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Abstract—We consider the problem of decentralized detection
under constraints on the number of bits that can be transmitted by
each sensor. In contrast to most previous work, in which the joint
distribution of sensor observations is assumed to be known, we ad-
dress the problem when only a set of empirical samples is available.
We propose a novel algorithm using the framework of empirical
risk minimization and marginalized kernels and analyze its com-
putational and statistical properties both theoretically and empiri-
cally. We provide an efficient implementation of the algorithm and
demonstrate its performance on both simulated and real data sets.

Index Terms—Decentralized detection, kernel methods, non-
parametric, statistical ML.

I. INTRODUCTION

ADECENTRALIZED detection system typically involves a
set of sensors that receive observations from the environ-

ment but are permitted to transmit only a summary message (as
opposed to the full observation) back to a fusion center. On the
basis of its received messages, this fusion center then chooses
a final decision from some number of alternative hypotheses
about the environment. The problem of decentralized detection
is to design the local decision rules at each sensor, which deter-
mine the messages that are relayed to the fusion center, as well
a decision rule for the fusion center itself [27]. A key aspect
of the problem is the presence of communication constraints,
meaning that the sizes of the messages sent by the sensors back
to the fusion center must be suitably “small” relative to the raw
observations, whether measured in terms of either bits or power.
The decentralized nature of the system is to be contrasted with a
centralized system, in which the fusion center has access to the
full collection of raw observations.

Such problems of decentralized decision-making have been
the focus of considerable research in the past two decades [7],
[8], [26], [27]. Indeed, decentralized systems arise in a variety of
important applications, ranging from sensor networks, in which
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each sensor operates under severe power or bandwidth con-
straints, to the modeling of human decision-making, in which
high-level executive decisions are frequently based on lower
level summaries. The large majority of the literature is based on
the assumption that the probability distributions of the sensor
observations lie within some known parametric family (e.g.,
Gaussian and conditionally independent) and seek to charac-
terize the structure of optimal decision rules. The probability of
error is the most common performance criterion, but there has
also been a significant amount of work devoted to other criteria,
such as criteria based on Neyman–Pearson or minimax formula-
tions. See Blum et al. [7] and Tsitsiklis [27] for comprehensive
surveys of the literature.

More concretely, let be a random variable,
representing the two possible hypotheses in a binary hypoth-
esis-testing problem. Moreover, suppose that the system con-
sists of sensors, each of which observes a single component
of the -dimensional vector . One starting
point is to assume that the joint distribution falls within
some parametric family. Of course, such an assumption raises
the modeling issue of how to determine an appropriate para-
metric family and how to estimate parameters. Both of these
problems are very challenging in contexts such as sensor net-
works, given highly inhomogeneous distributions and a large
number of sensors. Our focus in this paper is on relaxing this
assumption and developing a method in which no assumption
about the joint distribution is required. Instead, we
posit that a number of empirical samples are given.

In the context of centralized signal detection problems, there
is an extensive line of research on nonparametric techniques,
in which no specific parametric form for the joint distribution

is assumed (see, e.g., Kassam [17] for a survey). In the
decentralized setting, however, it is only relatively recently that
nonparametric methods for detection have been explored. Sev-
eral authors have taken classical nonparametric methods from
the centralized setting and shown how they can also be applied
in a decentralized system. Such methods include schemes based
on Wilcoxon signed-rank test statistic [21], [32], as well as the
sign detector and its extensions [1], [12], [14]. These methods
have been shown to be quite effective for certain types of joint
distributions.

Our approach to decentralized detection in this paper is
based on a combination of ideas from reproducing-kernel
Hilbert spaces [2], [24] and the framework of empirical risk
minimization from nonparametric statistics. Methods based
on reproducing-kernel Hilbert spaces (RKHSs) have figured
prominently in the literature on centralized signal detection and
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estimation for several decades, e.g., [16] and [33]. More recent
work in statistical machine learning, e.g., [25], has demon-
strated the power and versatility of kernel methods for solving
classification or regression problems on the basis of empirical
data samples. Roughly speaking, kernel-based algorithms in
statistical machine learning involve choosing a function, which,
though linear in the RKHS, induces a nonlinear function in the
original space of observations. A key idea is to base the choice
of this function on the minimization of a regularized empir-
ical risk functional. This functional consists of the empirical
expectation of a convex loss function , which represents an
upper bound on the 0–1 loss (the 0–1 loss corresponds to the
probability of error criterion), combined with a regularization
term that restricts the optimization to a convex subset of the
RKHS. It has been shown that suitable choices of margin-based
convex loss functions lead to algorithms that are robust both
computationally [25], as well as statistically [3], [34]. The use
of kernels in such empirical loss functions greatly increases
their flexibility so that they can adapt to a wide range of under-
lying joint distributions.

In this paper, we show how kernel-based methods and empir-
ical risk minimization are naturally suited to the decentralized
detection problem. More specifically, a key component of the
methodology that we propose involves the notion of a marginal-
ized kernel, where the marginalization is induced by the trans-
formation from the observations to the local decisions .
The decision rules at each sensor, which can be either proba-
bilistic or deterministic, are defined by conditional probability
distributions of the form , while the decision at the fu-
sion center is defined in terms of and a linear func-
tion over the corresponding RKHS. We develop and analyze an
algorithm for optimizing the design of these decision rules. It
is interesting to note that this algorithm is similar in spirit to
a suite of locally optimum detectors in the literature [e.g., [7]],
in the sense that one step consists of optimizing the decision
rule at a given sensor while fixing the decision rules of the rest,
whereas another step involves optimizing the decision rule of
the fusion center while holding fixed the local decision rules at
each sensor. Our development relies heavily on the convexity
of the loss function , which allows us to leverage results from
convex analysis [23] to derive an efficient optimization proce-
dure. In addition, we analyze the statistical properties of our al-
gorithm and provide probabilistic bounds on its performance.

While the thrust of this paper is to explore the utility of
recently-developed ideas from statistical machine learning for
distributed decision-making, our results also have implications
for machine learning. In particular, it is worth noting that most
of the machine learning literature on classification is abstracted
away from considerations of an underlying communication-the-
oretic infrastructure. Such limitations may prevent an algorithm
from aggregating all relevant data at a central site. Therefore,
the general approach described in this paper suggests inter-
esting research directions for machine learning—specifically
in designing and analyzing algorithms for communication-con-
strained environments.1

1For a related problem of distributed learning under communication con-
straints and its analysis, see a recent paper by Predd et al. [22].

The remainder of the paper is organized as follows. In
Section II, we provide a formal statement of the decentralized
decision-making problem and show how it can be cast as a
learning problem. In Section III, we present a kernel-based
algorithm for solving the problem, and we also derive bounds
on the performance of this algorithm. Section IV is devoted to
the results of experiments using our algorithm, in application
to both simulated and real data. Finally, we conclude the paper
with a discussion of future directions in Section V.

II. PROBLEM FORMULATION AND A SIMPLE STRATEGY

In this section, we begin by providing a precise formulation
of the decentralized detection problem to be investigated in this
paper and show how it can be cast in a statistical learning frame-
work. We then describe a simple strategy for designing local
decision rules, based on an optimization problem involving the
empirical risk. This strategy, though naive, provides intuition for
our subsequent development based on kernel methods.

A. Formulation of the Decentralized Detection Problem

Suppose is a discrete-valued random variable, representing
a hypothesis about the environment. Although the methods that
we describe are more generally applicable, the focus of this
paper is the binary case, in which the hypothesis variable
takes values in . Our goal is to form an estimate

of the true hypothesis, based on observations collected from
a set of sensors. More specifically, for each , let

represent the observation at sensor , where denotes
the observation space. The full set of observations corresponds
to the -dimensional random vector

, drawn from the conditional distribution .
We assume that the global estimate is to be formed by

a fusion center. In the centralized setting, this fusion center
is permitted access to the full vector of
observations. In this case, it is well known [30] that optimal
decision rules, whether under Bayes error or Neyman–Pearson
criteria, can be formulated in terms of the likelihood ratio

. In contrast, the defining feature
of the decentralized setting is that the fusion center has access
only to some form of summary of each observation , for

. More specifically, we suppose that each sensor
is permitted to transmit a message , taking values

in some space . The fusion center, in turn, applies some deci-
sion rule to compute an estimate of
based on its received messages.

In this paper, we focus on the case of a discrete observa-
tion space—say . The key constraint, giving
rise to the decentralized nature of the problem, is that the cor-
responding message space is considerably
smaller than the observation space (i.e., ). The problem
is to find, for each sensor , a decision rule

, as well as an overall decision rule
at the fusion center minimize the Bayes risk

. We assume that the joint distribution is un-
known, but that we are given independent and identically dis-
tributed (i.i.d.) data points sampled from .
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Fig. 1. Decentralized detection system with S sensors, in which Y is the
unknown hypothesis X = (X ; . . . ;X ) is the vector of sensor observations,
and Z = (Z ; . . . ; Z ) are the quantized messages transmitted from sensors
to the fusion center.

Fig. 1 provides a graphical representation of this decentral-
ized detection problem. The single node at the top of the figure
represents the hypothesis variable , and the outgoing arrows
point to the collection of observations . The
local decision rules lie on the edges between sensor observa-
tions and messages . Finally, the node at the bottom is the
fusion center, which collects all the messages.

Although the Bayes-optimal risk can always be achieved by
a deterministic decision rule [27], considering the larger space
of stochastic decision rules confers some important advantages.
First, such a space can be compactly represented and parame-
terized, and prior knowledge can be incorporated. Second, the
optimal deterministic rules are often very hard to compute, and
a probabilistic rule may provide a reasonable approximation
in practice. Accordingly, we represent the rule for the sensors

by a conditional probability distribution .
The fusion center makes its decision by applying a deterministic
function of . The overall decision rule consists of
the individual sensor rules and the fusion center rule.

The decentralization requirement for our detection/classifica-
tion system, i.e., that the decision or quantization rule for sensor

must be a function only of the observation , can be translated
into the probabilistic statement that be condition-
ally independent given :

(1)

In fact, this constraint turns out to be advantageous from a com-
putational perspective, as will be clarified in the sequel. We use

to denote the space of all factorized conditional distributions
and to denote the subset of factorized conditional

distributions that are also deterministic.

B. Simple Strategy Based on Minimizing Empirical Risk

Suppose that we have as our training data pairs for
. Note that each , as a particular realization of

the random vector , is an -dimensional signal vector
. Let be the unknown underlying proba-

bility distribution for . The probabilistic setup makes it
simple to estimate the Bayes risk, which is to be minimized.

Consider a collection of local quantization rules made at the
sensors, which we denote by . For each such set of
rules, the associated Bayes risk is defined by

(2)

Here, the expectation is with respect to the probability dis-
tribution . It is clear that no
decision rule at the fusion center (i.e., having access only to )
has Bayes risk smaller than . In addition, the Bayes risk

can be achieved by using the decision function

sign

It is key to observe that this optimal decision rule cannot be
computed because is not known, and is to
be determined. Thus, our goal is to determine the rule
that minimizes an empirical estimate of the Bayes risk based
on the training data . In Lemma 1, we show that the
following is one such unbiased estimate of the Bayes risk:

(3)

In addition, can be estimated by the decision function
sign . Since is a discrete

random vector, the following lemma, proved in the Appendix,
shows that the optimal Bayes risk can be estimated easily, re-
gardless of whether the input signal is discrete or continuous.

Lemma 1:

a) If for all and
, then

.
b) As , and tend to and

almost surely, respectively.
The significance of Lemma 1 is in motivating the goal of

finding decision rules to minimize the empirical error
. It is equivalent, using (3), to maximize

(4)

subject to the constraints that define a probability distribution

(5)

for all values of and and
The major computational difficulty in the optimization

problem defined by (4) and (5) lies in the summation over all
possible values of . One way to avoid this obstacle

is by maximizing instead the following function:

Expanding the square and using the conditional independence
condition (1) leads to the following equivalent form for :

(6)

Note that the conditional independence condition (1) on allow
us to compute in time, as opposed to .
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While this simple strategy is based directly on the empirical
risk, it does not exploit any prior knowledge about the class of
discriminant functions for . As we discuss in the following
section, such knowledge can be incorporated into the classifier
using kernel methods. Moreover, the kernel-based decentralized
detection algorithm that we develop turns out to have an inter-
esting connection to the simple approach based on .

III. KERNEL-BASED ALGORITHM

In this section, we turn to methods for decentralized detec-
tion based on empirical risk minimization and kernel methods
[2], [24], [25]. We begin by introducing some background and
definitions necessary for subsequent development. We then mo-
tivate and describe a central component of our decentralized de-
tection system—namely, the notion of a marginalized kernel.
Our method for designing decision rules is based on an opti-
mization problem, which we show how to solve efficiently. Fi-
nally, we derive theoretical bounds on the performance of our
decentralized detection system.

A. Empirical Risk Minimization and Kernel Methods

In this section, we provide some background on empirical risk
minimization and kernel methods. The exposition given here is
necessarily very brief; see the books [24], [25], and [33] for
more details. Our starting point is to consider estimating with
a rule of the form sign , where is a
discriminant function that lies within some function space to be
specified. The ultimate goal is to choose a discriminant function

to minimize the Bayes error , or equivalently to
minimize the expected value of the following 0–1 loss:

sign (7)

This minimization is intractable, both because the function
is not well-behaved (i.e., nonconvex and nondifferentiable), and
because the joint distribution is unknown. However, since
we are given a set of i.i.d. samples , it is natural
to consider minimizing a loss function based on an empirical
expectation, as motivated by our development in Section II-B.
Moreover, it turns out to be fruitful, for both computational and
statistical reasons, to design loss functions based on convex sur-
rogates to the 0–1 loss.

Indeed, a variety of classification algorithms in statistical ma-
chine learning have been shown to involve loss functions that
can be viewed as convex upper bounds on the 0–1 loss. For ex-
ample, the support vector machine (SVM) algorithm [25] uses
a hinge loss function:

(8)

On the other hand, the logistic regression algorithm [11] is based
on the logistic loss function:

(9)

Finally, the standard form of the boosting classification algo-
rithm [10] uses a exponential loss function:

(10)

Intuition suggests that a function with small -risk
should also have a small Bayes risk

sign . In fact, it has been established rigorously that
convex surrogates for the (nonconvex) 0–1 loss function, such
as the hinge (8) and logistic loss (9) functions, have favorable
properties both computationally (i.e., algorithmic efficiency),
and in a statistical sense (i.e., bounds on both approximation
error and estimation error) [3], [34].

We now turn to consideration of the function class from
which the discriminant function is to be chosen. Kernel-based
methods for discrimination entail choosing from within a
function class defined by a positive semidefinite kernel, which
is defined as follows (see [24]).

Definition 1: A real-valued kernel function is a symmetric
bilinear mapping . It is positive semidefinite,
which means that for any subset drawn from ,
the Gram matrix is positive semidefinite.

Given any such kernel, we first define a vector space of func-
tions mapping to the real line through all sums of the form

(11)

where are arbitrary points from , , and
. We can equip this space with a kernel-based inner product

by defining , and then ex-
tending this definition to the full space by bilinearity. Note that
this inner product induces, for any function of the form (11), the
kernel-based norm .

Definition 2: The reproducing kernel Hilbert space asso-
ciated with a given kernel consists of the kernel-based inner
product, and the closure (in the kernel-based norm) of all func-
tions of the form (11).

As an aside, the term “reproducing” stems from the fact for
any , we have , showing that the
kernel acts as the representer of evaluation [24].

In the framework of empirical risk minimization, the discrim-
inant function is chosen by minimizing a cost function
given by the sum of the empirical -risk and a
suitable regularization term

(12)

where is a regularization parameter that serves to
limit the richness of the class of discriminant functions. The
Representer Theorem [25, Th. 4.2] guarantees that the op-
timal solution to problem (12) can be written in the form

, for a particular vector .
The key here is that sum ranges only over the observed data
points .

For the sake of development in the sequel, it will be conve-
nient to express functions as linear discriminants in-
volving the feature map . (Note that for each

, the quantity is a function from
to the real line .) Any function in the Hilbert space can be
written as a linear discriminant of the form for some
function . (In fact, by the reproducing property, we have
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). As a particular case, the Representer Theorem al-
lows us to write the optimal discriminant as ,
where .

B. Fusion Center and Marginalized Kernels

With this background, we first consider how to design the
decision rule at the fusion center for a fixed setting
of the sensor quantization rules. Since the fusion center rule
can only depend on , our starting point is a
feature space with associated kernel . Following the
development in the previous section, we consider fusion center
rules defined by taking the sign of a linear discriminant of the
form . We then link the performance of to
another kernel-based discriminant function that acts directly
on , where the new kernel associated with

is defined as a marginalized kernel in terms of and
.

The relevant optimization problem is to minimize (as a func-
tion of ) the following regularized form of the empirical -risk
associated with the discriminant

(13)

where is a regularization parameter. In its current form,
the objective function (13) is intractable to compute (because it
involves summing over all possible values of of a loss func-
tion that is generally nondecomposable). However, exploiting
the convexity of allows us to perform the computation exactly
for deterministic rules in and leads to a natural relaxation for
an arbitrary decision rule . This idea is formalized in the
following.

Proposition 1: Define the quantities2

(14)
For any convex , the optimal value of the following optimiza-
tion problem is a lower bound on the optimal value in problem
(13):

(15)

Moreover, the relaxation is tight for any deterministic rule
.

Proof: The lower bound follows by applying Jensen’s
inequality to the function yields

for each .
A key point is that the modified optimization problem (15)

involves an ordinary regularized empirical -loss, but in terms
of a linear discriminant function in the
transformed feature space defined in (14). Moreover,
the corresponding marginalized kernel function takes the form

(16)

2To be clear, for each x, the quantity � (x) is a function on Z .

where is the kernel in
-space. It is straightforward to see that the posi-

tive semidefiniteness of implies that is also a positive
semidefinite function.

From a computational point of view, we have converted the
marginalization over loss function values to a marginalization
over kernel functions. While the former is intractable, the latter
marginalization can be carried out in many cases by exploiting
the structure of the conditional distributions . (In
Section III-C, we provide several examples to illustrate.) From
the modeling perspective, it is interesting to note that marginal-
ized kernels, like that of (16), underlie recent work that aims
at combining the advantages of graphical models and Mercer
kernels [15], [28].

As a standard kernel-based formulation, the optimization
problem (15) can be solved by the usual Lagrangian dual
formulation [25], thereby yielding an optimal weight vector .
This weight vector defines the decision rule for the fusion center
by taking the sign of discriminant function .
By the Representer Theorem [25], the optimal solution to
problem (15) has an expansion of the form

where is an optimal dual solution, and the second equality
follows from the definition of given in (14). Substituting
this decomposition of into the definition of yields

(17)

Note that there is an intuitive connection between the discrim-
inant functions and . In particular, using the definitions of

and , it can be seen that , where the
expectation is taken with respect to . The interpre-
tation is quite natural: When conditioned on some , the average
behavior of the discriminant function , which does not ob-
serve , is equivalent to the optimal discriminant , which
does have access to .

C. Design and Computation of Marginalized Kernels

As seen in the previous section, the representation of dis-
criminant functions and depends on the kernel functions

and , and not on the explicit representation
of the underlying feature spaces and . It is also
shown in the next section that our algorithm for solving and

requires only the knowledge of the kernel functions and
. Indeed, the effectiveness of a kernel-based algorithm typi-

cally hinges heavily on the design and computation of its kernel
function(s).

Accordingly, let us now consider the computational issues as-
sociated with marginalized kernel , assuming that has
already been chosen. In general, the computation of
entails marginalizing over the variable , which (at first glance)
has computational complexity on the order of . How-
ever, this calculation fails to take advantage of any structure in
the kernel function . More specifically, it is often the case
that the kernel function can be decomposed into local
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functions, in which case the computational cost is consider-
ably lower. Here we provide a few examples of computationally
tractable kernels.

Computationally Tractable Kernels: Perhaps the sim-
plest example is the linear kernel ,
for which it is straightforward to derive

.
A second example, which is natural for applications in which

and are discrete random variables, is the count kernel.
Let us represent each discrete value as a -di-
mensional vector , whose th coordinate takes
value 1. If we define the first-order count kernel

, then the resulting marginalized kernel takes
the form

(18)

(19)

A natural generalization is the second-order count kernel
that accounts for

the pairwise interaction between coordinates and . For this
example, the associated marginalized kernel takes
the form

(20)

Remarks: First, note that even for a linear base kernel ,
the kernel function inherits additional (nonlinear) structure
from the marginalization over . As a consequence, the
associated discriminant functions (i.e., and ) are certainly
not linear. Second, our formulation allows any available prior
knowledge to be incorporated into in at least two possible
ways: i) The base kernel representing a similarity measure in
the quantized space of can reflect the structure of the sensor
network, or ii) more structured decision rules can be
considered, such as chain or tree-structured decision rules.

D. Joint Optimization

Our next task is to perform joint optimization of both the fu-
sion center rule, defined by [or equivalently , as in (17)],
and the sensor rules . Observe that the cost function (15) can
be re-expressed as a function of both and as follows:

(21)
Of interest is the joint minimization of the function in both
and . It can be seen easily that

a) is convex in with fixed;
b) is convex in when both and all other

are fixed.

These observations motivate the use of blockwise coordinate
gradient descent to perform the joint minimization.

Optimization of : As described in Section III-B, when
is fixed, then can be computed efficiently by a
dual reformulation. Specifically, as we establish in the following
result using ideas from convex duality [23], a dual reformulation
of is given by

(22)

where is the conjugate dual of
, is the empirical kernel matrix, and

denotes Hadamard product.
Proposition 2: For each fixed , the value of the primal

problem is attained and equal to its dual form
(22). Furthermore, any optimal solution to problem (22) de-
fines the optimal primal solution to via

.
Proof: It suffices for our current purposes to restrict to the

case where the functions and can be viewed as vectors
in some finite-dimensional space—say . However, it is pos-
sible to extend this approach to the infinite-dimensional setting
by using conjugacy in general normed spaces [19].

A remark on notation before proceeding: since is fixed,
we drop from for notational convenience (i.e., we
write ). First, we observe that is
convex with respect to and that as .
Consequently, the infimum defining the primal problem

is attained. We now re-write this primal problem
as ,
where denotes the conjugate dual of .

Using the notation and
, we can decompose as the sum
. This decomposition allows us to compute

the conjugate dual via the inf-convolution theorem (Thm.
16.4; Rockafellar [23]) as follows:

(23)

The function is the composition of a convex function with
the linear function so that [23, Th. 16.3]
yields the conjugate dual as follows:

if

for some otherwise (24)

A straightforward calculation yields
. Substituting these expressions into

(23) leads to
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from which it follows that

Thus, we have derived the dual form (22). See the Appendix
for the remainder of the proof, in which we derive the link be-
tween and the dual variables .

This proposition is significant in that the dual problem in-
volves only the kernel matrix . Hence, one
can solve for the optimal discriminant functions or

without requiring explicit knowledge of the under-
lying feature spaces and . As a particular ex-
ample, consider the case of hinge loss function (8), as used in
the SVM algorithm [25]. A straightforward calculation yields

if
otherwise.

Substituting this formula into (22) yields, as a special case, the
familiar dual formulation for the SVM:

Optimization of : The second step is to minimize over
, with and all other held fixed. Our approach is

to compute the derivative (or more generally, the subdifferential)
with respect to and then apply a gradient-based method. A
challenge to be confronted is that is defined in terms of feature
vectors , which are typically high-dimensional quantities.
Indeed, although it is intractable to evaluate the gradient at an
arbitrary , the following result, proved in the Appendix, estab-
lishes that it can always be evaluated at the point for
any .

Lemma 2: Let be the optimizing argument of
, and let be an optimal solution to the dual

problem (22). Then, the element

is an element of the subdifferential evaluated at
.3

Note that this representation of the (sub)gradient involves
marginalization over of the kernel function and, there-
fore, can be computed efficiently in many cases, as described
in Section III-C. Overall, the blockwise coordinate descent al-

3The subgradient is a generalized counterpart of the gradient for nondiffer-
entiable convex functions [13], [23]; in particular, a vector s 2 is a subgra-
dient of a convex function f : ! , meaning f(y) � f(x) + hs; y � xi
for all y 2 . The subdifferential at a point x is the set of all subgradients. In
our cases, G is nondifferentiable when � is the hinge loss (8) and differentiable
when � is the logistic loss (9) or exponential loss (10).

gorithm for optimizing the local quantization rules has the fol-
lowing form:

Kernel quantization (KQ) algorithm:

a) With fixed, compute the opti-
mizing by solving the dual
problem (22).

b) For some index , fix and
and take a gradient step

in using Lemma 2.

Upon convergence, we define a determin-
istic decision rule for each sensor via

(25)

First, note that the updates in this algorithm consist of alter-
natively updating the decision rule for a sensor while fixing the
decision rules for the remaining sensors and the fusion center
and updating the decision rule for the fusion center while fixing
the decision rules for all other sensors. In this sense, our ap-
proach is similar in spirit to a suite of practical algorithms (e.g.,
[27]) for decentralized detection under particular assumptions
on the joint distribution . Second, using standard re-
sults [5], it is possible to guarantee convergence of such coordi-
nate-wise updates when the loss function is strictly convex and
differentiable [e.g., logistic loss (9) or exponential loss (10)]. In
contrast, the case of nondifferentiable [e.g., hinge loss (8)] re-
quires more care. We have, however, obtained good results in
practice even in the case of hinge loss. Third, it is interesting to
note the connection between the KQ algorithm and the naive ap-
proach considered in Section II-B. More precisely, suppose that
we fix such that all are equal to one, and let the base kernel

be constant (and thus entirely uninformative). Under these
conditions, the optimization of with respect to reduces to
exactly the naive approach.

E. Estimation Error Bounds

This section is devoted to analysis of the statistical properties
of the KQ algorithm. In particular, our goal is to derive bounds
on the performance of our classifier when applied to new
data, as opposed to the i.i.d. samples on which it was trained. It
is key to distinguish between two forms of -risk.

a) The empirical -risk is defined by an expec-
tation over , where is the empirical
distribution given by the i.i.d. samples .

b) The true -risk is defined by taking an ex-
pectation over the joint distribution .

In designing our classifier, we made use of the empirical -risk
as a proxy for the actual risk. On the other hand, the appropriate
metric for assessing performance of the designed classifier is
the true -risk . At a high level, our procedure for
obtaining performance bounds can be decomposed into the fol-
lowing steps.

1) First, we relate the true -risk to the true
-risk for the functions (and
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) that are computed at intermediate stages of our al-
gorithm. The latter quantities are well-studied objects in
statistical learning theory.

2) The second step to relate the empirical -risk
to the true -risk . In general, the true -risk
for a function in some class is bounded by the empir-
ical -risk plus a complexity term that captures the “rich-
ness” of the function class [3], [34]. In particular, we
make use of the Rademacher complexity as a measure of
this richness.

3) Third, we combine the first two steps to derive bounds
on the true -risk in terms of the empirical

-risk of and the Rademacher complexity.
4) Finally, we derive bounds on the Rademacher complexity

in terms of the number of training samples , as well as
the number of quantization levels and .

Step 1: For each , the class of functions over which
we optimize is given by

s.t.

(26)

where is a constant. Note that is simply the class
of functions associated with the marginalized kernel . The
function class over which our algorithm performs the optimiza-
tion is defined by the union , where is the
space of all factorized conditional distributions . Lastly,
we define the function class , corresponding
to the union of the function spaces defined by marginalized ker-
nels with deterministic distributions .

Any discriminant function (or ), defined by a vector
, induces an associated discriminant function via (17). Rele-

vant to the performance of the classifier is the expected -loss
, whereas the algorithm actually minimizes (the

empirical version of) . The relationship between
these two quantities is expressed in the following proposition.

Proposition 3:

a) We have , with equality
when is deterministic.

b) Moreover, it holds that

(27)
The same statements also hold for empirical expectations.

Proof: Applying Jensen’s inequality to the convex func-
tion yields

where we have used the conditional independence of and
, given . This establishes inequality ii), and the lower

bound i) follows directly. Moreover, part a) also implies that
, and the upper

bound (27) follows since .

Step 2: The next step is to relate the empirical -risk for
(i.e., ) to the true -risk (i.e., ). Recall
that the Rademacher complexity of the function class is de-
fined [29] as

where the Rademacher variables are independent
and uniform on , and are i.i.d. samples se-
lected according to distribution . In the case that is Lipschitz
with constant , the empirical and true risk can be related via the
Rademacher complexity as follows [18]. With probability that
at least with respect to training samples , which
is drawn according to the empirical distribution , it holds that

(28)
Moreover, the same bound applies to .

Step 3: Combining the bound (28) with Proposition 3leads
to the following theorem, which provides generalization error
bounds for the optimal -risk of the decision function learned by
our algorithm in terms of the Rademacher complexities
and :

Theorem 1: Given i.i.d. labeled data points ,
with probability at least

Proof: Using bound (28), with probability at least ,
for any

Combining with bound i) in (27), we have, with probability

which proves the lower bound of the theorem with probability at
least . The upper bound is similarly true with probability at
least . Hence, both are true with probability at least
by the union bound.

Step 4: So that Theorem 1has useful meaning, we need to de-
rive upper bounds on the Rademacher complexity of the func-
tion classes and . Of particular interest is the decrease
in the complexity of and with respect to the number of
training samples , as well as their growth rate with respect to
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the number of discrete signal levels , number of quantization
levels , and the number of sensors . The following proposi-
tion, proved in the Appendix, derives such bounds by exploiting
the fact that the number of 0–1 conditional probability distribu-
tions is finite (namely, ).

Proposition 4:

(29)

Note that the upper bound involves a linear dependence on con-
stant , assuming that —this provides a statistical
justification of minimizing in the formulation (13). Al-
though the rate given in (29) is not tight in terms of the number of
data samples , the bound is nontrivial and is relatively simple.
(In particular, it depends directly on the kernel function , the
number of samples , quantization levels , number of sensors

, and size of observation space .)
We can also provide a more general and possibly tighter

upper bound on the Rademacher complexity based on the
concept of entropy number [29]. Indeed, an important property
of the Rademacher complexity is that it can be estimated
reliably from a single sample . Specifically, if we
define (where the
expectation is w.r.t. the Rademacher variables only), then
it can be shown using McDiarmid’s inequality that is
tightly concentrated around with high probability [4].
Concretely, for any , it holds that

(30)

Hence, the Rademacher complexity is closely related to its em-
pirical version , which can be related to the concept of en-
tropy number. In general, define the covering number
for a set to be the minimum number of balls of diameter that
completely cover (according to a metric ). The -entropy
number of is then defined as . In particular, if we
define the metric on an empirical sample
as , then
it is well known [29] that for some absolute constant , it holds
that

(31)

The following result, which is proved in the Appendix, relates
the entropy number for to the supremum of the entropy
number taken over a restricted function class .

Proposition 5: The entropy number of
is bounded above by

(32)

Moreover, the same bound holds for .

Fig. 2. Examples of graphical models P (X;Y ) of our simulated sensor
networks. (a) Chain-structured dependency. (b) Fully connected (not all
connections shown).

This proposition guarantees that the increase in the entropy
number in moving from some to the larger class is only

. Consequently, we incur at most an
increase in the upper bound (31)

for [as well as ]. Moreover, the Rademacher
complexity increases with the square root of the number
of quantization levels .

IV. EXPERIMENTAL RESULTS

We evaluated our algorithm using both data from simulated
and real sensor networks and real-world data sets. First, we con-
sider three types of simulated sensor network configurations:

Conditionally Independent Observations: In this example,
the observations are independent conditional on

. We consider networks with 10 sensors , each of
which receive signals with eight levels . We applied
the algorithm to compute decision rules for . In all cases,
we generate training samples, and the same number
for testing. We performed 20 trials on each of 20 randomly gen-
erated models .

Chain-Structured Dependency: A conditional independence
assumption for the observations, though widely employed in
most work on decentralized detection, may be unrealistic in
many settings. For instance, consider the problem of detecting
a random signal in noise [30], in which represents the
hypothesis that a certain random signal is present in the environ-
ment, whereas represents the hypothesis that only i.i.d.
noise is present. Under these assumptions will be
conditionally independent given , since all sensors re-
ceive i.i.d. noise. However, conditioned on (i.e., in the
presence of the random signal), the observations at spatially ad-
jacent sensors will be dependent, with the dependence decaying
with distance.

In a 1-D setting, these conditions can be modeled with a
chain-structured dependency and the use of a count kernel to
account for the interaction among sensors. More precisely, we
consider a setup in which five sensors are located in a line such
that only adjacent sensors interact with each other. More specif-
ically, the sensors and are independent given
and , as illustrated in Fig. 2. We implemented the kernel-based
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Fig. 3. Scatter plots of the test error of the LR versus KQ methods. (a) Conditionally independent network. (b) Chain model with first-order kernel. (c), (d) Chain
model with second-order kernel. (d) Fully connected model.

quantization algorithm using either first- or second-order count
kernels, and the hinge loss function (8), as in the SVM algo-
rithm. The second-order kernel is specified in (20) but with the
sum taken over only such that .

Spatially Dependent Sensors: As a third example, we
consider a 2-D layout in which, conditional on the random
target being present , all sensors interact but with
the strength of interaction decaying with distance. Thus,

is of the form

Here, the parameter represents parameter at individual sen-
sors, whereas controls the dependence among sensors. The
distribution can be modeled in the same way
with parameter and setting so that the sensors are
conditionally independent. In simulations, we generate

, where is the distance between sensor and ,
and the parameter and are randomly chosen in . We
consider a sensor network with nine nodes (i.e., ), arrayed
in the 3 3 lattice illustrated in Fig. 2(b). Since computation of
this density is intractable for moderate-sized networks, we gen-
erated an empirical data set by Gibbs sampling.

We compare the results of our algorithm to an alternative
decentralized classifier based on performing a likelihood-ratio
(LR) test at each sensor. Specifically, for each sensor , the
estimates for

of the likelihood ratio are sorted and grouped
evenly into bins, resulting in a simple and intuitive likeli-
hood-ratio based quantization scheme. Note that the estimates

are obtained from the training data. Given the quantized input
signal and label , we then construct a naive Bayes classifier at
the fusion center. This choice of decision rule provides a rea-
sonable comparison since thresholded likelihood ratio tests are
optimal in many cases [27].

The KQ algorithm generally yields more accurate classifi-
cation performance than the likelihood-ratio based algorithm
(LR). Fig. 3 provides scatter plots of the test error of the KQ
versus LQ methods for four different setups, using levels
of quantization. Fig. 3(a) shows the naive Bayes setting and
the KQ method using the first-order count kernel. Note that the
KQ test error is below the LR test error on the large majority
of examples. Fig. 3(b) and (c) shows the case of chain-struc-
tured dependency, as illustrated in Fig. 2(a), using a first- and
second-order count kernel, respectively. Again, the performance
of KQ in both cases is superior to that of LR in most cases. Fi-
nally, Fig. 3(d) shows the fully connected case of Fig. 2(b) with
a first-order kernel. The performance of KQ is somewhat better
than LR, although by a lesser amount than the other cases.
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Fig. 4. (a) Sensor field (top) and a Mica sensor mote (bottom). (b) Comparison of test errors of the decentralized KQ algorithm and centralized SVM and NBC
algorithms on different problem instances.

Real Sensor Network Data Set: We evaluated our algorithm
on a real sensor network using Berkeley tiny sensor motes (Mica
motes) as the base stations. The goal of the experiment is to
determine the locations of light sources given the light signal
strength received by a number of sensors deployed in the net-
work. Specifically, we fix a particular region in the plane (i.e.,
sensor field) and ask whether the light source’s projection onto
the plane is within this region or not [see Fig. 4(a)]. The light
signal strength received by each sensor mote requires 10 bits to
store, and we wish to reduce the size of each sensor message
being sent to the fusion center to only 1 or 2 bits. Our hard-
ware platform consists of 25 sensors placed 10 in apart on a
5 5 grid in an indoor environment. We performed 25 detec-
tion problems corresponding to 25 circular regions of radius 30
in distributed uniformly over the sensor field. For each problem
instance, there are 25 training positions (i.e., empirical samples)
and 81 test positions.

The performance of the KQ algorithm is compared to cen-
tralized detection algorithms based on a Naive Bayes classifier
(NBC) and the SVM algorithm using a Gaussian kernel.4 The
test errors of these algorithms are shown in Fig. 4(b). Note that
the test algorithm of the KQ algorithm improves considerably
by relaxing the communication constraints from 1 to 2 bits. Fur-
thermore, with the 2-bit bandwidth constraint, the KQs test er-
rors are comparable with that of the centralized SVM algorithm
on most problem instances. On the other hand, the centralized
NBC algorithm does not perform well on this data set.

UCI Repository Data Sets: We also applied our algorithm
to several data sets from the machine learning data repository

4The sensor observations are initially quantized into m = 10 bins, which
then serves as input to the NBC and KQ algorithm.

TABLE I
EXPERIMENTAL RESULTS FOR THE UCI DATA SETS

at the University of California, Irvine (UCI) [6]. In contrast to
the sensor network detection problem in which communication
constraints must be respected, the problem here can be viewed
as that of finding a good quantization scheme that retains in-
formation about the class label. Thus, the problem is similar in
spirit to work on discretization schemes for classification [9].
The difference is that we assume that the data have already been
crudely quantized (we use levels in our experiments) and
that we retain no topological information concerning the relative
magnitudes of these values that could be used to drive classical
discretization algorithms. Overall, the problem can be viewed as
hierarchical decision-making, in which a second-level classifi-
cation decision follows a first-level set of decisions concerning
the features. We used 75% of the data set for training and the
remainder for testing. The results for our algorithm with ,
4, and 6 quantization levels are shown in Table I. Note that
in several cases, the quantized algorithm actually outperforms
a naive Bayes algorithm (NB) with access to the real-valued
features. This result may be due in part to the fact that our
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quantizer is based on a discriminative classifier, but it is worth
noting that similar improvements over naive Bayes have been
reported in earlier empirical work using classical discretization
algorithms [9].

V. CONCLUSIONS

We have presented a new approach to the problem of decen-
tralized decision-making under constraints on the number of bits
that can be transmitted by each of a distributed set of sensors.
In contrast to most previous work in an extensive line of re-
search on this problem, we assume that the joint distribution of
sensor observations is unknown and that a set of data samples is
available. We have proposed a novel algorithm based on kernel
methods, and shown that it is quite effective on both simulated
and real-world data sets.

This line of work described here can be extended in a number
of directions. First, although we have focused on discrete obser-
vations , it is natural to consider continuous signal observa-
tions. Doing so would require considering parameterized distri-
butions . Second, our kernel design so far makes use
of only rudimentary information from the sensor observation
model and could be improved by exploiting such knowledge
more thoroughly. Third, we have considered only the so-called
parallel configuration of the sensors, which amounts to the con-
ditional independence of . One direction to explore is
the use of kernel-based methods for richer configurations, such
as tree-structured and tandem configurations [27]. Finally, the
work described here falls within the area of fixed sample size
detectors. An alternative type of decentralized detection proce-
dure is a sequential detector, in which there is usually a large
(possibly infinite) number of observations that can be taken in
sequence (e.g., [31]). It is also interesting to consider extensions
our method to this sequential setting.

APPENDIX

Proof of Lemma 1: a) Since are indepen-
dent realizations of the random vector , the quantities

are independent realizations of the
random variable . (This statement holds for each
fixed .) The strong law of large numbers yields

as .
Similarly, we have

. Therefore, as

where we have exploited the fact that is independent of
given .

b) For each , we have

sign

sign

Thus, part a) implies for each . Similarly,
.

Proof of Proposition 2: Here, we complete the proof of
Proposition 2. We must still show that the optimum
of the primal problem is related to the optimal of the dual
problem via . Indeed, since
is a convex function with respect to , is an optimum
solution for if and only if . By
definition of the conjugate dual, this condition is equivalent to

.
Recall that is an inf-convolution of functions

and . Let be an optimum solution to the
dual problem, and be the corresponding
value in which the infimum operation in the definition of

is attained. Applying the subdifferential operation rule
on a inf-convolution function [13, Cor. 4.5.5], we have

. How-
ever, ; therefore, reduces
to a singleton . This implies
that is the optimum solution to the
primal problem.

To conclude, it will be useful for the proof of Lemma 2to
calculate and derive several additional properties re-
lating and . The expression for in (24) shows that it
is the image of the function under the linear mapping

. Consequently, by Theorem 4.5.1
of Urruty and Lemarechal [13, Th. 4.5.1], we have

, which implies that
for each . By

convex duality, this also implies that for
.

Proof of Lemma 2: We will show that the subdifferential
can be computed directly in terms of the optimal

solution of the dual optimization problem (22) and the kernel
function . Our approach is to first derive a formula for

, and then to compute by applying the
chain rule.

Define . Using Rockafellar [23, Th.
23.8], the subdifferential evaluated at can
be expressed as

Earlier in the proof of Proposition 2, we proved that
for each , where is the optimal solution

of (22). Therefore, , evaluated at , contains
the element

For each , is related to by
the chain rule. Note that for , we have
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which contains the following element as one of its subgradients:

Proof of Proposition 4: By definition [29], the Rademacher
complexity is given by

Applying the Cauchy–Schwarz inequality yields that is
upper bounded as

We must still upper bound the second term inside the square
root on the RHS. The trick is to partition the pairs
of into subsets, each of which has pairs of dif-
ferent and (assuming is even for simplicity). The exis-
tence of such a partition can be shown by induction on . Now,
for each , denote the subset indexed by by

pairs , where all
. Therefore

Our final step is to bound the terms inside the summation
over by invoking Massart’s lemma [20] for bounding
Rademacher averages over a finite set to conclude
that . Now, for
each and a realization of , treat for

as Rademacher variables, and the
dimensional vector takes on only

possible values (since there are possible choices for
). Then, we have

from which the lemma follows.
Proof of Proposition 5: We treat each as a

function over all possible values . Recall that is an -di-
mensional vector . For each fixed realiza-
tion of , for , the set of all discrete condi-
tional probability distributions is a simplex

. Since each takes on possible values, and has
dimensions, we have:

. Recall that each can be written as:

(33)

We now define .
Given each fixed conditional distribution in the -covering

for , we can construct an -covering in
for . It is straightforward to verify that the union

of all coverings for indexed by forms
an -covering for . Indeed, given any function that is
expressed in the form (33) with a corresponding , there
exists some such that .
Let be a function in using the same coefficients as
those of . Given there exists some such that

. The triangle inequality yields that
is upper bounded by

which is less than . In summary, we have constructed an
-covering in for , whose number of coverings is

no more than . This
implies that

which completes the proof.
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