

colour

29:
interest
condition
development
meeting

activity

30:
service
school
purpose
class

agreement

31:
part
form
problem
case

type

32:
feeling
love
letter
silence

heart

1:

complete
natural
official
separate
growing

2:
good
great
fine
bad
close

3:
strange
thin
soft
bitter
plain

4:
sudden
sharp
powerful
friendly
curious

5:
true
hard
excellent
ancient
famous

6:
whole
right
wide
left
opposite

7:
old
young
little
early
short

8:
high
final
low
ordinary
average

9:
nuclear
western
apparent
atomic
potential

10:
human
divine
holy
peaceful
continued

11:
special
important
particular
various

basic

12:
large
certain
considerable
total
annual

13:
common
foreign
technical
open
medical

14:
small
big
suitable
given

light

15:
tiny
perfect
native
distant

violent

16:
empty
brilliant
endless
sacred
clever

17:

slight
vertical
severe
awful
theatrical

18:

similar

single
strong
regular
obvious

19:

electric

massive
gentle
cool
cheap

20:

double

huge
tremendous
occasional
firm

21:

national

general
public
social
private

22:

different
real
original
possible
simple

23:

new

present
modern
serious
existing

24:

royal
extended
closed
heavenly
reciprocal

25:

long

poor

happy
golden
beautiful

26:

red

cold

black
dark
hot

27:

heavy
literary
familiar
pure
solid

28:

full

military

free
professional
musical

29:

deep

daily

quick
mixed
square

30:

local

white

central
legal
eastern

31:

interesting
usual
successful
remarkable
historical

32:

political

personal

economic
individual
industrial

Figure 3: Two{sided clustering of LOB: � matrix and most probable words.

Boolean values in the in�nite data limit and P (ykjxi) =
P

� Pfc(xi)=c�gP (ykjc�)
are converging to one of the class-conditional distributions. Yet, in the aspect model
P (ykjxi) =

P
� P (c�jxi)P (ykjc�) and P (c�jxi) / P (c�)P (xijc�) are typically not

peaking more sharply with an increasing number of observations. In the aspect
model, conditionals P (ykjxi) are inherently a weighted sum of the `prototypical'
distributions P (ykjc�). Cluster models in turn ultimately look for the `best' class-
conditional and weights are only indirectly induced by the posterior uncertainty.

3 The Cluster-Abstraction Model

The models discussed in Section 2 all de�ne a non-hierarchical, `
at' latent class
structure. However, for structure discovery it is important to �nd hierarchical data
organizations. There are well-known architectures like the Hierarchical Mixtures
of Experts [Jordan, Jacobs, 1994] which �t hierarchical models. Yet, in the case
of dyadic data there is an alternative possibility to de�ne a hierarchical model.
The Cluster-Abstraction Model (CAM) is a clustering model (e.g., in X ) where
the conditionals P (ykjc�) are itself xi{speci�c aspect mixtures, P (ykjc�; xi) =P

� P (ykja�)P (a�jc�; xi) with a latent aspect mapping a. To obtain a hierarchi-
cal organization, clusters c� are identi�ed with the terminal nodes of a hierarchy
(e.g., a complete binary tree) and aspects a� with inner and terminal nodes. As
a compatibility constraint it is imposed that P (a�jc�; xi) = 0 whenever the node
corresponding to a� is not on the path to the terminal node c�. Intuitively, con-
ditioned on a `horizontal' clustering c all observations (xi; yk) 2 Si for a particular
xi have to be generated from one of the `vertical' abstraction levels on the path to
c(xi). Since di�erent clusters share aspects according to their topological relation,
this favors a meaningful hierarchical organization of clusters. Moreover, aspects at
inner nodes do not simply represent averages over clusters in their subtree as they
are forced to explicitly represent what is common to all subsequent clusters.

Skipping the technical details, the E-step is given by

Pfa(xi; yk) = a�jc(xi) = c�g / P (a�jc�; xi)P (ykja�) (11)

Pfc(xi) = c�g / P (c�)
Y
k

X
�

[P (a�jc�; xi)P (ykja�)]
n(xi;yk) (12)

and the M-step formulae are P (ykja�) /
P

i
Pfa(xi; yk) = a�gn(xi; yk), P (c�) /P

i
Pfc(xi) = c�g, and P (a�jc�; xi) /

P
k Pfa(xi; yk) = a�jc(xi) = c�gn(xi; yk).
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Figure 4: Parts of the top levels of a hierarchical clustering solution for the Neural
document collection, aspects are represented by their 5 most probable word stems.

4 Annealed Expectation Maximization

Annealed EM is a generalization of EM based on the idea of deterministic anneal-
ing [Rose et al., 1990] that has been successfully applied as a heuristic optimization
technique to many clustering and mixture problems. Annealing reduces the sensitiv-
ity to local maxima, but, even more importantly in this context, it may also improve
the generalization performance compared to maximum likelihood estimation.2 The
key idea in annealed EM is to introduce an (inverse temperature) parameter �,
and to replace the negative (averaged) complete data log-likelihood by a substitute
known as the free energy (both are in fact equivalent at � = 1). This e�ectively
results in a simple modi�cation of the E-step by taking the likelihood contribution
in Bayes' rule to the power of �. In order to determine the optimal value for � we
used an additional validation set in a cross validation procedure.

5 Results and Conclusions

In our experiments we have utilized the following real-world data sets: (i) Cran�eld:
a standard test collection from information retrieval (N = 1400, M = 4898), (ii)
Penn: adjective-noun co-occurrences from the Penn Treebank corpus (N = 6931,
M = 4995) and the LOB corpus (N = 5448, M = 6052), (iii) Neural: a document
collection with abstracts of journal papers on neural networks (N =1278,M=6065),
(iv) Bible: word bigrams from the bible edition of the Gutenberg project (N=M =
12858), (v)Aerial: Textured aerial images for segmentation (N =128�128,M=192).

In Fig. 1 we have visualized an aspect model �tted to the Bible bigram data. Notice
that although X = Y the role of the preceding and the subsequent words in bigrams
is quite di�erent. Segmentation results obtained on Aerial applying the one-sided
clustering model are depicted in Fig. 2. A multi-scale Gabor �lter bank (3 octaves,
4 orientations) was utilized as an image representation (cf. [Hofmann et al., 1998]).
In Fig. 3 a two{sided clustering solution of LOB is shown. Fig. 4 shows the top
levels of the hierarchy found by the Cluster-Abstraction Model in Neural. The
inner node distributions provide resolution-speci�c descriptors for the documents
in the corresponding subtree which can be utilized, e.g., in interactive browsing
for information retrieval. Fig. 5 shows typical test set perplexity curves of the

2Moreover, the tree topology for the CAM is heuristically grown via phase transitions.
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Figure 5: Perplexity curves for annealed EM (aspect (a), (b) and one-sided cluster-
ing model (c)) on the Bible and Cran data.

Aspect X -cluster CAM X/Y-cluster Aspect X -cluster CAM X/Y-cluster
K β P β P β P β P β P β P β P β P

Cran Penn

1 - 685 - - - - - - - 639 - - - - - -
8 0.88 482 0.09 527 0.18 511 0.67 615 0.73 312 0.08 352 0.13 322 0.55 394

16 0.72 255 0.07 302 0.10 268 0.51 335 0.72 255 0.07 302 0.10 268 0.51 335
32 0.83 386 0.07 452 0.12 438 0.53 506 0.71 205 0.07 254 0.08 226 0.46 286
64 0.79 360 0.06 527 0.11 422 0.48 477 0.69 182 0.07 223 0.07 204 0.44 272

128 0.78 353 0.04 663 0.10 410 0.45 462 0.68 166 0.06 231 0.06 179 0.40 241

Table 1: Perplexity results for di�erent models on the Cran (predicting words condi-
tioned on documents) and Penn data (predicting nouns conditioned on adjectives).

annealed EM algorithm for the aspect and clustering model (P = e�l where l is
the per-observation log-likelihood). At � = 1 (standard EM) over�tting is clearly
visible, an e�ect that vanishes with decreasing �. Annealed learning performs also
better than standard EM with early stopping. Tab. 1 systematically summarizes
perplexity results for di�erent models and data sets.

In conclusion mixture models for dyadic data have shown a broad application po-
tential. Annealing yields a substantial improvement in generalization performance
compared to standard EM, in particular for clustering models, and also outper-
forms a complexity control via K. In terms of perplexity, the aspect model has
the best performance. Detailed performance studies and comparisons with other
state-of-the-art techniques will appear in forthcoming papers.
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