
12

Kernels from generative models

It is often the case that we know something about the process generating the
data. For example, DNA sequences have been generated through evolution
in a series of modifications from ancestor sequences, text can be viewed as
being generated by a source of words perhaps reflecting the topic of the
document, a time series may have been generated by a dynamical system
of a certain type, 2-dimensional images by projections of a 3-dimensional
scene, and so on.

For all of these data sources we have some, albeit imperfect, knowledge
about the source generating the data, and hence of the type of invariances,
features and similarities (in a word, patterns) that we can expect it to con-
tain. Even simple and approximate models of the data can be used to create
kernels that take account of the insight thus afforded.

Models of data can be either deterministic or probabilistic and there are
also several different ways of turning them into kernels. In fact some of
the kernels we have already encountered can be regarded as derived from
generative data models.

However in this chapter we put the emphasis on generative models of the
data that are frequently pre-existing. We aim to show how these models
can be exploited to provide features for an embedding function for which
the corresponding kernel can be efficiently evaluated.

Although the emphasis will be mainly on two classes of kernels induced
by probabilistic models, P-kernels and Fisher kernels, other methods exist
to incorporate generative information into kernel design. Indeed in some
sense every kernel can be regarded as embodying our generative assumptions
about the data.

397

398 Kernels from generative models

12.1 P -kernels

A very general type of kernel can be obtained by defining a joint probability
distribution P (x, z) on pairs of data items (x, z) from the product space
X ×X of a finite or countably infinite input space X. We assume the joint
probability P (x, z) does not depend on the order of the items so that P is
symmetric, but to be a kernel

κ (x, z) = P (x, z) ,

it must also satisfy the finitely positive semi-definite property.

Definition 12.1 [P -kernel] A probability distribution P (x, z) over a prod-
uct space X × X that satisfies the finitely positive semi-definite property
will be known as a P -kernel on the set X.

Given a kernel κ on a countably infinite space X, we can create a P -kernel
that is essentially identical to κ provided∑

x∈X

∑
z∈X

κ (x, z) = M < ∞,

since the distribution

P (x, z) =
1
M

κ (x, z)

satisfies the definition of a P -kernel.
On the other hand, not all distributions will be P -kernels, as the simple

example of a two element set

X = {x1, x2} ,

with probabilities

P (x1, x1) = P (x2, x2) = 0;

P (x1, x2) = P (x2, x1) = 0.5

shows, since the matrix (
0 0.5

0.5 0

)

indexed by x1, x2 has eigenvalues λ = ±0.5.
We have presented P -kernels for countably infinite input spaces since these

are the types of data for which we take this approach. For uncountably
infinite sets a P -kernel would be defined by a probability density function
p (x, z) again assumed symmetric and required to satisfy the finitely positive

12.1 P -kernels 399

semi-definite property. A kernel κ would be equivalent to such a P -kernel
through a renormalisation provided∫

X

∫
X
κ (x, z) dxdz = M < ∞.

It follows for example that any bounded kernel over a compact domain can
be regarded as a P -kernel.

Hence, a P -kernel is a very broad class of kernels that by itself does not
provide interesting insights. Its real interest arises when we study how one
might generate such joint probability distributions.

As a simple example consider a probability distribution P (x) on the finite
or countably infinite set X. We can define a 1-dimensional P -kernel using
the following product

κ(x, z) = P (x)P (z).

This follows immediately from the observation that this kernel corresponds
to the 1-dimensional embedding

φ : x �−→ P (x) .

This example suggests the following definition for a probabilistic model.

Definition 12.2 [Data model] A model m of a data generation process
is an artificial distribution that assigns to each data item x a probability
P (x|m) of being generated. This can be seen as an estimate of the true
distribution that generated the data. In practice we do not know precisely
how the data was generated, but we may have a class of possible models
M and a prior distribution PM or belief as to which model was more likely
to have generated the data. This is encoded in a distribution PM (m) over
the set of models, where m is used to denote the individual model possibly
described by a set of parameters. Hence, for example different settings of
hidden variables are viewed as different models.

Remark 12.3 [Modelling process] The definition of a data model only re-
quires that it be a probability distribution. In practice we typically define
the distribution in a way that reflects our understanding of the processes
that actually generate the real data. It is for this reason that the term model
is used since the distribution results from a model of the generation process.

400 Kernels from generative models

The first part of this chapter considers probability distributions arising
from data models that give rise to more general and interesting classes of
P -kernels.

12.1.1 Conditional-independence (CI) and marginalisation

Building on the example at the end of the previous section, we can create
a joint distribution that is positive semi-definite by combining a number
of different 1-dimensional distributions P (x, z|m) = P (x|m)P (z|m). We
choose m at random from a set M to combine the different distributions as
follows

P (x, z) =
∑
m∈M

P (x, z|m)PM (m) =
∑
m∈M

P (x|m)P (z|m)PM (m),

where we have used PM (m) to denote the probability of drawing the distri-
bution parametrised by m. We could again consider a probability density
function in the case that M were an uncountably infinite set.

If we view the set M as a set of potential models of the data distribution
each weighted according to our prior belief PM (m) in that particular model,
the distribution corresponds to our prior estimation of the probability that x
and z arise as a pair of independently generated examples. It is this view that
also suggests the idea of marginalisation. If we view P (x, z|m)PM (m) as a
probability distribution over triples (x, z,m), then the probability P (x, z)
is its marginal distribution, since it involves integrating over the unknown
variable m. For this reason the kernels are sometimes referred to as marginal
kernels.

In general, marginalising does not guarantee that the distribution satis-
fies the finitely positive semi-definite property. In our case it follows from
the combination of marginalising over distributions each of which is finitely
positive semi-definite because of the independence assumption in the gen-
eration of x and z. For this reason we say that x and z are conditionally
independent given m. Hence, the assumption of conditional independence

P (x, z|m) = P (x|m)P (z|m)

is a sufficient (but not necessary) condition for positive semi-definiteness.
This class of kernels, obtained by marginalisation of conditionally inde-

pendent functions, is extremely general, and can be efficiently computed for
many classes of functions, using algorithmic tools developed in the theory
of probabilistic graphical models. This often allows us to turn a generative

12.1 P -kernels 401

model of the data into a kernel function. The dimensions of the embed-
ding space are indexed by the elements of a set of probabilistic models
φm(x) = P (x|m) as indicated in the following definition summarising the
approach.

Definition 12.4 [Marginalisation kernels] Given a set of data models M

and a prior distribution PM on M , we can compute the probability that a
pair of examples x and z is generated together

PM (x, z) =
∑
m∈M

P (x|m)P (z|m)PM (m).

If we consider the projection function

φ : x �−→ (P (x|m))m∈M ∈ F ,

in a feature space F indexed by M , PM (x, z) corresponds to the inner
product

〈f, g〉 =
∑
m∈M

fmgmPM (m)

between φ (x) and φ (z). It follows that PM (x, z) is a P -kernel. We refer to
PM (x, z) as the marginalisation kernel for the model class M .

12.1.2 Representing multivariate distributions

Defining a data model requires us to create a class of multivariate proba-
bility distributions. The simplest form for such distributions is to assume
independence between the different coordinates and hence use a collection
of independent 1-dimensional distributions. Once we allow interactions be-
tween the different variables, the number of degrees of freedom increases
substantially. For example to specify a multivariate Gaussian distribution
we need O

(
n2

)
parameters to give the covariance matrix.

In view of these complications it is natural to search for models that lie
somewhere between complete independence of the variables and full depen-
dence. Graphical models are a representation that allows us to specify a
dependence structure in the form of a directed acyclic graph whose nodes
are the variables. The distribution of the variable A that labels a node
becomes independent if we specify the values of the set N− (A) of vari-
ables on vertices with edges (B → A) pointing at A. Hence, if the labelling
A1, . . . , An of the nodes is such that there are no edges from later to earlier

402 Kernels from generative models

vertices, then the distribution can be computed using

P (A1, . . . , An) =
n∏

i=1

P
(
Ai|N− (Ai)

)
.

Specifying the individual conditional probabilities might involve a lookup
table in the case of binary variables or some other distribution for more
complex variables. Note that one can interpret an edge from node A to
node B as implying that A is a partial cause for B.

Hence graphical models provide a compact representation of a joint prob-
ability distribution. For example the joint distribution

P (A,B,C,D) = P (A)P (B|A)P (C|A)P (D|C,B)

can be represented by the graphical model in Figure 12.1.

Fig. 12.1. A simple example of a graphical model.

So far we have considered graphical models in which the nodes are in one-
to-one correspondence with the observed variables. In practice we may not
be able to observe all of the relevant variables. In this case we distinguish
between the observables and the so-called hidden variables, with the overall
graphical model being defined over both sets of variables.

An example of a graphical model with hidden states is shown in Figure

12.1 P -kernels 403

12.3. It shows a sequence of hidden variables (h1, . . . , hn) linked so that the
next variable is conditionally dependent on the previous hidden variable.
Each hidden variable hi conditions a corresponding distribution for the ob-
servable variable si. This is known as a 1-stage Markov model. We can
also represent this by a sequence of nodes linked into a path, where the ith
node has a state variable hi that can take a number of possible values and
the node emits a symbol depending on the value of hi, while the value of
hi depends probabilistically on hi−1. Hence, the symbol emission has been
included into the function of the node.

We can make the diagram more explicit by creating a node for each state,
that is each state variable–value pair. In this view the transitions take us
from one state to another and we have a probabilistic finite state automata
whose nodes emit symbols. We prefer to take this general framework as our
definition of a hidden Markov model.

Definition 12.5 [Hidden Markov model] A hidden Markov model (HMM)
M comprises a finite set of states A with an initial state aI , a final state aF ,
a probabilistic transition function PM (a|b) giving the probability of moving
to state a given that the current state is b, and a probability distribution
P (σ|a) over symbols σ ∈ Σ ∪ {ε} for each state a ∈ A.

A hidden Markov model generates strings probabilistically by initialising
the state to aI and repeatedly performing random transitions each followed
by a random generation of a symbol, until the state aF is reached.

12.1.3 Fixed length strings generated by a hidden binomial
model

The kernel presented in this subsection is a somewhat ‘degenerate’ example
of an important class of models. Nonetheless its discussion sets the scene for
two more complex generative models also for fixed length symbol sequences,
each based on different assumptions about the hidden generating mecha-
nism. These will be presented in the following two subsections followed by
extensions to handle the case of strings of different lengths.

Consider comparing symbol strings that have the same length n with indi-
vidual symbols drawn from a finite alphabet Σ. We assume that the symbols
are generated by ‘emission’ from a sequence of hidden state variables repre-
sented by a string of the same length h = (h1 . . . hn), where the individual

404 Kernels from generative models

emission probabilities are independent that is

P (s|h) =
n∏

i=1

P (si|hi),

and as posited in the general framework the probabilities of generating two
strings s and t are also treated as independent. This generation model
is illustrated in Figure 12.2. Note that to cast this in the framework of

Fig. 12.2. A simple hidden model for generating fixed length strings.

Definition 12.5, we would need to expand each state variable into the set of
states that it can assume and include transitions from the set of states for
hi to those for hi+1, i = 1, . . . , n − 1, as well as including transitions from
the initial state aI and to the final state aF . An example of this type of
(formal) construction is given in the next subsection.

For the time being we leave the form of the distribution P (si|hi) unspec-
ified, though there is a further assumption that the probabilities of the hid-
den states P (h) can also be decomposed into a product over the individual
symbols

P (h) =
n∏

i=1

P (hi)

so that the kernel involves summing over all hidden strings and marginalising
the probability to obtain the marginalisation kernel

κ (s, t) =
∑
h∈Σn

P (s|h)P (t|h)P (h)

=
∑
h∈Σn

n∏
i=1

P (si|hi)P (ti|hi)P (hi) .

We have already encountered sums of products within kernel calculations

12.1 P -kernels 405

when we considered the kernels defined by summing over all paths in a graph.
This form will also prove a recurring theme in this chapter. The sum is over
a large number of hidden models, each of which can be used to compute a
probability by means of a product. The key idea is that in certain important
cases this can be computed as the product of sums by effectively exchanging
the two operators, and hence achieving a significant computational saving.
This will motivate a number of dynamic programming methods, but in the
specific case considered here we will be able to obtain a closed form solution.

We can write

κ (s, t) =
∑
h∈Σn

n∏
i=1

P (si|hi)P (ti|hi)P (hi)

=
n∏

i=1

∑
σ∈Σ

P (si|σ)P (ti|σ)P (σ), (12.1)

where the expression on the right-hand side of the first line can be obtained
by applying the distributive law to the product of sums given in the sec-
ond line. The variable hi tells us which term to take in the ith factor of
the product with the overall expression given by the sum over all possible
choices, that is over all strings h.

We have presented this example more as an illustration of the swapping
step. In this case the result is rather trivial, since we could pre-compute a
table of

P (a, b) =
∑
σ∈Σ

P (a|σ)P (b|σ)P (σ), for a, b ∈ Σ,

and then the kernel could be evaluated as

κ (s, t) =
n∏

i=1

P (si, ti).

This is a simple product of base kernels

κi (s, t) = P (si, ti)

and so could also be viewed as an ANOVA kernel of degree n.
It does, however, also illustrate a general property of P -kernels, namely

that if we create P -kernels for each part Xi of a set of n disjoint components
of data items from a set X = X1 × · · · ×Xn, their product also becomes a
P -kernel, since

∑
s∈X

∑
t∈X

P (s, t) =
∑
s∈X

∑
t∈X

n∏
i=1

P (si, ti)

406 Kernels from generative models

=
n∏

i=1

∑
si∈Xi

∑
ti∈Xi

P (si, ti)

=
n∏

i=1

1 = 1.

Remark 12.6 [States and symbols] It is worth noting that although we
discussed this example using the same set of symbols for the strings as for
the states, these could be defined over different sets. In view of our final
observations this will not have a very significant impact in this example, but
we will see that in the next subsection this does afford us extra flexibility.

12.1.4 Fixed length strings generated by a hidden markov model

The model above was not very realistic, but did demonstrate the type of
computations that we are considering in this section, particularly the idea
of marginalising over sums of products. For our next model we continue with
the assumptions that the two strings s and t have fixed length n and are
composed of symbols from an alphabet Σ. Furthermore we assume that they
have been generated by a hidden model M , whose elements are represented
by strings h of n states each from a set A, and that each symbol is generated
independently, so that

P (s, t|h) =
n∏

i=1

P (si|hi)P (ti|hi)

as before. Where we extend the previous model is in the structure of the
distribution P (h). Whereas before this distribution assumed independence
of the individual states, we now introduce a 1-stage Markov structure into
the hidden model for M , that is we let

PM (h) = PM (h1)PM (h2|h1) . . . PM (hn|hn−1).

The hidden model is illustrated in Figure 12.3. Formally, if we wish to cast
this in the framework of Definition 12.5, we must define the states of the
model to be

{aI} ∪A× {1, . . . , n} ∪ aF ,

with the transition probabilities given by

PM ((a, i) |aI) =
{
PM (a) if i = 1;
0 otherwise,

12.1 P -kernels 407

Fig. 12.3. The hidden Markov model for a fixed length string.

PM ((a, i) | (b, j)) =
{
PM (a|b) if i = j + 1;
0 otherwise,

PM (aF | (b, j)) =
{

1 if i = n;
0 otherwise.

This means that in order to marginalise, we need to sum over a more
complex probability distribution for the hidden states to obtain the corre-
sponding marginalisation kernel

κ (s, t) =
∑
h∈An

P (s|h)P (t|h)PM (h)

=
∑
h∈An

n∏
i=1

P (si|hi)P (ti|hi)PM (hi|hi−1) , (12.2)

where we have used the convention that PM (h1|h0) = PM (h1).

Remark 12.7 [Describing the models] We consider each hidden sequence h

as a template for the sequences s, t in the sense that if we are in state hi at
position i, the probability that the observable sequence has a symbol si in
that position is a function of hi. In our generative model, sequences are gen-
erated independently from the hidden template with probabilities P (si|hi)
that can be specified by a matrix of size |Σ| × |A|. So given this matrix and
a fixed h, we can compute P (s|h) and P (t|h). The problem is that there
are |A|n different possible models for generating our sequences s, t, that is
the feature space is spanned by a basis of |A|n dimensions. Furthermore, we
consider a special generating process for h of Markov type: the probability
of a state depends only on the preceeding state. The consequent marginali-
sation step will therefore be prohibitively expensive, if performed in a direct

408 Kernels from generative models

way. As in Chapter 11, we will exploit dynamic programming techniques to
speed it up.

Consider the set of states Ak
a of length k that end with a given by

Ak
a =

{
h ∈ Ak : hk = a

}
.

We introduce a series of subkernels κk,a for k = 1, . . . , n and a ∈ A as follows

κk,a (s, t) =
∑
h∈Ak

a

P (s|h)P (t|h)PM (m)

=
∑
h∈Ak

a

k∏
i=1

P (si|hi)P (ti|hi)PM (hi|hi−1) ,

where we have implicitly extended the definitions of P (s|h) and P (h) to
cover the case when h has fewer than n symbols by ignoring the rest of the
string s.

Clearly, we can express the HMM kernel simply by

κ (s, t) =
∑
a∈A

κn,a (s, t) .

For k = 1 we have

κ1,a (s, t) = P (s1|a)P (t1|a)PM (a) .

We now obtain recursive equations for computing κk+1,a (s, t) in terms of
κk,b (s, t) for b ∈ A, as the following derivation shows

κk+1,a (s, t) =
∑

h∈Ak+1
a

k+1∏
i=1

P (si|hi)P (ti|hi)PM (hi|hi−1)

=
∑
b∈A

P (sk+1|a)P (tk+1|a)PM (a|b)

∑
h∈Ak

b

k∏
i=1

P (si|hi)P (ti|hi)PM (hi|hi−1)

=
∑
b∈A

P (sk+1|a)P (tk+1|a)PM (a|b)κk,b (s, t) .

When computing these kernels we need to use the usual dynamic pro-
gramming tables, one for each κk,b (s, t), though of course we can overwrite
those obtained for k − 1 when computing k + 1. The result is summarised
in the following algorithm.

12.1 P -kernels 409

Algorithm 12.8 [Fixed length hidden Markov model kernel] The fixed
length Hidden Markov Model kernel is computed in Code Fragment 12.1.

Input Symbol strings s and t, state transition probability matrix PM (a|b),
initial state probabilities PM (a)
and conditional probabilities P (σ|a) of symbols given states.

Process Assume p states, 1, . . . , p.
2 for a = 1 : p
3 DPr (a) = P (s1|a)P (t1|a)PM (a) ;
4 end
5 for i = 1 : n
6 Kern = 0;
7 for a = 1 : p
8 DP (a) = 0;
9 for b = 1 : p
10 DP (a) = DP (a) + P (si|a)P (ti|a)PM (a|b)DPr (b) ;
11 end
12 Kern = Kern + DP (a) ;
13 end
14 DPr = DP;
14 end
Output κ (s, t) = Kern

Code Fragment 12.1. Pseudocode for the fixed length HMM kernel.

The complexity of the kernel can be bounded from the structure of the
algorithm by

O
(
n |A|2

)
.

Remark 12.9 [Reversing sums and products] It is possible to see the dy-
namic programming as partially reversing the sum and product of equation
12.2. At each stage we compute a product of the sums of the previous phase.
This enable the algorithm to break down the very large sum of (12.2) into
manageable stages.

Example 12.10 The kernel presented here compares two strings of the
same length under a hidden Markov model assumption. The strings are
assumed to be ‘aligned’, that is the generic model h assumes that the ith
symbol in each sequence was generated in a conditionally independent way,
given the hidden state hi, and that the sequence of hidden states has a

410 Kernels from generative models

Markovian structure. This makes sense in those situations in which there is
no possibility of insertions or deletions, but we can accurately model random
substitutions or mutations of symbols.

12.1.5 Pair hidden Markov model kernels

There are several possible ways to generalise the fixed length hidden Markov
model kernel given above. In this and the next subsection we present two
different extensions. The kernel presented above makes sense if we assume
that two sequences have the same length and are generated by a ‘template’
sequence that has a Markov structure.

This subsection develops a kernel for strings of different lengths but again
generated by an underlying Markov process, a case that has significant im-
portance in computational biology. An alternative way to model the gen-
erative process of a fixed length sequence is to assume that all positions in
the sequence are associated with the leaves of a tree, being generated si-
multaneously by an underlying evolution-like process. A generalisation to
Markovian trees will be presented in the following section.

In this section we investigate the case when the two sequences have differ-
ent lengths, generated by emission from hidden states that again satisfy the
Markov property. This will make it possible to consider the insertion and
deletion of symbols that could have created gaps in the pairwise alignment,
hence creating alternative alignments between the sequences and possibly
altering their lengths.

The change required to achieve this extra flexibility is at first sight very
small. We simply augment the alphabet with the empty symbol ε. As a
result a state can generate a symbol for one string while adding nothing to
another. This means that the states will no longer correspond to the symbol
positions. For this reason we must consider a general Markov model given
by a set A of states with transition probabilities given by a matrix

Mab = PM (b|a)

giving the probability of moving to state b from state a. There is now no
longer a linear ordering imposed on the states, which therefore can form a
general probabilistic finite state automaton. We must, however, specify an
initial state aI with no associated emission and with no transitions to it.
The model M comprises all possible trajectories h of states beginning at the
initial state h0 = aI . It is also possible to require the trajectories to end a
specified final state aF , though to simplify the exposition we omit this re-
striction. It follows that the probability of a trajectory h = (h0, h1, . . . , hN)

12.1 P -kernels 411

is given by

PM (h) =
N∏
i=1

PM (hi|hi−1) .

The emission probabilities for non-initial states are given by the probabilities

P (σ|a) , for a ∈ A and σ ∈ Σ̂ = Σ ∪ {ε} ,

with the probability that a trajectory h of length N generates a string s

given by

P (s|h) =
∑
ŝ∈Σ̂N

[ŝ = s]
N∏
i=1

P (si|hi) ,

where we use [ŝ = s] for the function outputting 1 when the two strings are
equal after deletion of any empty symbols and 0 otherwise. As usual we
consider the marginalisation kernel

κ(s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

Remark 12.11 [Pair hidden Markov models] Our method of defining the
generation is slightly unconventional. The more standard approach allows
states to emit one symbol for each sequence, only one of which can be the
empty character. Occasionally the symbol emission is also shifted from the
states to the transitions. We have preferred to have emission from states to
link with the previous and following subsections. Allowing states to emit
pairs of characters complicates the verification of conditional independence,
since we can no longer simply view the kernel as estimating the probability
of the two strings arising from the modelling process, that is as a marginali-
sation kernel. The simplification achieved here results in some slight changes
to the dynamic programme computations where we introduce pair hidden
Markov models as a computational tool, but we feel that this is a price worth
paying for the conceptual simplification.

Example 12.12 We give an example to illustrate the computations of
pair HMMs. Two proteins or genes are said to be homologous if they are
both descendents from a common ancestor. The sequences may differ from
the ancestor’s as a result of deletions, insertions and mutations of symbols
where these processes occurred independently for the two sequences after

412 Kernels from generative models

their first evolutionary divergence. The distance can be estimated by com-
puting the alignments of the two sequences. For example the two sequences
s =‘AACGTACTGACTA’ and t =‘CGTAGAATA’ may be aligned in the following
way

AACGTACTGA-CTA

--CGTA--GAA-TA

among others. When assessing the probability that two sequences are ho-
mologous, a meaningful measure of similarity and hence potentially an inter-
esting kernel, is given by computing the probabilities of the two sequences
being generated from a common ancestor summed over all potential an-
cestors. The ancestors are modelled as a sequence of states encoding the
changes that occurred at each point, deletion, insertion or mutation. The
state sequence is assumed to be Markovian since the probabilities of spe-
cific changes depend only on the changes occurring at the previous step.
This approach typically leads to different possible ‘alignments’ of the se-
quences, each with a given probability. For each possible hidden ancestor
model h we can calculate the probability that each of the two sequences
is its descendent P (s|h) and P (t|h), and we can sum this over all possible
ancestors, marginalising in this way over all possible evolutionary ancestors:
P (s, t) =

∑
h P (s|h)P (t|h)P (h).

The apparently small change we have introduced to handle gaps compli-
cates the dynamic programming computations. We must now not only con-
sider summing over all sequences ending in a certain stage, but also specify
the positions we have reached in each of the strings in much the same way as
we did for the string kernels in Chapter 11. Before we can do this we have an
additional problem that states which emit ε can emit ε to both sequences
complicating the recursion as in this case no new symbols are processed.
This problem will be overcome by transforming our hidden Markov model
into a so-called pair hidden Markov model generating the same distribution.
We begin with a definition of pair hidden Markov models.

Definition 12.13 [Pair hidden Markov model] A data model whose states
emit ordered pairs of data will be known as pair data model. Hence, a pair
model M is specified by a set of distributions for h ∈ M that assigns to each
pair of data items (x1, x2) a probability Ph (x1, x2) = P ((x1, x2) |h). A pair
hidden Markov model is a hidden Markov model whose states emit ordered
pairs of data items.

12.1 P -kernels 413

Note that in general a pair data model will not define a kernel if we take

κ (x1, x2) =
∑
h∈M

P ((x1, x2) |h), (12.3)

since the generation of the two examples is not necessarily independent. This
will not, however, concern us since we use the pair hidden Markov model to
generate a distribution that we know to be a valid kernel. Our use of the
pair hidden Markov model is simply a stepping stone towards creating an
efficient algorithm for evaluating that kernel.

The initial pair hidden Markov model is simply the hidden Markov model
where each state uses its generating function to generate two symbols inde-
pendently rather than the single symbol generated by the original model.
The kernel defined by equation (12.3) is clearly the same as the marginali-
sation kernel by its definition.

The pair hidden Markov model is now adapted in two stages. The first
creates a new model M̂ from M by separating each state that can generate
pairs (ε, ε) as well as symbols from Σ into two states, one that generates
only (ε, ε) and one that only generates pairs with at least one symbol from
Σ. The second stage involves the removal of the states that emit only (ε, ε).
In both cases we must verify that the distribution generated by the model
remains unchanged.

For the first stage consider a state a that can emit (ε, ε) as well as
other combinations. We create a new state aε for each such state a. The
state aε emits (ε, ε) with probability 1, while the new emission probabilities
P̂ ((σ1, σ2) |a) for a are given by

P̂ ((σ1, σ2) |a) =

{
P (σ1|a)P (σ2|a)

1−P (ε|a)2 if σ1 �= ε or σ2 �= ε;

0 otherwise,

so that a can no longer emit (ε, ε). Furthermore the transition probabilities
are adapted as follows

PM̂ (a|b) = PM (a|b)
(
1 − P (ε|a)2

)
for all b �= a,

PM̂ (a|a) = PM̂ (a|aε) = PM (a|a)
(
1 − P (ε|a)2

)
,

PM̂ (aε|b) = PM (a|b)P (ε|a)2 for all b �= a,

PM̂ (aε|a) = PM̂ (aε|aε) = PM (a|a)P (ε|a)2 .

It is readily verified that the state aε in M̂ corresponds to emitting the pair
(ε, ε) in state a in M , and so the pair hidden Markov model M̂ generates
an identical distribution over pairs to that generated by M .

414 Kernels from generative models

The second state of the adaptation involves removing all the states that
only emit the pair (ε, ε). This is a standard operation on probabilistic finite
state automata involving appropriately adjusting the transition probabilities
between the remaining states. We omit the details as it is not central to our
development.

We therefore now assume that we have a pair hidden Markov model none
of whose states emit the pair (ε, ε). Consider the sequences of states Aa that
end with a given by

Aa =
{
h ∈ M̂ : h|h| = a, h0 = aI

}
.

We introduce a series of subkernels κi,j,a for a ∈ A as follows

κi,j,a (s, t) =
∑
h∈Aa

P̂ (s (1 : i) , t (1 : j) |h)PM̂ (h).

Clearly, we can express the marginalisation kernel quite simply as

κ (s, t) =
∑
a∈A

κ|s|,|t|,a (s, t) ,

though if a finish state were specified we would only need the corresponding
subkernel. The base of the dynamic programme recursion requires us to com-
pute κ0,0,a (s, t) for all states a ∈ A. Clearly, for aI we have κ0,0,aI (s, t) = 1,
while for general a ∈ A \ {aI}

κ0,0,a (s, t) = 0.

We now obtain recursive equations for computing κi,j,a (s, t) in terms of
κi−1,j,b (s, t) , κi,j−1,b (s, t) and κi−1,j−1,b (s, t) for b ∈ A, as the following
derivation shows

κi,j,a (s, t) =
∑
h∈Aa

P ((s, t) |h)PM̂ (h)

=
∑
b∈A

P ((si, ε) |a)PM̂ (a|b)κi−1,j,b (s, t)

+
∑
b∈A

P ((ε, tj) |a)PM̂ (â|b)κi,j−1,b (s, t)

+
∑
b∈A

P ((si, tj) |a)PM̂ (a|b)κi−1,j−1,b (s, t) .

This is again a set of equations for κi,j,a (s, t) assuming that we have previ-
ously computed κi−1,j,b (s, t) , κi,j−1,b (s, t) and κi−1,j−1,b (s, t) and results in
the following algorithm.

12.1 P -kernels 415

Algorithm 12.14 [Pair hidden Markov models] The pair hidden Markov
model kernel is computed in Code Fragment 12.2.

Input Symbol strings s and t, state transition probability matrix
PM (a|b), initial state 0, final state p and conditional probabilities
P ((σ1, σ2) |a) of pairs of symbols given states.

Process Assume p states, 0, . . . , p. Lengths of s and t are n and m.
2 for a = 0 : p
3 Kern (0, 0, a) = 0;
4 for i = 0 : n Kern (i,−1, a) = 0;
5 for j = 0 : m Kern (−1, j, a) = 0;
8 end
9 Kern (0, 0, 0) = 1;
10 for i = 1 : n
11 for a = 1 : p
12 Kern (i, 0, a) = 0;
13 for b = 0 : p
14 Kern (i, 0, a) = Kern (i, 0, a)

+P ((si, ε) |a)PM (a|b)Kern (i− 1, 0, b) ;
15 end
16 end
17 for i = 0 : n
18 for j = 1 : m
19 for a = 1 : p
20 Kern (i, j, a) = 0;
21 for b = 0 : p
22 Kern (i, j, a) = Kern (i, j, a)

+P ((si, ε) |a)PM (a|b)Kern (i− 1, j, b)
23 +P ((ε, tj) |a)PM (a|b) Kern (i, j − 1, b)
24 +P ((si, tj) |a)PM (a|b) Kern (i− 1, j − 1, b) ;
25 end
26 end
Output κ (s, t) = Kern (n,m, p)

Code Fragment 12.2. Pseudocode for the pair HMM kernel.

Remark 12.15 [Defining pair HMMs directly] We have introduced pair
hidden Markov models as a stepping stone towards an efficient algorithm as
they enable us to remove the possibility of no symbols at all being emitted
by a state. Authors typically choose to define their models using pair hidden
Markov models. This has the advantage of making the design more natural
in some cases. The disadvantage is that extra conditions need to be applied
to ensure that a valid kernel is generated, essentially ensuring that paths

416 Kernels from generative models

between states that emit two symbols are independent whether they emit
symbols to one string or the other.

12.1.6 Hidden tree model kernels

The previous subsection considers unequal length sequences using a hidden
Markov model. In this section we return to aligned equal length sequences,
but consider a more complex generating model.

Another way to model the hidden structure generating two aligned strings
of the same length n is to assume their symbols are associated to the n leaves
of a tree, in which the state of each node depends probabilistically on the
state of its parent node. The state of the leaves is assumed to represent
the sequence. This is a probabilistic graphical model, and can be used as a
generative model of the sequence and so to design a marginalisation kernel

PM (s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

The set M of models is therefore defined by a fixed tree of internal nodes
v0, v1, . . . , vN each labelled with h (vi) from a set A of states. We will as-
sume that the state a = h (n) of a node n is compatible with the num-
ber child (n) = child (a) of its children and determines the distributions
Pi,a (b) = Pi (b|a) of probability that the ith child chi (v) is in state b given
its parent is in state a. The states of leaf nodes are assumed to be the corre-
sponding symbol from Σ. Hence, after we specify a probability distribution
PM (a) over the state h (v0) of the root node, this implies a distribution over
the states of the n leaf nodes l1, . . . , ln. This probabilistic graphical model
describes a distribution of probability over all sequences from Σn given by

P (s) =
∑
h∈M

n∏
k=1

[h (lk) = sk]PM (h (v0))
N∏
i=0

child(h(vi))∏
j=1

Pj (h (chj (vi)) |h (vi)) .

Example 12.16 Consider the case of a fixed binary tree with binary states
and symbols. Furthermore, we assume the conditional probabilities are the
same for both children, so that we have only two degrees of freedom ε and
δ for the internal nodes

P (0|1) = ε P (1|0) = δ

P (1|1) = 1 − ε P (0|0) = 1 − δ,

with another degree of freedom τ for the probability of the root-state

P (h(v0) = 1) = τ and P (h(v0) = 0) = 1 − τ .

12.1 P -kernels 417

Hence, for this example we need only specify three parameters.

Figure 12.4 shows an example of a hidden tree model. The tree model

Fig. 12.4. A hidden tree model for generating a fixed length string.

is another example of a probabilistic graphical model. In general the num-
ber of different states of the tree make it impractical to perform a direct
computation of the associated marginalisation kernel

κ(s, t) =
∑
h∈M

P (s|h)P (t|h)PM (h).

Since this probability is parametrised by the state of the internal nodes,
there are exponentially many states h that can be used to measure the
probability of a sequence corresponding to the exponentially many features
φh(s) = P (s|h) for h ∈ M that define the feature space. Once again we must
devise a dynamic programme that can short-circuit the full computation by
making use of the specific structure of the model.

This dynamic programme is an example of a message passing algorithm,
that with a single depth-first traversal of the tree can compute the joint
probability of the two input sequences summed over all compatible hidden
states. This quantity is stored at the root node, after the traversal when

418 Kernels from generative models

the relative message passing is completed. At each node, a number of values
or ‘messages’ are stored, and they are calculated based only on the values
stored at their children, as will be described below.

Once again we must store separate values at each node for each state. As
usual we define these as auxiliary kernels

κv,a(s, t) =
∑

h∈Ta(v)

P (s|h)P (t|h)PM (h),

where Ta (v) is the sub-model generated on the complete subtree rooted at
the node v with the node v fixed into state a, i.e. all labellings possible for
the nodes of the subtree with the root in state a. The critical recursion that
now makes possible the computation is as follows

κv,a(s, t) =
∑

h∈Ta(v)

P (s|h)P (t|h)PM (h)

=
∑

b∈Achild(a)

child(a)∏
j=1

P (bj |a)
∑

h∈Tbj
(chj(v))

P (s|h)P (t|h)PM (h)

=
∑

b∈Achild(a)

child(a)∏
j=1

P (bj |a)κchj(v),bj (s, t)

=
child(a)∏
j=1

∑
b∈A

P (b|a)κchj(v),b (s, t) ,

where the final line again follows from the use of the distributive law as in
equation (12.1). If we consider the case of a binary tree with binary states,
the computation at an internal node v involves two values

κchj(v),0 (s, t) and κchj(v),1 (s, t)

being received from each of the two children ch1 (v) and ch2 (v). These four
values are then combined with the probabilities P (0|0), P (0|1), P (1|0) and
P (1|1) to compute the values

κv,0 (s, t) and κv,1 (s, t)

subsequently passed on to its parent. In general there are |A| messages from
each child that must be received and appropriately processed.

The value of the kernel is given

κ(s, t) =
∑
a∈A

PM (a)κvo,a(s, t),

12.1 P -kernels 419

that is the appropriately weighted sum of the kernels obtained by fixing
the root node v0 to each of the possible states. Similarly, the base of the
recursion is given by

κli,a(s, t) = [si = ti = a] ,

since this corresponds to a deterministic state at the leaf li which either
agrees with both of the corresponding symbols si and ti or not. The re-
sult is summarised in the following algorithm that uses a recursive function
returning an array of kernel values indexed by the states.

Algorithm 12.17 [Hidden tree model kernel] The hidden tree model kernel
is computed in Code Fragment 12.3.

The complexity of Algorithm 12.17 can be estimated by observing that
each node v of the tree is visited once with a call to Treerecur (v) and that
the computation involved for each call is bounded by O

(
|A|2 d+

)
, where d+

is the maximum number of children of the tree nodes. Hence, the overall
algorithm has complexity

O
(
N |A|2 d+

)
,

since N is the number of nodes in the tree.

Remark 12.18 [Swapping sums and products] Note how the strategy suc-
ceeds in breaking down the overall sum of products into a staged sequence
of manageable sums, one at each internal node. Hence, there has again been
a partial swapping of the sums and products from the original definition,
each swap leading to a corresponding reduction in the complexity.

Example 12.19 Consider Example 12.16. Since this is a binary tree the
recursion is somewhat simpler with all the indexing sets running from 0 to
1. For this case lines 17-26 of the algorithm can, for example, be replaced
by

17 Kern (0) = ((1 − δ)Kerp (0, 0) + εKerp (0, 1))
18 ((1 − δ)Kerp (1, 0) + εKerp (1, 1)) ;
19 Kern (1) = (δKerp (0, 0) + (1 − ε) Kerp (0, 1))
20 (δKerp (1, 0) + (1 − ε) Kerp (1, 1)) ;

Example 12.20 [Phylogenetic profiles] In its simplest form a phylogenetic
profile of a gene or a protein is a string of bits each indicating the presence
or absence of a homologue of the gene or protein in a different organism. It

420 Kernels from generative models

Input Symbol strings s and t, tree structure and conditional state
probabilities PM (a|b), initial state probabilities PM (a)

Process Assume p states, 1, . . . , p.
2 DP = Treerecur (v0) ;
3 Kern = 0;
4 for a = 1 : p
5 Kern = Kern +PM (a) DP (a) ;
6 end
where Treerecur (v)
8 if v = li
9 if si = ti DP (si) = 1;
10 return DP;
11 end
12 for j = 1 : child (v)
13 DPp (j, :) = Treerecur (chj (v)) ;
14 for a = 1 : p
15 if child (a) �= child (v)
16 DP (a) = 0;
17 else
18 DP (a) = 1;
19 for j = 1 : child (a)
20 DPq = 0;
21 for b = 1 : p
22 DPq = DPq +PM (a|b) DPp (j, b) ;
23 end
24 DP (a) = DP (a)DPq;
25 end
26 end
27 return DP;
Output κ (s, t) = Kern

Code Fragment 12.3. Pseudocode for the hidden tree model kernel.

is assumed that functionally related genes have similar phylogenetic profiles.
In this context the question of defining similarity between such profiles is
crucial. Instead of just counting the number of organisms in which the
two genes are simultaneously present or absent, intuitively one could hope
to obtain more information by comparing the entire evolutionary history
of the two genes. Though the precise history is not available, it can be
modeled by a phylogenetic tree and probabilities can be computed with it.
A phylogenetic tree of a group of organisms is a rooted tree, where each leaf
represents an organism currently existing, and each internal node represents
an extinct species, with the edges of the tree indicating that the child
species evolved from the parent. The transmission of genes during evolution

12.2 Fisher kernels 421

can be modelled using the tree models considered in this section, that is a
probabilistic graphical model that defines a joint probability distribution P

for a set of random binary variables indexed by the nodes of the tree. The
probabilities that a species has a gene when its parent does not is encoded
in P (0|1) and so on. Hence, assuming knowledge of the phylogenetic tree,
the kernel we have defined can be used to measure the relatedness of two
genes based on their phylogenetic profiles.

Remark 12.21 [More general tree kernels] It is possible to extend the above
kernel to consider all subtrees of the given tree structure, where the subtrees
are obtained by pruning complete subtrees. Furthermore it is possible to
consider the case in which we do not know the topology of the tree, and
we want to marginalise over a large number of possible topologies. More
information and pointers to the relevant literature can be found in Section
12.4.

12.2 Fisher kernels

12.2.1 From probability to geometry

The main idea behind marginalisation kernels was to consider the probabil-
ity of the data given one model P (x|m) as a feature. Given a single model
this is very little information that is potentially misleading since two very
different data items could be given the same probability by the model with-
out this indicating any similarity. The marginalisation kernels overcame
this weakness by comparing the scores of data items under several different
models, typically exponentially many models.

We now consider an alternative strategy known as the Fisher kernel that
attempts to extract from a single generative model more information than
simply their output probability. The aim is to analyse how the score de-
pends on the model, which aspects of the model have been important in
determining that score, and hence obtaining information about the internal
representation of the data items within the model.

For such an approach to work we require the single model to be more
flexible so that we can measure how it adapts to individual data items. We
will therefore need the model to be smoothly parametrised so that derivatives
of the model with respect to the parameters can be computed.

Remark 12.22 [Relation between generative model and Fisher kernels]
These ideas are clearly related. In the case of marginalisation kernels we
typically create a finite but very large set of models over which the scores

422 Kernels from generative models

are computed. We now consider a parametrised model with a particular pa-
rameter setting, but measure how the model changes in the neighbourhood
of that setting. Hence, we can see the approach as considering a class of
models obtained by deforming the current model. In this case, however, the
information is summarised in a feature space whose dimension is equal to
the number of parameters. Despite these connections the approaches are
complementary in the sense that marginalisation kernels typically consider
a set of models indexed by a discrete set, for example the paths of a hid-
den Markov model. Any smooth parameters are treated as constant. The
Fisher kernel on the other hand is based only on the modelling of smooth
parameters.

Remark 12.23 [Features from internal computations] Yet another approach
would be to extract information from the ‘internal computations’ of the
model in order to evaluate its probabilities. It is the generation process of
a data point that should enable a fuller description in the feature space, so
that the difference in the generation process and not just in the computed
probability can be exploited for comparing two examples x and z.

Our starting point is a smooth parametric model Pθ0 (x) = P
(
x|θ0

)
of

the data that computes the probability of a given input x being produced
by the underlying generative process with the vector of parameters θ set to
θ0.

We will construct features φi one for each model parameter θi by exam-
ining slight perturbations of that parameter around the given setting θ0

i , in
this way obtaining several models or perspectives by extracting information
about how the different parameters affect the score of x.

More specifically, if one wanted to adapt the parameters of a model in
order to accommodate a new data item by increasing its likelihood under
the model, the parameters will have to be adapted in different ways. If we
use a gradient approach to parameter tuning, the partial derivatives of the
score Pθ0 (x) with respect to the parameters contain the information about
how much each parameter should be moved in order to accommodate the
new point.

In this perspective, it seems natural to compare two data points through
the directions in which they ‘stretch’ the parameters of the model, that is by
viewing the score function at the two points as a function of the parameters
and comparing the two gradients. If the gradient vectors are similar it
means that the two data items would adapt the model in the same way,
that is from the point of view of the given parametric model at the current

12.2 Fisher kernels 423

parameter setting they are similar in the sense that they would require
similar adaptations to the parameters.

Remark 12.24 [Features corresponding to constraints] There are other
intuitive interpretations of the approach of describing the data items by the
perturbations of the score caused by slight parameter movements. Consider
a model that calculates the probability of a data item x being generated by
checking if it satisfies certain constraints, with each constraint being assessed
by one parameter. If some are violated, the data item is less representative of
the model and so will receive a lower score, depending on the magnitude and
number of the violations. The Fisher kernel compares two data points with
respect to all relevant properties of the data model by comparing the pattern
of behaviour of each with respect to the different constraints. One could also
view these features as the Lagrange multipliers assessing the degree to which
the input is attempting to violate the different constraints.

What we have introduced in an intuitive way is a representation of the
data that is based on a single parametrised probabilistic model. The pur-
pose of Fisher kernels is to capture the internal representation of the data
exploited by such models in order to compute its score.

Definition 12.25 [Smoothly parametrised model class] A smoothly para-
metrised model class is a set of probability distributions

M = {Pθ (x) : θ ∈ Θ}

on an input space X, where Θ ⊆ R
N for some finite N . We say that each

parameter setting θ determines a model m (θ) of the data. We define the
likelihood of a data item x with respect to the model m(θ) for a given setting
of the parameters θ to be

Lθ(x) = P (x|θ) = Pθ (x) .

Probabilistic models assess the degree of fit of a data point to a model by
its likelihood. We can learn the model parameters θ by adapting them to
maximise the likelihood of the training set, i.e. the probability

�∏
i=1

Lθ(xi)

that all of the training points were generated independently in the model.
The problem of learning a model in this way is something with which we are

424 Kernels from generative models

not concerned in this book. We will assume throughout that the setting of
the parameters θ0 has been determined. This can be done, for example, by
gradient ascent of the likelihood of the training set. From this perspective an
intuitive way to assess the relationship of a new point to the model is to see
what update would be necessary to the parameters in order to incorporate
it, that is what is the gradient of the likelihood at this point. If a point is
a prototypical example of the points accepted by the model, its likelihood
will already be close to maximal and little or no tuning of the parameters
will be necessary. If a point is very unusual with respect to some property,
the gradient in that direction will be large in order to incorporate the new
point.

As we have seen in the discussion so far the information we want to
exploit is contained in the gradient of the likelihood function of the given
data point taken with respect to the tunable parameters. In practice we
consider the log of the likelihood function since this means that products
of probabilities become sums, while at the same time the resulting gradient
vector is just rescaled. We can also use the second order derivatives to refine
the comparison.

Definition 12.26 [Fisher score and Fisher information matrix] The log-
likelihood of a data item x with respect to the model m(θ0) for a given
setting of the parameters θ0 is defined to be

logLθ0(x).

Consider the vector gradient of the log-likelihood

g (θ, x) =
(
∂ logLθ(x)

∂θi

)N

i=1

.

The Fisher score of a data item x with respect to the model m(θ0) for a
given setting of the parameters θ0 is

g
(
θ0, x

)
.

The Fisher information matrix with respect to the model m(θ0) for a given
setting of the parameters θ0 is given by

IM = E

[
g

(
θ0, x

)
g

(
θ0, x

)′] ,

where the expectation is over the generation of the data point x according
to the data generating distribution.

The Fisher score gives us an embedding into the feature space R
N and

12.2 Fisher kernels 425

hence immediately suggests a possible kernel. The matrix IM can be used
to define a non-standard inner product in that feature space.

Definition 12.27 [Fisher kernel] The invariant Fisher kernel with respect
to the model m(θ0) for a given setting of the parameters θ0 is defined as

κ(x, z) = g
(
θ0, x

)′ I−1
M g

(
θ0, z

)
.

The practical Fisher kernel is defined as

κ(x, z) = g
(
θ0, x

)′ g (
θ0, z

)
.

Remark 12.28 [Problem of small norms] Notice that this kernel may give
a small norm to very typical points, while atypical points may have large
derivatives and so a correspondingly larger norm. The derivative of the log
implies division by P (x|θ), which will to some extent reinforce this effect.
There is, therefore, a danger that the inner product between two typical
points can become very small, despite their being similar in the model. This
effect is can of course be overcome by normalising the kernel.

Remark 12.29 [Using the Gaussian kernel] Another way to use the Fisher
score that does not suffer from the problem described above is to use the
Gaussian kernel based on distance in the Fisher score space

κ (x, z) = exp

(
−

∥∥g (
θ0, x

)
− g

(
θ0, z

)∥∥2

2σ2

)
.

We examine now some simple examples to illustrate the concepts intro-
duced so far.

Example 12.30 [1-dim Gaussian Fisher kernel] Consider the model class
M on X = R defined by the 1-dimensional Gaussian distributions

M =

{
P (x|θ) =

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
: θ = (µ, σ) ∈ R

2

}
.

The log-likelihood of a point x as a function of the parameters θ = (µ, σ) is

logL(µ,σ) (x) = −(x− µ)2

2σ2
− 1

2
log (2πσ) .

426 Kernels from generative models

Hence, the Fisher scores of a point x at parameter setting θ0 = (µ0, σ0) is

g
(
θ0, x

)
=

(
(x− µ0)

σ2
0

,
(x− µ0)

2

σ3
0

− 1
2σ0

)
.

If we use the embedding

φ (x) = g
(
θ0, x

)
,

as in the practical Fisher kernel, then we obtain the following embedding
for the case when µ0 = 0 and σ0 = 1

φ (x) =
(
x, x2 − 0.5

)
,

which is equivalent to the polynomial kernel of degree 2 with the real line
being embedded onto the curve y = x2 − 0.5 as shown in Figure 12.5. Using

−2 −1 0 1 2

0.5

1

1.5

2

2.5

3

−1.5 −0.5 0.5 1.5
−0.5

0

3.5

Fig. 12.5. Feature space embedding corresponding to the Fisher kernel of a one-
dimensional Gaussians.

hyperplanes in this 2-dimensional space shows that the embedding will allow
classifications that reflect exclusions of independent amounts of each tail of
the Gaussian, something not possible with the standard (1-dimensional)
inner product. Note that this will be true even if the true Gaussian is
different from that given by the parameter setting θ0, though the closer to
the true distribution it is the easier it will be to achieve the separation.

Example 12.31 [Two fixed width Gaussians] If we assume our data has

12.2 Fisher kernels 427

been generated by two Gaussians with pre-fixed widths both equal to σ

and means stored as the parameters θ = (µ+, µ−), the gradient of the log-
likelihood with respect to the two tunable parameters is

g
(
θ0, x

)
=

((
x− µ+

0

)
σ2

,

(
x− µ−

0

)
σ2

)
.

This will not enrich the capacity of the function class since it maps to a line
in the two-dimensional feature space.

The two examples above illustrate how different assumptions on the source
generating the data can change the embedding map, and a correct or even
approximately correct guess of the model can improve the embedding.

We now show with examples how Fisher kernels can be used to deal with
structured objects such as for example the strings of symbols in text or
DNA. Frequently a generative model exists for such objects or can be in-
ferred from easily available unlabelled data. We will gradually move from
artificial to real cases, starting from fixed length strings of independently
generated symbols, moving to Markov models and finally to HMMs. As
before with exponential case, the same string can be embedded in different
spaces depending on the generative model we decide to use. Finally we will
also discuss an application to the case of text, where the generative model
involves the use of latent variables in the role of ‘topics’.

Example 12.32 [Markov strings] We consider a generative model for strings
of length n parametrised by probabilities pu→σ that the next character fol-
lowing a string u of length k is σ. We therefore compute the likelihood of a
string s as

n−k∏
j=1

ps(j:j+k−1)→sj+k
,

that is the product of the probabilities for each of the characters that have
at least k predecessors in the string. If we assume that∑

σ∈Σ

pu→σ = 1, for all u ∈ Σk,

and that the first k symbols of the strings are fixed (if necessary these
could be k special marker symbols added to the beginning of the string),
the likelihoods corresponds to a distribution over the set of possible strings.
This implies certain constraints on the parameters pu→σ which would affect

428 Kernels from generative models

the calculation of the derivatives. We therefore choose to parametrise the
model with arbitrary real-values θ = (au→σ)u∈Σk,σ∈Σ with

pu→σ =
au→σ∑
σ∈Σ au→σ

.

The Fisher score now becomes

g
(
θ0, s

)
u→σ

=
∂ logLθ(s)
∂au→σ

=
n−k∑
j=1

∂ log ps(j:j+k−1)→sj+k

∂au→σ

=
n−k∑
j=1

[s (j : j + k − 1) = u]

(
[sj+k = σ]

1
as(j:j+k−1)→sj+k

− 1∑
σ∈Σ as(j:j+k−1)→σ

)
.

If we consider the parameter setting θ0 for which all au→σ = pu→σ = |Σ|−1

the computation simplifies to

g
(
θ0, s

)
u→σ

= |{(v1, v2) : s = v1uσv2}| |Σ| − |{(v1, v2) : s = v1uv2}| .

Ignoring the second term this becomes the p-spectrum kernel of length k+1
scaled by |Σ|. The second term subtracts the first term for the given u

averaged in s over the possible next characters σ, hence projecting the subset
of features that include a k-string u to the hyperplane perpendicular to the
all ones vector.

Remark 12.33 [Arbitrary length strings] Example 12.32 can be extended to
arbitrary length strings by introducing an end-of-string state to which we can
transfer with certain probability at any time. More generally the approach
suggests that we may improve the performance of the p-spectrum kernel by
tuning the parameters au→σ for example using counts of the transitions in
the whole corpus. This corresponds to learning the model from the training
data.

Note how the states of the corresponding Markov model are labelled by
subsequences uσ of length k + 1, with the transitions defined by adding
the next symbol to the suffix of length k. This suggests that we could
generalise the approach by allowing states that correspond to different length
subsequences perhaps chosen so that they are neither too frequent or too
rare. The transition for a state u and symbol σ would be to the longest

12.2 Fisher kernels 429

suffix of uσ that corresponds to a state. Again the transition parameters
could be inferred from the training data.

The examples we have considered so far have all been for the practical
Fisher kernel. The invariant Fisher kernel suffers from the drawback that it
requires us to compute a random matrix

IM = E

[
g

(
θ0, x

)
g

(
θ0, x

)′]
where x is drawn according to the input distribution, something that we
are not able to do in practice. Before considering this problem we will first
indicate why the name ‘invariant’ is appropriate. If we reparametrise the
model using an invertible differentiable transformation

ψ = ψ (θ) ,

we might expect that the resulting kernel would change. The embedding will
certainly alter and so the practical Fisher kernel will change with it, but the
invariant Fisher kernel is not affected by this reparametrisation since if κ̃ is
the transformed kernel we have

g
(
θ0, x

)′ =
(
∂ logLψ(x)

∂ψi

)N

i=1

J (ψ) = g
(
ψ0, x

)′ J (
ψ0

)
,

where J
(
ψ0

)
is the Jacobian of the transformation ψ evaluated at ψ0. It

follows that

κ̃(x1, x2)

= g
(
ψ0, x1

)′ Ĩ−1
M g

(
ψ0, x2

)
= g

(
θ0, x1

)′ J (
ψ0

)−1

E

[
J

(
ψ0

)′−1 g
(
θ0, x

)
g

(
θ0, x

)′ J (
ψ0

)−1
]−1

J
(
ψ0

)′−1 g
(
θ0, x2

)
= g

(
θ0, x1

)′ J (
ψ0

)−1 J
(
ψ0

)
E

[
g

(
θ0, x

)
g

(
θ0, x

)′]−1
J

(
ψ0

)′ J (
ψ0

)′−1 g
(
θ0, x2

)
= g

(
θ0, x1

)′
E

[
g

(
θ0, x

)
g

(
θ0, x

)′]−1
g

(
θ0, x2

)
= κ (x1, x2) .

The invariant Fisher kernel is indeed invariant to any smooth invertible
reparametrisation of the model. This would appear to be a desirable prop-
erty if we believe that the choice of parametrisation is somewhat arbitrary.
We will see, however, that this view may be misleading.

430 Kernels from generative models

Let us return to the question of computing the Fisher information matrix

IM = E

[
g

(
θ0, x

)
g

(
θ0, x

)′] .

A natural approximation for the matrix is to take the empirical rather than
the true expectation. In other words we estimate the matrix by averaging
over the sample

ÎM = Ê

[
g

(
θ0, x

)
g

(
θ0, x

)′] =
1

�∑
i=1

g
(
θ0, xi

)
g

(
θ0, xi

)′ .
In this case ÎM is simply the covariance matrix of the Fisher scores. Hence,
the Fisher kernel becomes equivalent to whitening these scores (see Algo-
rithm 6.16), with the associated dangers of amplifying noise if certain pa-
rameters are not relevant for the information contained in the training set.
Hence, the invariance comes at the cost of possibly reducing the signal to
noise ratio in the representation.

12.2.2 Fisher kernels for hidden markov models

We now consider deriving Fisher kernels for the hidden Markov models that
we developed to create generative kernels. Consider first the fixed length
hidden Markov models described in Section 12.1.4. We now view the model
as the sum over all of the state paths or individual models with the parame-
ters the various transition and emission probabilities, so that for a particular
parameter setting the probability of a sequence s is given by

PM (s) =
∑

m∈An

P (s|m)PM (m) =
∑

m∈An

PM (s,m),

where

PM (m) = PM (m1)PM (m2|m1) . . . PM (mn|mn−1),

and

P (s|m) =
n∏

i=1

P (si|mi)

so that

PM (s,m) =
n∏

i=1

P (si|mi)P (mi|mi−1) .

12.2 Fisher kernels 431

The parameters of the model are the emission probabilities P (si|mi) and
the transition probabilities PM (mi|mi−1). For convenience we introduce
parameters

θsi|mi
= P (si|mi) and τmi|mi−1

= PM (mi|mi−1) ,

where we use the convention that PM (m1) = PM (m1|m0) with m0 = a0

for a special fixed state a0 �∈ A. We again have the difficulty experienced in
Example 12.32 that these parameters are not independent. Using the same
approach as was adopted in that example we introduce the unconstrained
parameters

θσ,a and τa,b

with

θσ|a =
θσ,a∑

σ′∈Σ θσ′,a
and τa|b =

τa,b∑
a′∈A τa′,b

.

We assemble these values into a parameter vector θ. Furthermore we assume
that the parameter setting at which the derivatives are computed satisfies∑

σ∈Σ

θσ,a =
∑
a∈A

τa,b = 1, (12.4)

for all a, b ∈ A in order to simplify the calculations.
We must compute the derivatives of the log-likelihood with respect to the

parameters θ and τ . The computations for both sets of parameters follow an
identical pattern, so to simplify the presentation we first derive a template
that subsumes both cases. Let

ψ̄ (b, a) =
ψ (b, a)∑

b′∈B ψ (b′, a)
, for a ∈ A and b ∈ B.

Let

Q (a,b) =
n∏

i=1

ψ̄ (bi, ai) ci,

for some constants ci. Consider the derivative of Q (a,b) with respect to
the parameter ψ (b, a) at a point

(
a0,b0

)
where∑

b∈B
ψ

(
b, a0

i

)
= 1 for all i. (12.5)

We have
∂Q (a,b)
∂ψ (b, a)

432 Kernels from generative models

=
n∑

k=1

ck
∏
i�=k

ψ̄
(
b0i , a

0
i

)
ci

∂

∂ψ (b, a)
ψ (bk, ak)∑
b′∈B ψ (b′, ak)

=
n∑

k=1

(
[b0k = b][a0

k = a]∑
b′∈B ψ

(
b′, a0

k

) − ψ
(
b0k, a

0
k

)
[a0

k = a](∑
b′∈B ψ

(
b′, a0

k

))2

)
ck

∏
i�=k

ψ̄
(
b0i , a

0
i

)
ci

=
n∑

k=1

(
[b0k = b][a0

k = a]
ψ̄ (b, a)

− [a0
k = a]

) ∏
i=k

ψ̄
(
b0i , a

0
i

)
ci

=
n∑

k=1

(
[b0k = b][a0

k = a]
ψ̄ (b, a)

− [a0
k = a]

)
Q

(
a0,b0

)
,

where we have made use (12.5) to obtain the third line from the second.
We now return to considering the derivatives of the log-likelihood, first with
respect to the parameter θσ,a

∂ logPM (s|θ)
∂θσ,a

=
1

PM (s|θ)
∂

∂θσ,a

∑
m∈An

n∏
i=1

P (si|mi)PM (mi|mi−1)

=
1

PM (s|θ)

∑
m∈An

∂

∂θσ,a

n∏
i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
.

Letting a be the sequence of states m and b the string s, with ψ (a, b) = θb,a
and ci = τmi|mi−1

we have

Q (a,b) =
n∏

i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
= PM (s,m|θ) .

It follows from the derivative of Q that

∂ logPM (s|θ)
∂θσ,a

=
∑

m∈An

n∑
k=1

(
[sk = σ][mk = a]

θσ|a
− [mk = a]

)
PM (s,m|θ)
PM (s|θ)

=
n∑

k=1

∑
m∈An

(
[sk = σ][mk = a]

θσ|a
− [mk = a]

)
PM (m|s,θ)

=
n∑

k=1

E

[
[sk = σ][mk = a]

θσ|a
− [mk = a]

∣∣∣∣ s,θ
]

=
1

θσ|a

n∑
k=1

E [[sk = σ][mk = a]|s,θ] −
n∑

k=1

E [[mk = a]|s,θ] ,

where the expectations are over the hidden states that generate s. Now

12.2 Fisher kernels 433

consider the derivatives with respect to the parameter τa,b

∂ logPM (s|θ)
∂τa,b

=
1

PM (s|θ)
∂

∂τa,b

∑
m∈An

n∏
i=1

P (si|mi)PM (mi|mi−1)

=
1

PM (s|θ)

∑
m∈An

∂

∂τa,b

n∏
i=1

θsi,mi∑
σ∈Σ θσ,mi

τmi|mi−1
.

Letting a and b be the sequence of states m and b be the same sequence of
states shifted one position, with ψ (a, b) = τa,b and ci = θsi|mi

, we have

Q (a,b) =
n∏

i=1

θsi|mi

τmi,mi−1∑
a′∈A τa′,mi−1

τmi|mi−1
= PM (s,m|θ) .

It follows from the derivative of Q that

∂ logPM (s|θ)
∂τa,b

=
n∑

k=1

∑
m∈An

(
[mk−1 = b][mk = a]

τa|b
− [mk = a]

)
PM (m|s,θ)

=
1

τa|b

n∑
k=1

E [[mk−1 = b][mk = a]|s,θ] −
n∑

k=1

E [[mk = a]|s,θ] ,

It remains to compute the expectations in each of the sums. These are
the expectations that the particular emissions and transitions occurred in
the generation of the string s.

The computation of these quantities will rely on an algorithm known as
the forwards–backwards algorithm. As the name suggests this is a two-stage
algorithm that computes the quantities

fa (i) = P (s1 . . . si,mi = a) ,

in other words the probability that the ith hidden state is a with the prefix
of the string s together with the probability P (s) of the sequence. Following
this the backwards algorithm computes

ba (i) = P (si+1 . . . sn|mi = a) .

Once these values have been computed it is possible to evaluate the expec-
tation

E [[sk = σ][mk = a]|s]
= P (sk = σ,mk = a|s)

434 Kernels from generative models

= [sk = σ]
P (sk+1 . . . sn|mk = a)P (s1 . . . sk,mk = a)

P (s)

= [sk = σ]
fa (k) ba (k)

P (s)
.

Similarly

E [[mk = a]|s] = P (mk = a|s)

=
P (sk+1 . . . sn|mk = a)P (s1 . . . sk,mk = a)

P (s)

=
fa (k) ba (k)

P (s)
.

Finally, for the second pair of expectations the only tricky evaluation is
E [[mk−1 = b][mk = a]|s], which equals

P (sk+1 . . . sn|mk = a)P (s1 . . . sk−1,mk−1 = b)P (a|b)P (sk|mk = a)
P (s)

=
fb (k − 1) ba (k) τa|bθsk|a

P (s)
.

Hence, the Fisher scores can be evaluated based on the results of the
forwards–backwards algorithm. The forwards–backwards algorithm again
uses a dynamic programming approach based on the recursion

fb (i + 1) = θsi+1|b
∑
a∈A

fa (i) τ b|a,

with fa0 (0) = 1 and fa (0) = 0, for a = a0. Once the forward recursion is
complete we have

P (s) =
∑
a∈A

fa (n) .

The initialisation for the backward algorithm is

ba (n) = 1

with the recursion

bb (i) =
∑
a∈A

τa|bθσi+1|aba (i + 1) .

Putting all of these observations together we obtain the following algorithm,
where we only evaluate the Fisher scores for the emission probabilities for
brevity.

12.3 Summary 435

Algorithm 12.34 [Fixed length Markov model Fisher kernel] The Fisher
scores for the fixed length Markov model Fisher kernel are computed in Code
Fragment 12.4.

Input Symbol string s, state transition probability matrix PM (a|b),
initial state probabilities PM (a) = PM (a|a0)
and conditional probabilities P (σ|a) of symbols given states.

Process Assume p states, 0, 1, . . . , p.
2 score (:, :) = 0;
3 forw (:, 0) = 0;
4 back (:, n) = 1;

f (0, 0) = 1; Prob = 0;
5 for i = 1 : n
7 for a = 1 : p
8 forw (a, i) = 0;
9 for b = 1 : p
10 forw (a, i) = forw (a, i) + PM (a|b) forw (b, i− 1) ;
11 end
12 forw (a, i) = forw (a, i)P (si|a) ;
13 end
14 end
15 for a = 1 : p
16 Prob = Prob + forw (a, n) ;
17 end
18 for i = n− 1 : 1
19 for a = 1 : p
20 back (a, i) = 0;
21 for b = 1 : p
22 back (a, i) = back (a, i) + PM (b|a)P (si+1|b) back (b, i + 1) ;
23 end
24 score (a, si) = score (a, si) + back (a, i) forw (a, i) / (P (si|a) Prob) ;
25 for σ ∈ Σ
26 score (a, σ) = score (a, σ) + back (a, i) forw (a, i) /Prob;
Output Fisher score = score

Code Fragment 12.4. Pseudocode to compute the Fisher scores for the fixed length
Markov model Fisher kernel.

12.3 Summary

• P -kernels arise from probability distributions over pairs of examples.
• marginalisation kernels compute the probability that two examples are

generated over a class of models.
• marginalisation kernels can be computed efficiently for a number of com-

436 Kernels from generative models

plex generative models including fixed length hidden Markov models, pair
hidden Markov models and hidden tree models.

• Fisher kernels use the gradient of the log-likelihood as a feature vector.
• Fisher kernels can be efficiently evaluated for hidden Markov models.

12.4 Further reading and advanced topics

The notion of P -kernel was introduced by Haussler [52], while Watkins [155],
[154] independently discussed conditional independence kernels, and the case
of hidden Markov models. These ideas were later applied by Vert, defining
first a family of kernels for strings based on simple probabilistic models [145]
and then based on the hidden tree model [146] (our discussion of the hidden
tree model is based on the work of Vert, while our discussion of the pair
HMM kernel is derived from the work of Watkins, but more generally draws
from the literature on context trees and on message-passing methods for
marginalising probabilities in graphical models). The formal presentation
of the pair-HMMs kernel is however based on the Durbin et al. ‘forward’
algorithm [42].

Pair HMMs have also been used as kernels by J.-P. Vert et al. [148].
Extensions of these ideas can be found in the papers of marginalised kernels
of Koji Tsuda [137], [76], which also exploit stochastic context free grammars
as generative models.

Another extension from trees to certain graphs is also possible using
the techniques from [131], but overall the general problem is best attacked
with the algorithms and concepts developed within the field of probabilistic
graphical models, where the sum-product algorithm and its extension are
used for marginalisation. A new book on this topic will be forthcoming
shortly [68].

The notion of Fisher kernel was defined by Jaakkola and Haussler [61],
[62] and later used by several authors, for example Hoffmann in [57]. For
the treatment of string kernels as Fisher kernels, see [114].

Rational Kernels [25] are based on the definition of transducers. They
can be related to pair HMMs but as with our presentation here have the ad-
vantage of automatically having the finitely positive semi-definite property.
Furthermore, they define a very broad class of kernels. A more recent paper
of Cuturi and Vert [36] also discusses string kernels based on probabilistic
models and pair HMMs.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net

