
11

Kernels for structured data: strings, trees, etc.

Probably the most important data type after vectors and free text is that
of symbol strings of varying lengths. This type of data is commonplace in
bioinformatics applications, where it can be used to represent proteins as
sequences of amino acids, genomic DNA as sequences of nucleotides, pro-
moters and other structures. Partly for this reason a great deal of research
has been devoted to it in the last few years. Many other application do-
mains consider data in the form of sequences so that many of the techniques
have a history of development within computer science, as for example in
stringology, the study of string algorithms.

Kernels have been developed to compute the inner product between im-
ages of strings in high-dimensional feature spaces using dynamic program-
ming techniques. Although sequences can be regarded as a special case of a
more general class of structures for which kernels have been designed, we will
discuss them separately for most of the chapter in order to emphasise their
importance in applications and to aid understanding of the computational
methods. In the last part of the chapter, we will show how these concepts
and techniques can be extended to cover more general data structures, in-
cluding trees, arrays, graphs and so on.

Certain kernels for strings based on probabilistic modelling of the data-
generating source will not be discussed here, since Chapter 12 is entirely
devoted to these kinds of methods. There is, however, some overlap between
the structure kernels presented here and those arising from probabilistic
modelling covered in Chapter 12. Where appropriate we will point out the
connections.

The use of kernels on strings, and more generally on structured objects,
makes it possible for kernel methods to operate in a domain that tradition-
ally has belonged to syntactical pattern recognition, in this way providing a
bridge between that field and statistical pattern analysis.

344

11.1 Comparing strings and sequences 345

11.1 Comparing strings and sequences

In this chapter we consider the problem of embedding two sequences in a
high-dimensional space in such a way that their relative distance in that
space reflects their similarity and that the inner product between their im-
ages can be computed efficiently. The first decision to be made is what
similarity notion should be reflected in the embedding, or in other words
what features of the sequences are revealing for the task at hand. Are we
trying to group sequences by length, composition, or some other proper-
ties? What type of patterns are we looking for? This chapter will describe
a number of possible embeddings providing a toolkit of techniques that ei-
ther individually or in combination can be used to meet the needs of many
applications.

Example 11.1 The different approaches all reduce to various ways of
counting substrings or subsequences that the two strings have in common.
This is a meaningful similarity notion in biological applications, since evo-
lutionary proximity is thought to result both in functional similarity and
in sequence similarity, measured by the number of insertions, deletions and
symbol replacements. Measuring sequence similarity should therefore give
a good indication about the functional similarity that bioinformatics re-
searchers would like to capture.

We begin by defining what we mean by a string, substring and subsequence
of symbols. Note that we will use the term substring to indicate that a
string occurs contiguously within a string s, and subsequence to allow the
possibility that gaps separate the different characters resulting in a non-
contiguous occurrence within s.

Definition 11.2 [Strings and substrings] An alphabet is a finite set Σ of |Σ|
symbols. A string

s = s1 . . . s|s|,

is any finite sequence of symbols from Σ, including the empty sequence
denoted ε, the only string of length 0. We denote by Σn the set of all finite
strings of length n, and by Σ∗ the set of all strings

Σ∗ =
∞⋃
n=0

Σn.

We use [s = t] to denote the function that returns 1 if the strings s and t are
identical and 0 otherwise. More generally [p (s, t)] where p (s, t) is a boolean

346 Kernels for structured data: strings, trees, etc.

expression involving s and t, returns 1 if p (s, t) is true and 0 otherwise. For
strings s, t, we denote by |s| the length of the string s and by st the string
obtained by concatenating the strings s and t. The string t is a substring of
s if there are (possibly empty) strings u and v such that

s = utv.

If u = ε, we say that t is a prefix of s, while if v = ε, t is known as a suffix.
For 1 ≤ i ≤ j ≤ |s|, the string s (i : j) is the substring si . . . sj of s. The
substrings of length k are also referred to as k-grams or k-mers.

Definition 11.3 [Subsequence] We say that u is a subsequence of a string
s, if there exist indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|,
such that uj = sij , for j = 1, . . . , |u|. We will use the short-hand notation
u = s (i) if u is a subsequence of s in the positions given by i. We denote by
|i| = |u| the number of indices in the sequence, while the length l(i) of the
subsequence is i|u|− i1 +1, that is, the number of characters of s covered by
the subsequence. The empty tuple is understood to index the empty string
ε. Throughout this chapter we will use the convention that bold indices i
and j range over strictly ordered tuples of indices, that is, over the sets

Ik = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik} ⊂ N
k, k = 0, 1, 2,

Example 11.4 For example, the words in this sentence are all strings
from the alphabet Σ = {a, b, ..., z}. Consider the string s ="kernels". We
have |s| = 7, while s (1 : 3) ="ker" is a prefix of s, s (4 : 7) ="nels” is a
suffix of s, and together with s (2 : 5) ="erne”all three are substrings of s.
The string s (1, 2, 4, 7) ="kens" is a subsequence of length 4, whose length
l (1, 2, 4, 7) in s is 7. Another example of a subsequence is s (2, 4, 6) ="enl".

Remark 11.5 [Binary representation] There is a 1–1 correspondence be-
tween the set Ik and the binary strings with exactly k 1s. The tuple
(i1, . . . , ik) corresponds to the binary string with 1s in positions ij , j =
1, . . . , k. For some of the discussions below it can be easier to think in terms
of binary strings or vectors, as in Example 11.18.

Remark 11.6 [On strings and sequences] There is some ambiguity be-
tween the terms ‘string’ and ‘sequence’ across different traditions. They are
sometimes used equivalently both in computer science and biology, but in

11.2 Spectrum kernels 347

most of the computer science literature the term ‘string’ requires contigu-
ity, whereas ‘sequence’ implies only order. This makes a difference when
moving to substrings and subsequences. What in the biological literature
are called ‘sequences’ are usually called ‘strings’ in the computer science
literature. In this chapter we will follow the computer science convention,
though frequently including an indication as to whether the given substring
is contiguous or not in order to minimise possible confusion.

Embedding space All the kernels presented in this chapter can be defined
by an explicit embedding map from the space of all finite sequences over an
alphabet Σ to a vector space F . The coordinates of F are indexed by a subset
I of strings over Σ, that is by a subset of the input space. In some cases I

will be the set Σp of strings of length p giving a vector space of dimension
|Σ|p, while in others it will be the infinite-dimensional space indexed by Σ∗.
As usual we use φ to denote the feature mapping

φ: s �−→ (φu (s))u∈I ∈ F .

For each embedding space F , there will be many different maps φ to
choose from. For example, one possibility is to set the value of the coordinate
φu (s) indexed by the string u to be a count of how many times u occurs as a
contiguous substring in the input string s, while another possible choice is to
count how many times u occurs as a (non-contiguous) subsequence. In this
second case the weight of the count can also be tuned to reflect how many
gaps there are in the different occurrences. We can also count approximate
matches appropriately weighting for the number of mismatches.

In the next section we use the example of a simple string kernel to in-
troduce some of the techniques. This will set the scene for the subsequent
sections where we develop string kernels more tuned to particular applica-
tions.

11.2 Spectrum kernels

Perhaps the most natural way to compare two strings in many applications
is to count how many (contiguous) substrings of length p they have in com-
mon. We define the spectrum of order p (or p-spectrum) of a sequence s to
be the histogram of frequencies of all its (contiguous) substrings of length
p. Comparing the p-spectra of two strings can give important information
about their similarity in applications where contiguity plays an important
role. We can define a kernel as the inner product of their p-spectra.

348 Kernels for structured data: strings, trees, etc.

Definition 11.7 [The p-spectrum kernel] The feature space F associated
with the p-spectrum kernel is indexed by I = Σp, with the embedding given
by

φp
u (s) = |{(v1, v2) : s = v1uv2}| , u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s)φp

u (t) .

Example 11.8 [2-spectrum kernel] Consider the strings "bar", "bat",
"car" and "cat". Their 2-spectra are given in the following table:

φ ar at ba ca

bar 1 0 1 0
bat 0 1 1 0
car 1 0 0 1
cat 0 1 0 1

with all the other dimensions indexed by other strings of length 2 having
value 0, so that the resulting kernel matrix is:

K bar bat car cat

bar 2 1 1 0
bat 1 2 0 1
car 1 0 2 1
cat 0 1 1 2

Example 11.9 [3-spectrum kernel] As a further example, consider the fol-
lowing two sequences

s ="statistics"
t ="computation"

The two strings contain the following substrings of length 3.

"sta", "tat", "ati", "tis", "ist", "sti", "tic", "ics"
"com", "omp", "mpu", "put", "uta", "tat", "ati", "tio", "ion"

and they have in common the substrings "tat" and "ati", so their inner
product would be κ (s, t) = 2.

11.2 Spectrum kernels 349

Many alternative recursions can be devised for the calculation of this
kernel with different costs and levels of complexity. We will present a few of
them spread through the rest of this chapter, since they illustrate different
points about the design of string kernels.

In this section we present the first having a cost O (p |s| |t|). Our aim in
later sections will be to show how the cost can be reduced to O (p (|s| + |t|)) =
O (pmax (|s| , |t|)) making it linear in the length of the longer sequence.

The first method will nonetheless be useful because it will introduce some
methods that are important when considering more sophisticated kernels, for
example ones that can tolerate partial matches and insertions of irrelevant
symbols. It will also illustrate an important consideration that makes it
possible to use partial results of the evaluation of one entry in the kernel
matrix to speed up the computation of other entries in the same row or
column. In such cases the complexity of computing the complete kernel
matrix can be less than O

(
�2

)
times the cost of evaluating a single entry.

Computation 11.10 [p-spectrum recursion] We can first define an ‘auxil-
iary’ kernel known as the k-suffix kernel to assist in the computation of the
p-spectrum kernel. The k-suffix kernel κSk (s, t) is defined by

κSk (s, t) =
{

1 if s = s1u, t = t1u, for u ∈ Σk

0 otherwise.

Clearly the evaluation of κSk (s, t) requires O (k) comparisons, so that the
p-spectrum kernel can be evaluated using the equation

κp (s, t) =
|s|−p+1∑

i=1

|t|−p+1∑
j=1

κSp (s (i : i + p) , t (j : j + p))

in O (p |s| |t|) operations.

Example 11.11 The evaluation of the 3-spectrum kernel using the above
recurrence is illustrated in the following Table 11.1 and 11.2, where each
entry computes the kernel between the corresponding prefixes of the two
strings.

Remark 11.12 [Computational cost] The evaluation of one row of the ta-
ble for the p-suffix kernel corresponds to performing a search in the string
t for the p-suffix of a prefix of s. Fast string matching algorithms such
as the Knuth–Morris–Pratt algorithm can identify the matches in time
O (|t| + p) = O (|t|), suggesting that the complexity could be improved to

350 Kernels for structured data: strings, trees, etc.

DP : κS
3 ε c o m p u t a t i o n

ε 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 1 0 0 0
i 0 0 0 0 0 0 0 0 0 1 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0

Table 11.1. 3-spectrum kernel between two strings.

DP : κ3 ε c o m p u t a t i o n
ε 0 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 1 1 1 1
i 0 0 0 0 0 0 0 0 1 2 2 2
s 0 0 0 0 0 0 0 0 1 2 2 2
t 0 0 0 0 0 0 0 0 1 2 2 2
i 0 0 0 0 0 0 0 0 1 2 2 2
c 0 0 0 0 0 0 0 0 1 2 2 2
s 0 0 0 0 0 0 0 0 1 2 2 2

Table 11.2. 3-spectrum kernel between strings.

O (|s| |t|) operations using this approach. We do not pursue this further
since we will consider even faster implementations later in this chapter.

Remark 11.13 [Blended spectrum kernel] We can also consider a ‘blended’
version of this kernel κ̃p, where the spectra corresponding to all values 1 ≤
d ≤ p are simultaneously compared, and weighted according to λd. This
requires the use of an auxiliary p-suffix kernel κ̃Sp that records the level of
similarity of the suffices of the two strings. This kernel is defined recursively
as follows

κ̃S0 (sa, tb) = 0,

11.3 All-subsequences kernels 351

κ̃Sp (sa, tb) =
{
λ2

(
1 + κ̃Sp−1 (s, t)

)
, if a = b;

0, otherwise.

The blended spectrum kernel can be defined using the same formula as the
p-spectrum kernel as follows

κ̃p (s, t) =
|s|−p+1∑

i=1

|t|−p+1∑
j=1

κ̃Sp (s (i : i + p) , t (j : j + p)) ,

resulting in the same time complexity as the original p-spectrum kernel.

As mentioned above later in this chapter we will give a more efficient
method for computing the p-spectrum kernel. This will be based on a tree-
like data structure known as a trie. We first turn to considering subsequences
rather than substrings as features in our next example.

11.3 All-subsequences kernels

In this section we consider a feature mapping defined by all contiguous or
non-contiguous subsequences of a string.

Definition 11.14 [All-subsequences kernel] The feature space associated
with the embedding of the all-subsequences kernel is indexed by I = Σ∗,
with the embedding given by

φu (s) = |{i:u = s (i)}| , u ∈ I,

that is, the count of the number of times the indexing string u occurs as a
subsequence in the string s. The associated kernel is defined by

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈Σ∗

φu (s)φu (t) .

An explicit computation of this feature map will be computationally in-
feasible even if we represent φu (s) by a list of its non-zero components, since
if |s| = m we can expect of the order of

min
((

m

k

)
, |Σ|k

)

distinct subsequences of length k. Hence, for m > 2 |Σ| the number of non-
zero entries considering only strings u of length m/2 is likely to be at least
|Σ|m/2, which is exponential in the length m of the string s.

352 Kernels for structured data: strings, trees, etc.

Remark 11.15 [Set intersection] We could also consider this as a case of a
kernel between multisets, as outlined in Chapter 9. The measure of the in-
tersection is a valid kernel. Neither definition suggests how the computation
of the kernel might be effected efficiently.

Example 11.16 All the (non-contiguous) subsequences in the words
"bar", "baa", "car" and "cat" are given in the following two tables:

φ ε a b c r t aa ar at ba br bt

bar 1 1 1 0 1 0 0 1 0 1 1 0
baa 1 2 1 0 0 0 1 0 0 2 0 0
car 1 1 0 1 1 0 0 1 0 0 0 0
cat 1 1 0 1 0 1 0 0 1 0 0 0

φ ca cr ct bar baa car cat

bar 0 0 0 1 0 0 0
baa 0 0 0 0 1 0 0
car 1 1 0 0 0 1 0
cat 1 0 1 0 0 0 1

and since all other (infinite) coordinates must have value zero, the kernel
matrix is

K bar baa car cat

bar 8 6 4 2
baa 6 12 3 3
car 4 3 8 4
cat 2 3 4 8

Notice that in general, the diagonal elements of this kernel matrix can vary
greatly with the length of a string and even as illustrated here between
words of the same length, when they have different numbers of repeated
subsequences. Of course this effect can be removed if we choose to normalise
this kernel. Notice also that all the entries are always positive placing all
the feature vectors in the positive orthant. This suggests that centering may
be advisable in some situations (see Code Fragment 5.2).

Evaluating the kernel We now consider how the kernel κ can be evalu-
ated more efficiently than via an explicit computation of the feature vectors.
This will involve the definition of a recursive relation similar to that derived
for ANOVA kernels in Chapter 9. Its computation will also follow similar
dynamic programming techniques in order to complete a table of values with

11.3 All-subsequences kernels 353

the resulting kernel evaluation given by the final entry in the table. In pre-
senting this introductory kernel, we will introduce terminology, definitions
and techniques that will be used throughout the rest of the chapter.

First consider restricting our attention to the feature indexed by a string
u. The contribution of this feature to the overall inner product can be
expressed as

φu (s)φu (t) =
∑

i:u=s(i)

1
∑

j:u=t(j)

1 =
∑

(i,j):u=s(i)=t(j)

1,

where it is understood that i and j range over strictly ordered tuples of
indices. Hence, the overall inner product can be expressed as

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈I

∑
(i,j):u=s(i)=t(j)

1 =
∑

(i,j):s(i)=t(j)

1. (11.1)

The key to the recursion is to consider the addition of one extra symbol a
to one of the strings s. In the final sum of equation (11.1) there are two
possibilities for the tuple i: either it is completely contained within s or its
final index corresponds to the final a. In the first case the subsequence is a
subsequence of s, while in the second its final symbol is a. Hence, we can
split this sum into two parts∑

(i,j):sa(i)=t(j)

1 =
∑

(i,j):s(i)=t(j)

1 +
∑

u:t=uav

∑
(i,j):s(i)=u(j)

1, (11.2)

where for the second contribution we have used the fact that the last char-
acter of the subsequence is a which must therefore occur in some position
within t.

Computation 11.17 [All-subsequences kernel] Equation (11.2) leads to the
following recursive definition of the kernel

κ (s, ε) = 1, (11.3)

κ (sa, t) = κ (s, t) +
∑

k:tk=a

κ (s, t (1 : k − 1))

where we have used the fact that every string contains the empty string ε

exactly once. By the symmetry of kernels, an analogous recurrence relation
can be given for κ (s, ta)

κ (ε, t) = 1

κ (s, ta) = κ (s, t) +
∑

k:sk=a

κ (s (1 : k − 1) , t) .

354 Kernels for structured data: strings, trees, etc.

Similar symmetric definitions will exist for other recurrences given in this
chapter, though in future we will avoid pointing out these alternatives.

An intuitive reading of the recurrence states that common subsequences
are either contained completely within s and hence included in the first
term of the recurrence or must end in the symbol a, in which case their final
symbol can be matched with occurrences of a in the second string.

Example 11.18 Consider computing the kernel between the strings s =
"gatt" and t ="cata", where we add the symbol a ="a" to the string
"gatt" to obtain the string sa = "gatta". The rows of the tables are
indexed by the pairs (i, j) such that sa (i) = t (j) with those not involving
the final character of sa listed in the first table, while those involving the
final character are given in the second table. The binary vectors below each
string show the positions of the entries in the vectors i and j.

g a t t a sa (i) = t (j) c a t a

0 0 0 0 0 ε 0 0 0 0
0 1 1 0 0 at 0 1 1 0
0 1 0 1 0 at 0 1 1 0
0 1 0 0 0 a 0 1 0 0
0 0 1 0 0 t 0 0 1 0
0 0 0 1 0 t 0 0 1 0
0 1 0 0 0 a 0 0 0 1

g a t t a sa (i) = t (j) c a t a

0 0 0 0 1 a 0 1 0 0
0 0 0 0 1 a 0 0 0 1
0 1 0 0 1 aa 0 1 0 1
0 0 0 1 1 ta 0 0 1 1
0 0 1 0 1 ta 0 0 1 1
0 1 1 0 1 ata 0 1 1 1
0 1 0 1 1 ata 0 1 1 1

Hence, we see that the 14 rows implying κ (sa, t) = 14 are made up of the 7
rows of the first table giving κ (s, t) = 7 plus κ ("gatt", "c") = 1 given by
the first row of the second table and κ ("gatt", "cat") = 6 corresponding
to rows 2 to 7 of the second table.

Cost of the computation As for the case of the ANOVA kernels discussed
in Chapter 9 a recursive evaluation of this kernel would be very expensive.

11.3 All-subsequences kernels 355

Clearly, a similar strategy of computing the entries into a table based on
dynamic programming methods will result in an efficient computation. The
table has one row for each symbol of the string s and one column for each
symbol of the string t; the entries κij = κ (s (1 : i) , t (1 : j)) give the kernel
evaluations on the various prefices of the two strings:

DP ε t1 t2 · · · tm
ε 1 1 1 · · · 1
s1 1 κ11 κ12 · · · κ1m

s2 1 κ21 κ22 · · · κ2m
...

...
...

...
. . .

...
sn 1 κn1 κn2 · · · κnm = κ (s, t)

The first row and column are given by the base case of the recurrence. The
general recurrence of (11.3) allows us to compute the (i, j)th entry as the
sum of the (i− 1, j)th entry together with all the entries (i− 1, k − 1) with
1 ≤ k < j for which tk = si. Clearly, filling the rows in sequential order
ensures that at each stage the values required to compute the next entry
have already been computed at an earlier stage.

The number of operations to evaluate the single (i, j)th entry is O (j)
since we must check through all the symbols in t up to jth. Hence, to fill
the complete table will require O

(
|s| |t|2

)
operations using this still slightly

naive approach.

Example 11.19 Example 11.18 leads to the following table:

DP ε g a t t a

ε 1 1 1 1 1 1
c 1 1 1 1 1 1
a 1 1 2 2 2 3
t 1 1 2 4 6 7
a 1 1 3 5 7 14

Speeding things up We can improve the complexity still further by ob-
serving that as we fill the ith row the sum

∑
k≤j:tk=si

κ (s (1 : i− 1) , t (1 : k − 1))

356 Kernels for structured data: strings, trees, etc.

required when we reach the jth position could have been precomputed into
an array P by the following computation

last = 0;
P (0) = 0;
for k = 1 : m
P (k) = P (last) ;
if tk = si then
P (k) = P (last) + DP (i− 1, k − 1) ;
last = k;

end
end

Using the array p we can now compute the next row with the simple loop

for k = 1 : m
DP (i, k) = DP (i− 1, k) + P (k) ;

end

We now summarise the algorithm.

Algorithm 11.20 [All–non-contiguous subsequences kernel] The all–non-
contiguous subsequences kernel is computed in Code Fragment 11.1.

Input strings s and t of lengths n and m

Process for j = 1 : m
2 DP (0, j) = 1;
3 end
4 for i = 1 : n
5 last = 0; P (0) = 0;
6 for k = 1 : m
7 P (k) = P (last) ;
8 if tk = si then
9 P (k) = P (last) + DP (i− 1, k − 1)
10 last = k;
11 end
12 end
13 for k = 1 : m
14 DP (i, k) = DP (i− 1, k) + P (k) ;
15 end
16 end
Output kernel evaluation κ (s, t) = DP (n,m)

Code Fragment 11.1. Pseudocode for the all-non-contiguous subsequences kernel.

11.4 Fixed length subsequences kernels 357

Example 11.21 The array p for each row is interleaved with the evaluations
of DP for the Example 11.18 in the following table:

DP ε g a t t a

ε 1 1 1 1 1 1
p 0 0 0 0 0 0
c 1 1 1 1 1 1
p 0 0 1 1 1 2
a 1 1 2 2 2 3
p 0 0 0 2 4 4
t 1 1 2 4 6 7
p 0 0 1 1 1 7
a 1 1 3 5 7 14

Cost of the computation Since the complexity of both loops individually
is O (|t|) their complexity performed sequentially is also O (|t|), making the
overall complexity O (|s| |t|).

Algorithm 11.20 is deceptively simple. Despite this simplicity it is giving
the exponential improvement in complexity that we first observed in the
ANOVA computation. We are evaluating an inner product in a space whose
dimension is exponential in |s| and in |t| with just O (|s| |t|) operations.

Remark 11.22 [Computational by-products] We compute the kernel κ (s, t)
by solving the more general problem of computing κ (s (1 : i) , t (1 : j)) for all
values of i ≤ |s| and j ≤ |t|. This means that at the end of the computation
we could also read off from the table the evaluation of the kernel between
any prefix of s and any prefix of t. Hence, from the table of Example 11.19
we can see that κ ("gatt", "cat") = 6 by reading off the value of DP (4, 3).

11.4 Fixed length subsequences kernels

We can adapt the recursive relation presented above in a number of ways,
until we are satisfied that the feature space implicitly defined by the kernel
is tuned to the particular task at hand.

Our first adaptation reduces the dimensionality of the feature space by
only considering non-contiguous substrings that have a given fixed length p.

Definition 11.23 [Fixed Length Subsequences Kernel] The feature space
associated with the fixed length subsequences kernel of length p is indexed

358 Kernels for structured data: strings, trees, etc.

by Σp, with the embedding given by

φp
u (s) = |{i:u = s (i)}| , u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s)φp

u (t) .

Evaluating the kernel We can perform a similar derivation as for the all-
subsequences kernel except that we must now restrict the index sequences
to the set Ip of those with length p

κ (s, t) = 〈φ (s) ,φ (t)〉 =
∑
u∈Σp

∑
(i,j):u=s(i)=t(j)

1 =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

1.

Following the derivations of the previous section we arrive at∑
(i,j)∈Ip×Ip:sa(i)=t(j)

1 =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

1 +
∑

u:t=uav

∑
(i,j)∈Ip−1×Ip−1:s(i)=u(j)

1,

where, as before, the lengths of the sequences considered in the two compo-
nents of the sum differ.

Computation 11.24 [Fixed length subsequence kernel] This leads to the
following recursive definition of the fixed length subsequences kernel

κ0 (s, t) = 1,

κp (s, ε) = 0, for p > 0, (11.4)

κp (sa, t) = κp (s, t) +
∑

k:tk=a

κp−1 (s, t (1 : k − 1)) .

Note that now we not only have a recursion over the prefixes of the strings,
but also over the lengths of the subsequences considered. The following
algorithm includes this extra recursion to compute the kernel by storing the
evaluation of the previous kernel in the table DPrec.

Algorithm 11.25 [Fixed length subsequences kernel] The fixed length sub-
sequences kernel is computed in Code Fragment 11.2.

11.4 Fixed length subsequences kernels 359

Input strings s and t of lengths n and m length p

Process DP (0 : n, 0 : m) = 1;
2 for l = 1 : p
3 DPrec = DP;
4 for j = 1 : m
5 DP (0, j) = 1;
6 end
7 for i = 1 : n− p + l
8 last = 0; P (0) = 0;
9 for k = 1 : m
10 P (k) = P (last) ;
11 if tk = si then
12 P (k) = P (last) + DPrec (i− 1, k − 1) ;
13 last = k;
14 end
15 end
16 for k = 1 : m
17 DP (i, k) = DP (i− 1, k) + P (k) ;
18 end
19 end
20 end
Output kernel evaluation κp (s, t) = DP (n,m)

Code Fragment 11.2. Pseudocode for the fixed length subsequences kernel.

Cost of the computation At the pth stage we must be able to access
the row above both in the current table and in the table DPrec from the
previous stage. Hence, we must create a series of tables by adding an extra
loop to the overall algorithm making the overall complexity O (p |s| |t|). On
the penultimate stage when l = p − 1 we need only compute up to row
n − 1, since this is all that is required in the final loop with l = p. In the
implementation given above we have made use of this fact at each stage,
so that for the lth stage we have only computed up to row n − p + l, for
l = 1, . . . , p.

Example 11.26 Using the strings from Example 11.18 leads to the follow-
ing computations for p = 0, 1, 2, 3 given in Table 11.3. Note that the sum
of all four tables is identical to that for the all-subsequences kernel. This is
because the two strings do not share any sequences longer than 3 so that
summing over lengths 0, 1, 2, 3 subsumes all the common subsequences. This
also suggests that if we compute the p subsequences kernel we can, at almost
no extra cost, compute the kernel κl for l ≤ p. Hence, we have the flexibility

360 Kernels for structured data: strings, trees, etc.

DP : κ0 ε g a t t a
ε 1 1 1 1 1 1
c 1 1 1 1 1 1
a 1 1 1 1 1 1
t 1 1 1 1 1 1
a 1 1 1 1 1 1

DP : κ1 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 1 1 1 2
t 0 0 1 2 3 4
a 0 0 2 3 4 6

DP : κ2 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 0 0 0 0
t 0 0 0 1 2 2
a 0 0 0 1 2 5

DP : κ3 ε g a t t a
ε 0 0 0 0 0 0
c 0 0 0 0 0 0
a 0 0 0 0 0 0
t 0 0 0 0 0 0
a 0 0 0 0 0 2

Table 11.3. Computations for the fixed length subsequences kernel.

to define a kernel that combines these different subsequences kernels with
different weightings al ≥ 0

κ (s, t) =
p∑

l=1

alκl (s, t) .

The only change to the above algorithm would be that the upper bound of
the loop for the variable i would need to become n rather than n − p + l

and we would need to accumulate the sum at the end of the l loop with the
assignment

Kern = Kern +a (l) DP (n,m) ,

where the variable Kern is initialised to 0 at the very beginning of the
algorithm.

11.5 Gap-weighted subsequences kernels

We now move to a more general type of kernel still based on subsequences,
but one that weights the occurrences of subsequences according to how
spread out they are. In other words the kernel considers the degree of pres-
ence of a subsequence to be a function of how many gaps are interspersed
within it. The computation of this kernel will follow the approach developed
in the previous section for the fixed length subsequences kernel. Indeed we
also restrict consideration to fixed length subsequences in this section.

The kernel described here has often been referred to as the string kernel in

11.5 Gap-weighted subsequences kernels 361

the literature, though this name has also been used to refer to the p-spectrum
kernel. We have chosen to use long-winded descriptive names for the kernels
introduced here in order to avoid further proliferating the existing confusion
around different names. We prefer to regard ‘string kernel’ as a generic term
applicable to all of the kernels covered in this chapter.

The key idea behind the gap-weighted subsequences kernel is still to com-
pare strings by means of the subsequences they contain – the more subse-
quences in common, the more similar they are – but rather than weighting
all occurrences equally, the degree of contiguity of the subsequence in the
input string s determines how much it will contribute to the comparison.

Example 11.27 For example: the string "gon" occurs as a subsequence of
the strings "gone", "going" and "galleon", but we consider the first oc-
currence as more important since it is contiguous, while the final occurrence
is the weakest of all three.

The feature space has the same coordinates as for the fixed subsequences
kernel and hence the same dimension. In order to deal with non-contiguous
substrings, it is necessary to introduce a decay factor λ ∈ (0, 1) that can be
used to weight the presence of a certain feature in a string. Recall that for
an index sequence i identifying the occurrence of a subsequence u = s (i)
in a string s, we use l(i) to denote the length of the string in s. In the
gap-weighted kernel, we weight the occurrence of u with the exponentially
decaying weight λl(i).

Definition 11.28 [Gap-weighted subsequences kernel] The feature space
associated with the gap-weighted subsequences kernel of length p is indexed
by I = Σp, with the embedding given by

φp
u (s) =

∑
i:u=s(i)

λl(i), u ∈ Σp.

The associated kernel is defined as

κp (s, t) = 〈φp (s) ,φp (t)〉 =
∑
u∈Σp

φp
u (s)φp

u (t) .

Remark 11.29 [Two limits] Observe that we can recover the fixed length
subsequences kernel by choosing λ = 1, since the weight of all occurrences

362 Kernels for structured data: strings, trees, etc.

will then be 1 so that

φp
u (s) =

∑
i:u=s(i)

1l(i) = |{i:u = s (i)}| , u ∈ Σp.

On the other hand, as λ → 0, the kernel approximates the p-spectrum kernel
since the relative weighting of strings longer than p tends to zero. Hence, we
can view the gap-weighted kernel as interpolating between these two kernels.

Example 11.30 Consider the simple strings "cat", "car", "bat", and
"bar". Fixing p = 2, the words are mapped as follows:

φ ca ct at ba bt cr ar br

cat λ2 λ3 λ2 0 0 0 0 0
car λ2 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 λ2 λ3 0 0 0
bar 0 0 0 λ2 0 0 λ2 λ3

So the unnormalised kernel between "cat" and "car" is κ("cat","car") =
λ4, while the normalised version is obtained using

κ("cat", "cat") = κ("car", "car") = 2λ4 + λ6

as κ̂("cat","car") = λ4/(2λ4 + λ6) = (2 + λ2)−1.

11.5.1 Naive implementation

The computation of this kernel will involve both techniques developed for the
fixed subsequences kernel and for the p-spectrum kernel. When computing
the p-spectrum kernel we considered substrings that occurred as a suffix
of a prefix of the string. This suggests considering subsequences whose
final occurrence is the last character of the string. We introduce this as an
auxiliary kernel.

Definition 11.31 [Gap-weighted suffix subsequences kernel] The feature
space associated with the gap-weighted subsequences kernel of length p is
indexed by I = Σp, with the embedding given by

φp,S
u (s) =

∑
i∈I|s|p :u=s(i)

λl(i), u ∈ Σp,

11.5 Gap-weighted subsequences kernels 363

where we have used Ikp to denote the set of p-tuples of indices i with ip = k.
The associated kernel is defined as

κSp (s, t) =
〈
φp,S (s) ,φp,S (t)

〉
=

∑
u∈Σp

φp,S
u (s)φp,S

u (t) .

Example 11.32 Consider again the simple strings "cat", "car", "bat",
and "bar". Fixing p = 2, the words are mapped for the suffix version as
follows:

φ2,S
u (s) ca ct at ba bt cr ar br

cat 0 λ3 λ2 0 0 0 0 0
car 0 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 0 λ3 0 0 0
bar 0 0 0 0 0 0 λ2 λ3

Hence, the suffix kernel between "cat" and "car" is κS2 ("cat","car") = 0,
while suffix kernel between "cat" and "bat" is κS2 ("cat","bat") = λ4.

Figure 11.1 shows a visualisation of a set of strings derived from an em-
bedding given by the gap-weighted subsequences kernel of length 4, with
λ = 0.8. As in the case of the p-spectrum kernel, we can express the gap-

computing

competing

computation

biocomputing

biology

algorithm

logarithm biorhythm

rhythm

Fig. 11.1. Visualisation of the embedding created by the gap-weighted subsequences
kernel.

364 Kernels for structured data: strings, trees, etc.

weighted subsequences kernel in terms of its suffix version as

κp (s, t) =
|s|∑
i=1

|t|∑
j=1

κSp (s (1 : i) , t (1 : j)) ,

since

κp (s, t) =
∑
u∈Σp

∑
i∈Ip:u=s(i)

λl(i)
∑

j∈Ip:u=t(j)

λl(j) =
∑

(i,j)∈Ip×Ip:s(i)=t(j)

λl(i)+l(j)

=
|s|∑
i=1

|t|∑
j=1

∑
(i,j)∈Iip×Ijp:s(i)=t(j)

λl(i)+l(j)

=
|s|∑
i=1

|t|∑
j=1

κSp (s (1 : i) , t (1 : j)) .

Recall that [u = v] denotes the function that returns 1 if the strings u and
v are identical and 0 otherwise. We can therefore evaluate the suffix version
for the case p = 1 simply as

κS1 (s, t) =
[
s|s| = t|t|

]
λ2.

We can now devise a recursion for the suffix version of the kernel by observ-
ing that, for extensions of s and t by single symbols a and b respectively,
the suffix version is only non-zero if a = b, since the last character of the
subsequence is constrained to occur as the final symbol.

The pairs (i, j) of subsequences can now be divided according to where
their penultimate symbols occurred in the two strings. It follows that when
a = b and p > 1 the value of the kernel can be obtained by summing
the (p− 1)th kernel over all pairs of positions in s and t with appropriate
weightings. This is shown in the following computation.

Computation 11.33 [Naive recursion of gap-weighted subsequences ker-
nels] The naive recursion for the gap-weighted subsequences kernel is given
as follows

κSp (sa, tb) =
∑

(i,j)∈I|s|+1
p ×I

|t|+1
p :sa(i)=tb(j)

λl(i)+l(j)

= [a = b]
|s|∑
i=1

|t|∑
j=1

λ2+|s|−i+|t|−j
∑

(i,j)∈Iip−1×Ijp−1:s(i)=t(j)

λl(i)+l(j)

11.5 Gap-weighted subsequences kernels 365

= [a = b]
|s|∑
i=1

|t|∑
j=1

λ2+|s|−i+|t|−jκSp−1 (s (1 : i) , t (1 : j)) . (11.5)

Example 11.34 Using the strings from Example 11.18 leads to the com-
putations shown in Table 11.4 for the suffix version for p = 1, 2, 3. Hence:

DP : κS
1 g a t t a

c 0 0 0 0 0
a 0 λ2 0 0 λ2

t 0 0 λ2 λ2 0
a 0 λ2 0 0 λ2

DP : κS
2 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 λ4 λ5 0
a 0 0 0 0 λ7 + λ5 + λ4

DP : κS
3 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 0 0 0
a 0 0 0 0 2λ7

Table 11.4. Computations for the gap-weighted subsequences kernel.

the gap-weighted subsequences kernels between s ="gatta" and t ="cata"
for p = 1, 2, 3 are

κ1 ("gatta", "cata") = 6λ2,

κ2 ("gatta", "cata") = λ7 + 2λ5 + 2λ4

and κ3 ("gatta", "cata") = 2λ7.

Cost of the computation If we were to implement a naive evaluation of
the gap-weighted suffix subsequences kernel using the recursive definition of
Computation 11.33, then for each value of p we must sum over all the entries
in the previous table. This leads to a complexity of O

(
|t|2 |s|2

)
to complete

the table. Since there will be p tables required to evaluate κp this gives an

overall complexity of O
(
p |t|2 |s|2

)
.

366 Kernels for structured data: strings, trees, etc.

Remark 11.35 [Possible Computational Strategy] There are two different
ways in which this complexity could be reduced. The first is to observe that
the only non-zero entries in the tables for the suffix versions are the positions
(i, j) for which si = tj . Hence, we could keep a list L (s, t) of these pairs

L (s, t) = {(i, j) : si = tj} ,

and sum over the list L (s, t) rather than over the complete arrays. The
entries in the list could be inserted in lexicographic order of the index pairs.
When summing over the list to compute an entry in position (k, l) we would
need to consider all entries in the list before the (k, l)th entry, but only in-
clude those (i, j) with i < k and j < l. This approach could also improve the
memory requirements of the algorithm while the complexity would reduce
to

O
(
p |L (s, t)|2

)
≤ O

(
p |t|2 |s|2

)
.

The list version will be competitive when the list is short. This is likely
to occur when the size of the alphabet is large, so that the chances of two
symbols being equal becomes correspondingly small.

We will not develop this approach further but consider a method that
reduces the complexity to O (p |t| |s|). For small alphabets this will typically
be better than using the list approach.

11.5.2 Efficient implementation

Consider the recursive equation for the gap-weighted subsequences kernel
given in equation (11.5). We now consider computing an intermediate dy-
namic programming table DPp whose entries are

DPp (k, l) =
k∑

i=1

l∑
j=1

λk−i+l−jκSp−1 (s (1 : i) , t (1 : j)) .

Given this table we can evaluate the kernel by observing that

κSp (sa, tb) =
{

λ2 DPp (|s| , |t|) if a = b;
0 otherwise.

Computation 11.36 [Gap-weighted subsequences kernel] There is a natu-
ral recursion for evaluating DPp (k, l) in terms of DPp (k − 1, l), DPp (k, l − 1)

11.5 Gap-weighted subsequences kernels 367

and DPp (k − 1, l − 1)

DPp (k, l) =
k∑

i=1

l∑
j=1

λk−i+l−jκSp−1 (s (1 : i) , t (1 : j))

= κSp−1 (s (1 : k) , t (1 : l)) + λDPp (k, l − 1) (11.6)

+ λDPp (k − 1, l) − λ2 DPp (k − 1, l − 1) .

Correctness of the recursion The correctness of this recursion can be
seen by observing that the contributions to the sum can be divided into
three groups: when (i, j) = (k, l) we obtain the first term; those with i = k,
j < l are included in the second term with the correct weighting; those with
j = l and i < k are included in the third term; while those with i < k, j < l,
are included in the second, third and fourth terms with opposite weighting
in the fourth, leading to their correct inclusion in the overall sum.

Example 11.37 Using the strings from Example 11.18 leads to the DP
computations of Table 11.5 for p = 2, 3. Note that we do not need to com-
pute the last row and column. The final evaluation of κ3 ("gatta", "cata")
is given by the sum of the entries in the κS3 table.

The complexity of the computation required to compute the table DPp

for a single value of p is clearly O (|t| |s|) as is the complexity of computing
κSp from DPp making the overall complexity of computing the kernel κp (s, t)
equal to O (p |t| |s|).

Algorithm 11.38 [Gap-weighted subsequences kernel] The gap-weighted
subsequences kernel is computed in Code Fragment 11.3.

Remark 11.39 [Improving the complexity] Algorithm 11.38 seems to fail
to make use of the fact that in many cases most of the entries in the table
DPS are zero. This fact forms the basis of the list algorithm with complexity
O

(
p |L (s, t)|2

)
. It would be very interesting if the two approaches could

be combined to create an algorithm with complexity O (p |L (s, t)|), though
this seems to be a non-trivial task.

11.5.3 Variations on the theme

The inspiration for the gap-weighted subsequences kernel is first and fore-
most from the consideration of DNA sequences where it is likely that inser-

368 Kernels for structured data: strings, trees, etc.

DP : κS
1 g a t t a

c 0 0 0 0 0
a 0 λ2 0 0 λ2

t 0 0 λ2 λ2 0
a 0 λ2 0 0 λ2

DP2 g a t t
c 0 0 0 0
a 0 λ2 λ3 λ4

t 0 λ3 λ4 + λ2 λ5 + λ3 + λ2

DP : κS
2 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 λ4 λ5 0
a 0 0 0 0 λ7 + λ5 + λ4

DP3 g a t t
c 0 0 0 0
a 0 0 0 0
t 0 0 λ4 2λ5

DP : κS
3 g a t t a

c 0 0 0 0 0
a 0 0 0 0 0
t 0 0 0 0 0
a 0 0 0 0 2λ7

Table 11.5. Computations for the dynamic programming tables of the
gap-weighted subsequences kernel.

tions and deletions of base pairs could occur as genes evolve. This suggests
that we should be able to detect similarities between strings that have com-
mon subsequences with some gaps.

This consideration throws up a number of possible variations and gen-
eralisations of the gap-weighted kernel that could be useful for particular
applications. We will discuss how to implement some of these variants in
order to show the flexibility inherent in the algorithms we have developed.

Character-weightings string kernel Our first variant is to allow dif-
ferent weightings for different characters that are skipped over by a sub-

11.5 Gap-weighted subsequences kernels 369

Input strings s and t of lengths n and m, length p, parameter λ

Process DPS (1 : n, 1 : m) = 0;
2 for i = 1 : n
3 for j = 1 : m
4 if si = tj
5 DPS (i, j) = λ2;
6 end
7 end
8 end
9 DP (0, 0 : m) = 0;
10 DP (1 : n, 0) = 0;
11 for l = 2 : p
12 Kern (l) = 0;
13 for i = 1 : n− 1
14 for j = 1 : m− 1
15 DP (i, j) = DPS (i, j) + λDP (i− 1, j) +
16 λDP (i, j − 1) − λ2 DP (i− 1, j − 1) ;
17 if si = tj
18 DPS (i, j) = λ2 DP (i− 1, j − 1) ;
19 Kern (l) = Kern (l) + DPS (i, j) ;
20 end
21 end
22 end
23 end
Output kernel evaluation κp (s, t) = Kern (p)

Code Fragment 11.3. Pseudocode for the gap-weighted subsequences kernel.

sequence. In the DNA example, this might perhaps be dictated by the
expectation that certain base pairs are more likely to become inserted than
others.

These gap-weightings will be denoted by λa for a ∈ Σ. Similarly, we will
consider different weightings for characters that actually occur in a subse-
quence, perhaps attaching greater importance to certain symbols. These
weightings will be denoted by µa for a ∈ Σ. With this generalisation the
basic formula governing the recursion of the suffix kernel becomes

κSp (sa, tb) = [a = b]µ2
a

n∑
i=1

m∑
j=1

λ (s (i + 1 : n))λ (t (j + 1 : m))

κSp−1 (s (1 : i) , t (1 : j)) ,

370 Kernels for structured data: strings, trees, etc.

where n = |s|, m = |t| and we have used the notation λ (u) for

λ (u) =
|u|∏
i=1

λui .

The corresponding recursion for DPp (k, l) becomes

DPp (k, l) = κSp−1 (s (1 : k) , t (1 : l)) + λtl DPp (k, l − 1)

+ λsk DPp (k − 1, l) − λtlλsk DPp (k − 1, l − 1) ,

with κSp (sa, tb) now given by

κSp (sa, tb) =
{

µ2
a DPp (|s| , |t|) if a = b;

0 otherwise.

Algorithm 11.40 [Character weightings string kernel] An implementation
of this variant can easily be effected by corresponding changes to lines 5, 15
and 17 of Algorithm 11.38

5 DPS (i, j) = µ (si)
2 ;

15a DP (i, j) = DPS (i, j) + λ (si) DP (i− 1, j) +
15b λ (tj) (DP (i, j − 1) − λ (si) DP (i− 1, j − 1)) ;
17 DPS (i, j) = µ (si)

2 DP (i− 1, j − 1) ;

Soft matching So far, distinct symbols have been considered entirely un-
related. This may not be an accurate reflection of the application under
consideration. For example, in DNA sequences it is more likely that certain
base pairs will arise as a mutation of a given base pair, suggesting that some
non-zero measure of similarity should be set between them.

We will assume that a similarity matrix A between symbols has been
given. We may expect that many of the entries in A are zero, that the
diagonal is equal to 1, but that some off-diagonal entries are non-zero. We
must also assume that A is positive semi-definite in order to ensure that a
valid kernel is defined, since A is the kernel matrix of the set of all single
character strings when p = 1.

With this generalisation the basic formula governing the recursion of the
suffix kernel becomes

κSp (sa, tb) = λ2Aab

|s|∑
i=1

|t|∑
j=1

λ|s|−i+|t|−jκSp−1 (s (1 : i) , t (1 : j)) .

11.5 Gap-weighted subsequences kernels 371

The corresponding recursion for DPp (k, l) remains unchanged as in (11.6),
while κSp (sa, tb) is now given by

κSp (sa, tb) = λ2Aab DP
p

(|s| , |t|) .

Algorithm 11.41 [Soft matching string kernel] An implementation of soft
matching requires the alteration of lines 4, 5, 16 and 17 of Algorithm 11.38

4 if A (s (i) , t (j)) 	= 0
5 DPS (i, j) = λ2A (si, tj) ;
16 if A (si, tj) 	= 0
17 DPS (i, j) = λ2A (si, tj) DP (i− 1, j − 1) ;

Weighting by number of gaps It may be that once an insertion occurs
its length is not important. In other words we can expect bursts of inserted
characters and wish only to penalise the similarity of two subsequences by
the number and not the length of the bursts. For this variant the recursion
becomes

κSp (sa, tb) = [a = b]
|s|∑
i=1

|t|∑
j=1

λ[i�=|s|]λ[j �=|t|]κSp−1 (s (1 : i) , t (1 : j)) ,

since we only apply the penalty λ if the previous character of the subsequence
occurs before position |s| in s and before position |t| in t.

In this case we must create the dynamic programming table DPp whose
entries are

DPp (k, l) =
k∑

i=1

l∑
j=1

κSp−1 (s (1 : i) , t (1 : j)) ,

using the recursion

DPp (k, l) = κSp−1 (s (1 : k) , t (1 : l)) + DPp (k, l − 1)

+ DPp (k − 1, l) − DPp (k − 1, l − 1) ,

corresponding to λ = 1. Given this table we can evaluate the kernel by
observing that if a = b then

κSp (sa, tb) = DPp (|s| , |t|) + (λ− 1) (DPp (|s| , |t| − 1) + DPp (|s| − 1, |t|))
+

(
λ2 − 2λ + 1

)
DPp (|s| − 1, |t| − 1) ,

372 Kernels for structured data: strings, trees, etc.

since the first term ensures the correct weighting of κSp−1 (s, t), while the
second corrects the weighting of those entries involving a single λ factor and
the third term adjusts the weighting of the remaining contributions.

Algorithm 11.42 [Gap number weighting string kernel] An implementation
of weighting by number of gaps requires setting λ = 1 in lines 5 and 15 and
altering line 17 to

17a DPS (i, j) = DP (i− 1, j − 1) + (λ− 1) (DP (i− 2, j − 1)
17b + DP (i− 1, j − 2) + (λ− 1) DP (i− 2, j − 2)) ;

Remark 11.43 [General symbol strings] Though we have introduced the
kernels in this chapter with character symbols in mind, they apply to any
alphabet of symbols. For example if we consider the alphabet to be the set
of reals we could compare numeric sequences. Clearly we will need to use
the soft matching approach described above. The gap-weighted kernel is
only appropriate if the matrix A comparing individual numbers has many
entries equal to zero. An example of such a kernel is given in (9.11).

11.6 Beyond dynamic programming: trie-based kernels

A very efficient, although less general, class of methods for implementing
string kernels can be obtained by following a different computational ap-
proach. Instead of using dynamic programming as the core engine of the
computation, one can exploit an efficient data structure known as a ‘trie’
in the string matching literature. The name trie is derived from ‘retrieval
tree’. Here we give the definition of a trie – see Definition 11.56 for a formal
definition of trees.

Definition 11.44 [Trie] A trie over an alphabet Σ is a tree whose internal
nodes have their children indexed by Σ. The edges connecting a parent to
its child are labelled with the corresponding symbol from Σ. A complete trie
of depth p is a trie containing the maximal number of nodes consistent with
the depth of the tree being p. A labelled trie is a trie for which each node
has an associated label.

In a complete trie there is a 1–1 correspondence between the nodes at
depth k and the strings of length k, the correspondence being between the
node and the string on the path to that node from the root. The string
associated with the root node is the empty string ε. Hence, we will refer to

11.6 Beyond dynamic programming: trie-based kernels 373

the nodes of a trie by their associated string. The key observation behind
the trie-based approach is that one can therefore regard the leaves of the
complete trie of depth p as the indices of the feature space indexed by the
set Σp of strings of length p.

The algorithms extract relevant substrings from the source string being
analysed and attach them to the root. The substrings are then repeatedly
moved into the subtree or subtrees corresponding to their next symbol until
the leaves corresponding to that substring are reached.

For a source string s there are 1
2 |s| (|s| + 1) non-trivial substrings s (i : j)

being determined by an initial index in i ∈ {1, . . . , |s|} and a final index
j ∈ {i, . . . , |s|}. Typically the algorithms will only consider a restricted
subset of these possible substrings. Each substring can potentially end up
at a number of leaves through being processed into more than one subtree.
Once the substrings have been processed for each of the two source strings,
their inner product can be computed by traversing the leaves, multiplying
the corresponding weighted values at each leaf and summing.

Computation 11.45 [Trie-based String Kernels] Hence we can summarise
the algorithm into its four main phases:

phase 1: Form all substrings s (i : j) satisfying initial criteria;
phase 2: work the substrings of string s down from root to leaves;
phase 3: work the substrings of string t down from root to leaves;
phase 4: compute products at leaves and sum over the tree.

This breakdown is just conceptual, but it does suggest an added advantage
of the approach when we are computing a kernel matrix for a set

S =
{
s1, . . . , s�

}
of strings. We need to perform phase 2 only once for each row of the kernel,
subsequently repeating phases 3 and 4 as we cycle through the set S with
the results of phase 2 for the string indexing the row retained at the leaves
throughout.

Despite these advantages it is immediately clear that the approach does
have its restrictions. Clearly, if all the leaves are populated then the com-
plexity will be at least |Σ|p, which for large values of p will become inefficient.
Similarly, we must restrict the number of strings that can arrive at each leaf.
If we were to consider the general gap-weighted kernel this could be of the
order of the number of substrings of the source string s further adding to

374 Kernels for structured data: strings, trees, etc.

the complexity. For the examples we consider below we are able to place a
bound on the number of populated leaves.

11.6.1 Trie computation of the p-spectrum kernels

As a simple first example let us consider this approach being used to compute
the p-spectrum kernel. In this case the strings that are filtered down the trie
are the substrings of length p of the source string s. The algorithm creates
a list Ls (ε) attached to the root node ε containing these |s| − p + 1 strings
u, each with an associated index i initialised to 0. A similar list Lt (ε)
is created for the second string t. We now process the nodes recursively
beginning with the call ‘processnode(ε)’ using the following strategy after
initialising the global variable ‘Kern’ to 0. The complete algorithm is given
here.

Algorithm 11.46 [Trie-based p-spectrum] The trie-based computation of
the p-spectrum is given in Code Fragment 11.4.

Input strings s and t, parameter p

Process Let Ls (ε) = {(s (i : i + p− 1) , 0) : i = 1 : |s| − p + 1}
2 Let Lt (ε) = {(t (i : i + p− 1) , 0) : i = 1 : |t| − p + 1}
3 Kern = 0;
4 processnode(ε, 0) ;
where processnode(v,depth)
6 let Ls (v), Lt (v) be the lists associated with v;
7 if depth = p
8 Kern = Kern + |Ls (v)| |Lt (v)| ;
9 end
10 else if Ls (v) and Lt (v) both not empty
11 while there exists (u, i) in the list Ls (v)
12 add (u, i + 1) to the list Ls (vui+1) ;
13 end
14 while there exists (u, i) in the list Lt (v)
15 add (u, i + 1) to the list Lt (vui+1) ;
16 end
17 for a ∈ Σ
18 processnode(va,depth +1) ;
19 end
20 end
Output κp (s, t) = Kern

Code Fragment 11.4. Pseudocode for trie-based implementation of spectrum kernel.

11.6 Beyond dynamic programming: trie-based kernels 375

Correctness of the algorithm The correctness of the algorithm follows
from the observation that for all the pairs (u, i) in the list Ls (v) we have
v = u (1 : i), similarly for Lt (v). This is certainly true at the start of the
algorithm and continues to hold since (u, i + 1) is added to the list at the
vertex vui+1 = u (1 : i + 1). Hence, the substrings reaching a leaf vertex v

are precisely those substrings equal to v. The length of the list Ls (v) is
therefore equal to

φp
v (s) = |{(v1, v2) : s = v1vv2}| ,

implying the algorithm correctly computes the p-spectrum kernel.

Cost of the computation The complexity of the computation can be
divided into the preprocessing which involves O (|s| + |t|) steps, followed by
the processing of the lists. Each of the |s| − p + 1 + |t| − p + 1 substrings
processed gets passed down at most p times, so the complexity of the main
processing is O (p (|s| − p + 1 + |t| − p + 1)) giving an overall complexity of

O (p (|s| + |t|)) .

At first sight there appears to be a contradiction between this complexity
and the size of the feature space |Σ|p, which is exponential in p. The reason
for the difference is that even for moderate p there are far fewer substrings
than leaves in the complete trie of depth p. Hence, the recursive algorithm
will rapidly find subtrees that are not populated, i.e. nodes u for which
one of the lists Ls (u) or Lt (u) is empty. The algorithm effectively prunes
the subtree below these nodes since the recursion halts at this stage. Hence,
although the complete tree is exponential in size, the tree actually processed
O (p (|s| + |t|)) nodes.

Remark 11.47 [Computing the kernel matrix] As already discussed above
we can use the trie-based approach to complete a whole row of a kernel
matrix more efficiently than if we were to evaluate each entry independently.
We first process the string s indexing that row, hence populating the leaves
of the trie with the lists arising from the string s. The cost of this processing
is O (p |s|). For each string ti, i = 1, . . . , �, we now process it into the trie
and evaluate its kernel with s. For the ith string this takes time O

(
p

∣∣ti∣∣).
Hence, the overall complexity is

O

(
p

(
|s| +

�∑
i=1

∣∣ti∣∣
))

,

376 Kernels for structured data: strings, trees, etc.

rather than

O

(
p

(
� |s| +

�∑
i=1

∣∣ti∣∣
))

,

that would be required if the information about s is not retained. This leads
to the overall complexity for computing the kernel matrix

O

(
p�

�∑
i=1

∣∣ti∣∣
)

.

Despite the clear advantages in terms of computational complexity, there is
one slight drawback of this method discussed in the next remark.

Remark 11.48 [Memory requirements] If we are not following the idea
of evaluating a row of the kernel matrix, we can create and dismantle the
tree as we process the strings. As we return from a recursive call all of the
information in that subtree is no longer required and so it can be deleted.
This means that at every stage of the computation there are at most p |Σ|
nodes held in memory with the substrings distributed among their lists. The
factor of |Σ| in the number of nodes arises from the fact that as we process
a node we potentially create all of its |Σ| children before continuing the
recursion into one of them.

Remark 11.49 [By-product information] Notice that the trie also contains
information about the spectra of order less than p so one could use it to
calculate a blended spectrum kernel of the type

κp,a(s, t) =
p∑

i=1

aiκi(s, t),

by simply making the variable ‘Kern’ an array indexed by depth and updat-
ing the appropriate entry as each node is processed.

11.6.2 Trie-based mismatch kernels

We are now in a position to consider some extensions of the trie-based
technique developed above for the p-spectrum kernel. In this example we
will stick with substrings, but consider allowing some errors in the substring.
For two strings u and v of the same length, we use d (u, v) to denote the
number of characters in which u and v differ.

11.6 Beyond dynamic programming: trie-based kernels 377

Definition 11.50 [Mismatch kernel] The mismatch kernel κp,m is defined
by the feature mapping

φp,m
u (s) = |{(v1, v2) : s = v1vv2 : |u| = |v| = p, d (u, v) ≤ m}| ,

that is the feature associated with string u counts the number of substrings
of s that differ from u by at most m symbols. The associated kernel is
defined as

κp,m (s, t) = 〈φp,m (s) ,φp,m (t)〉 =
∑
u∈Σp

φp,m
u (s)φp,m

u (t) .

In order to apply the trie-based approach we initialise the lists at the root
of the trie in exactly the same way as for the p-spectrum kernel, except that
each substring u has two numbers attached (u, i, j), the current index i as
before and the number j of mismatches allowed so far. The key difference in
the processing is that when we process a substring it can be added to lists
associated with more than one child node, though in all but one case the
number of mismatches will be incremented. We give the complete algorithm
before discussing its complexity.

Algorithm 11.51 [Trie-based mismatch kernel] The trie-based computation
of the mismatch kernel is given in Code Fragment 11.5.

Cost of the computation The complexity of the algorithm has been some-
what compounded by the mismatches. Each substring at a node potentially
gives rise to |Σ| substrings in the lists associated with its children. If we
consider a single substring u at the root node it will reach all the leaves that
are at a distance at most m from u. If we consider those at a distance k for
some 0 ≤ k ≤ m there are (

p

k

)
|Σ|k

such strings. So we can bound the number of times they are processed by

O
(
pk+1 |Σ|k

)
,

hence the complexity of the overall computation is bounded by

O
(
pm+1 |Σ|m (|s| + |t|)

)
,

taking into account the number of substrings at the root node. Clearly, we
must restrict the number of mismatches if we wish to control the complexity
of the algorithm.

378 Kernels for structured data: strings, trees, etc.

Input strings s and t, parameters p and m

Process Let Ls (ε) = {(s (i : i + p− 1) , 0, 0) : i = 1 : |s| − p + 1}
2 Let Lt (ε) = {(t (i : i + p− 1) , 0, 0) : i = 1 : |t| − p + 1}
3 Kern = 0;
4 processnode(ε, 0) ;
where processnode(v,depth)
6 let Ls (v), Lt (v) be the lists associated with v;
7 if depth = p
8 Kern = Kern + |Ls (v)| |Lt (v)| ;
9 end
10 else if Ls (v) and Lt (v) both not empty
11 while there exists (u, i, j) in the list Ls (v)
12 add (u, i + 1, j) to the list Ls (vui+1) ;
13 if j < m
14 for a ∈ Σ, a 	= ui+1

15 add (u, i + 1, j + 1) to the list Ls (va) ;
16 end
17 while there exists (u, i, j) in the list Lt (v)
18 add (u, i + 1, j) to the list Lt (vui+1) ;
19 if j < m
20 for a ∈ Σ, a 	= ui+1

21 add (u, i + 1, j + 1) to the list Lt (va) ;
22 end
23 for a ∈ Σ
24 processnode(va,depth +1) ;
25 end
26 end
Output κp,m (s, t) = Kern

Code Fragment 11.5. Pseudocode for the trie-based implementation of the mis-
match kernel.

Remark 11.52 [Weighting mismatches] As discussed in the previous sec-
tion when we considered varying the substitution costs for different pairs
of symbols, it is possible that some mismatches may be more costly than
others. We can assume a matrix of mismatch costs A whose entries Aab give
the cost of symbol b substituting symbol a. We could now define a feature
mapping for a substring u to count the number of substrings whose total
mismatch cost is less than a threshold σ. We can evaluate this kernel with
a few adaptations to Algorithm 11.51. Rather than using the third compo-
nent of the triples (u, i, j) to store the number of mismatches, we store the
total cost of mismatches included so far. We now replace lines 13–16 of the

11.6 Beyond dynamic programming: trie-based kernels 379

algorithm with

13 for a ∈ Σ, a 	= ui+1

14 if j + A (a, ui+1) < σ

15 add (u, i + 1, j + C (a, ui+1)) to the list Ls (va) ;
16 end

with similar changes made to lines 19–22.

11.6.3 Trie-based restricted gap-weighted kernels

Our second extension considers the gap-weighted features of the subse-
quences kernels. As indicated in our general discussion of the trie-based
approach, it will be necessary to restrict the sets of subsequences in some
way. Since they are typically weighted by an exponentially-decaying func-
tion of their length it is natural to restrict the subsequences by the lengths
of their occurrences. This leads to the following definition.

Definition 11.53 [Restricted gap-weighted subsequences kernel] The fea-
ture space associated with the m-restricted gap-weighted subsequences kernel
κp,m of length p is indexed by I = Σp, with the embedding given by

φp,m
u (s) =

∑
i:u=s(i)

[l(i) ≤ m]λl(i), u ∈ Σp.

The associated kernel is defined as

κp,m (s, t) = 〈φp,m (s) ,φp,m (t)〉 =
∑
u∈Σp

φp,m
u (s)φp,m

u (t) .

In order to apply the trie-based approach we again initialise the lists at
the root of the trie in a similar way to the previous kernels, except that each
substring should now have length p + m since we must allow for as many
as m gaps. Again each substring u has two numbers attached (u, i, j), the
current index i as before and the number j of gaps allowed so far. We must
restrict the first character of the subsequence to occur at the beginning of
u as otherwise we would count subsequences with fewer than m gaps more
than once. We avoid this danger by inserting the strings directly into the
lists associated with the children of the root node.

At an internal node the substring can be added to the same list more than
once with different numbers of gaps. When we process a substring (u, i, j)
we consider adding every allowable number of extra gaps (the variable k in

380 Kernels for structured data: strings, trees, etc.

the next algorithm is used to store this number) while still ensuring that the
overall number is not more than m. Hence, the substring can be inserted
into as many as m of the lists associated with a node’s children.

There is an additional complication that arises when we come to compute
the contribution to the inner product at the leaf nodes, since not all of the
substrings reaching a leaf should receive the same weighting. However, the
number of gaps is recorded and so we can evaluate the correct weighting
from this information. Summing for each list and multiplying the values
obtained gives the overall contribution. For simplicity we will simply denote
this computation by κ (Ls (v) , Lt (v)) in the algorithm given below.

Algorithm 11.54 [Trie-based restricted gap-weighted subsequences kernel]
The trie-based computation of the restricted gap-weighted subsequences ker-
nel is given in Code Fragment 11.6.

Cost of the computation Again the complexity of the algorithm is con-
siderably expanded since each of the original |s| − p−m+ 1 substrings will
give rise to (

p + m− 1
m− 1

)

different entries at leaf nodes. Hence, the complexity of the overall algorithm
can be bounded this number of substrings times the cost of computation on
the path from root to leaf, which is at most O (p + m) for each substring,
giving an overall complexity of

O ((|s| + |t|) (p + m)m) .

In this case it is the number of gaps we allow that has a critical impact on
the complexity. If this number is made too large then the dynamic program-
ming algorithm will become more efficient. For small values of the decay
parameter λ it is, however, likely that we can obtain a good approxima-
tion to the full gap-weighted subsequences kernel with modest values of m
resulting in the trie-based approach being more efficient.

Remark 11.55 [Linear time evaluation] For all the trie-based kernels, it is
worth noting that if we do not normalise the data it is possible to evaluate
a linear function

f (s) =
∑
i∈sv

αiκ (si, s)

11.6 Beyond dynamic programming: trie-based kernels 381

Input strings s and t, parameters p and m

Process for i = 1 : |s| − p−m + 1
2 add (s (i : i + p + m− 1) , 1, 0) to the list Ls (si)
3 end
4 for i = 1 : |t| − p−m + 1
5 add (t (i : i + p + m− 1) , 1, 0) to the list Lt (ti)
6 end
7 Kern = 0;
8 for a ∈ Σ
9 processnode(a, 0) ;
10 end

where processnode(v,depth)
12 let Ls (v), Lt (v) be the lists associated with v;
13 if depth = p
14 Kern = Kern +κ (Ls (v) , Lt (v)) ;
15 end
16 else if Ls (v) and Lt (v) both not empty
17 while there exists (u, i, j) in the list Ls (v)
18 for k = 0 : m− j
19 add (u, i + k + 1, k + j) to the list Ls (vui+k+1) ;
20 end
21 while there exists (u, i, j) in the list Lt (v)
22 for k = 0 : m− j
23 add (u, i + k + 1, k + j) to the list Lt (vui+k+1) ;
24 end
25 for a ∈ Σ
26 processnode(va,depth +1) ;
27 end
28 end
Output κp (s, t) = Kern

Code Fragment 11.6. Pseudocode for trie-based restricted gap-weighted subse-
quences kernel.

in linear time. This is achieved by creating a tree by processing all of the
support vectors in sv weighting the substrings from si at the corresponding
leaves by αi. The test string s is now processed through the tree and the
appropriately weighted contributions to the overall sum computed directedly
at each leaf.

382 Kernels for structured data: strings, trees, etc.

11.7 Kernels for structured data

In this chapter we have shown an increasingly sophisticated series of kernels
that perform efficient comparisons between strings of symbols of different
lengths, using as features:

• all contiguous and non-contiguous subsequences of any size;
• all subsequences of a fixed size; all contiguous substrings of a fixed size or

up to a fixed size, and finally;
• all non-contiguous substrings with a penalisation related to the size of the

gaps.

The evaluation of the resulting kernels can in all cases be reduced to a
dynamic programming calculation of low complexity in the length of the
sequences and the length of the subsequences used for the matching. In
some cases we have also shown how the evaluation can be sped up by the
use of tries to achieve a complexity that is linear in the sum of the lengths
of the two input strings.

Our aim in this section is to show that, at least for the case of dynamic pro-
gramming, the approaches we have developed are not restricted to strings,
but can be extended to a more general class we will refer to as ‘structured
data’.

By structured data we mean data that is formed by combining simpler
components into more complex items frequently involving a recursive use of
simpler objects of the same type. Typically it will be easier to compare the
simpler components either with base kernels or using an inductive argument
over the structure of the objects. Examples of structured data include the
familiar examples of vectors, strings and sequences, but also subsume more
complex objects such as trees, images and graphs.

From a practical viewpoint, it is difficult to overemphasise the importance
of being able to deal in a principled way with data of this type as they almost
invariably arise in more complex applications. Dealing with this type of data
has been the objective of a field known as structural pattern recognition.
The design of kernels for data of this type enables the same algorithms and
analyses to be applied to entirely new application domains.

While in Part II of this book we presented algorithms for detecting and
analysing several different types of patterns, the extension of kernels to
structured data paves the way for analysing very diverse sets of data-types.
Taken together, the two advances open up possibilities such as discovering
clusters in a set of trees, learning classifications of graphs, and so on.

It is therefore by designing specific kernels for structured data that kernel
methods can demonstrate their full flexibility. We have already discussed

11.7 Kernels for structured data 383

one kernel of this type when we pointed out that both the ANOVA and string
kernels can be viewed as combining kernel evaluations over substructures of
the objects being compared.

In this final section, we will provide a more general framework for design-
ing kernels for this type of data, and we will discuss the connection between
statistical and structural pattern analysis that this approach establishes.
Before introducing this framework, we will discuss one more example with
important practical implications that will not only enable us to illustrate
many of the necessary concepts, but will also serve as a building block for a
method to be discussed in Chapter 12.

11.7.1 Comparing trees

Data items in the form of trees can be obtained as the result of biological
investigation, parsing of natural language text or computer programs, XML
documents and in some representations of images in machine vision. Being
able to detect patterns within sets of trees can therefore be of great practical
importance, especially in web and biological applications. In this section we
derive two kernel functions that can be used for this task, as well as provide
a conceptual stepping stone towards certain kernels that will be defined in
the next chapter.

We will design a kernel between trees that follows a similar approach to
those we have considered between strings, in that it will also exploit their
recursive structure via dynamic programming.

Recall that for strings the feature space was indexed by substrings. The
features used to describe trees will be ‘subtrees’ of the given tree. We begin
by defining what we mean by a tree and subtree. We use the convention
that the edges of a tree are directed away from the root towards the leaves.

Definition 11.56 [Trees] A tree T is a directed connected acyclic graph
in which each vertex (usually referred to as nodes for trees) except one has
in-degree one. The node with in-degree 0 is known as the root r (T) of the
tree. Nodes v with out-degree d+ (v) = 0 are known as leaf nodes, while
those with non-zero out-degree are internal nodes. The nodes to which
an internal node v is connected are known as its children, while v is their
parent. Two children of the same parent are said to be siblings. A struc-
tured tree is one in which the children of a node are given a fixed ordering,
ch1 (v) , . . . , chd+(v) (v). Two trees are identical if there is a 1–1 correspon-
dence between their nodes that respects the parent–child relation and the
ordering of the children for each internal node. A proper tree is one that

384 Kernels for structured data: strings, trees, etc.

contains at least one edge. The size |T | of a tree T is the number of its
nodes.

Definition 11.57 [k-ary labelled trees] If the out-degrees of all the nodes
are bounded by k we say the tree is k-ary ; for example when k = 2, the
tree is known as a binary tree. A labelled tree is one in which each node has
an associated label. Two labelled trees are identical if they are identical as
trees and corresponding nodes have the same labels. We use T to denote
the set of all proper trees, with TA denoting labelled proper trees with labels
from the set A.

Definition 11.58 [Subtrees: general and co-rooted] A complete subtree τ (v)
of a tree T at a node v is the tree obtained by taking the node v together
with all vertices and edges reachable from v. A co-rooted subtree of a tree
T is the tree resulting after removing a sequence of complete subtrees and
replacing their roots. This is equivalent to deleting the complete subtrees
of all the children of the selected nodes. Hence, if a node v is included in
a co-rooted subtree then so are all of its siblings. The root of a tree T is
included in every co-rooted subtree. A general subtree of a tree T is any
co-rooted subtree of a complete subtree.

Remark 11.59 [Strings and trees] We can view strings as labelled trees in
which the set of labels is the alphabet Σ and each node has at most one
child. A complete subtree of a string tree corresponds to a suffix of the
string, a rooted subtree to a prefix and a general subtree to a substring.

For our purposes we will mostly be concerned with structured trees which
are labelled with information that determines the number of children. We
now consider the feature spaces that will be used to represent trees. Again
following the analogy with strings the index set of the feature space will be
the set of all trees, either labelled or unlabelled according to the context.

Embedding map All the kernels presented in this section can be defined
by an explicit embedding map from the space of all finite trees possibly
labelled with a set A to a vector space F , whose coordinates are indexed by
a subset I of trees again either labelled or unlabelled. As usual we use φ to
denote the feature mapping

φ:T �−→ (φS (T))S∈I ∈ F

The aim is to devise feature mappings for which the corresponding kernel

11.7 Kernels for structured data 385

can be evaluated using a recursive calculation that proceeds bottom-up from
the leaves to the root of the trees. The basic recursive relation connects the
value of certain functions at a given node with the function values at its
children. The base of the recursion will set the values at the leaves, ensuring
that the computation is well-defined.

Remark 11.60 [Counting subtrees] As an example of a recursive compu-
tation over a tree consider evaluating the number N(T) of proper co-rooted
subtrees of a tree T . Clearly for a leaf node v there are no proper co-rooted
subtrees of τ (v), so we have N (τ (v)) = 0. Suppose that we know the value
of N (τ (vi)) for each of the nodes vi = chi (r (T)), i = 1, . . . , d+ (r (T)) that
are children of the root r (T) of T . In order to create a proper co-rooted
subtree of T we must include all of the nodes r (T) , v1, . . . , vd+(r(T)), but we
have the option of including any of the co-rooted subtrees of τ (vi) or simply
leaving the node vi as a leaf. Hence, for node vi we have N (τ (vi)) + 1
options. These observations lead to the following recursion for N (T) for a
proper tree T

N(T) =
d+(r(T))∏

i=1

(N(τ (chi (r (T)))) + 1) ,

with N (τ (v)) = 0, for a leaf node v.

We are now in a position to consider two kernels over trees.

Co-rooted subtree kernel The feature space for this kernel will be in-
dexed by all trees with the following feature mapping.

Definition 11.61 [Co-rooted subtree kernel] The feature space associated
with the co-rooted subtree kernel is indexed by I = T the set of all proper
trees with the embedding given by

φr
S (T) =

{
1 if S is a co-rooted subtree of T ;
0 otherwise.

The associated kernel is defined as

κr (T1, T2) = 〈φr (T1) ,φr (T2)〉 =
∑
S∈T

φr
S (T1)φr

S (T2) .

If either tree T1 or T2 is a single node then clearly

κr (T1, T2) = 0,

386 Kernels for structured data: strings, trees, etc.

since for an improper tree T

φr (T) = 0.

Furthermore if d+ (r (T1)) 	= d+ (r (T1)) then κr (T1, T2) = 0 since a co-
rooted subtree of T1 cannot be a co-rooted subtree of T2. Assume therefore
that

d+ (r (T1)) = d+ (r (T2)) .

Now to introduce the recursive computation, assume we have evaluated the
kernel between the complete subtrees on the corresponding children of r (T1)
and r (T2); that is we have computed

κr (τ (chi (r (T1))) , τ (chi (r (T2)))) , for i = 1, . . . , d+ (r (T1)) .

We now have that

κr (T1, T2) =
∑
S∈T

φr
S (T1)φr

S (T2)

=
d+(r(T1))∏

i=1

∑
Si∈T0

φr
Si

(τ (chi (r (T1))))φr
Si

(τ (chi (r (T2)))) ,

where T0 denotes the set of all trees, both proper and improper, since the co-
rooted proper subtrees of T are determined by any combination of co-rooted
subtrees of τ (chi (r (T))), i = 1, . . . , d+ (r (T1)).

Since there is only one improper co-rooted subtree we obtain the recursion

κr (T1, T2) =
d+(r(T1))∏

i=1

(κr (τ (chi (r (T1))) , τ (chi (r (T2)))) + 1) .

We have the following algorithm.

Algorithm 11.62 [Co-rooted subtree kernel] The computation of the co-
rooted subtree kernel is given in Code Fragment 11.7.

Cost of the computation The complexity of the kernel computation is at
most O (min (|T1| , |T2|)) since the recursion can only process each node of the
trees at most once. If the degrees of the nodes do not agree then the attached
subtrees will not be visited and the computation will be correspondingly
sped up.

11.7 Kernels for structured data 387

Input trees T1 and T2

Process Kern =processnode(r (T1) , r (T2)) ;
where processnode(v1, v2)
3 if d+ (v1) 	= d+ (v2) or d+ (v1) = 0
4 return 0;
5 end
6 else
7 Kern = 1;
8 for i = 1 : d+ (v1)
9 Kern = Kern ∗ (processnode (chi (v1) , chi (v2)) + 1) ;
10 end
11 return Kern;
12 end
Output κr (T1, T2) = Kern

Code Fragment 11.7. Pseudocode for the co-rooted subtree kernel.

Remark 11.63 [Labelled trees] If the tree is labelled we must include in
line 3 of Algorithm 11.62 the test whether the labels of the nodes v1 and v2

match by replacing it by the line

3 if d+ (v1) 	= d+ (v2) or d+ (v1) = 0 or label (v1) 	= label (v2)

All-subtree kernel We are now in a position to define a slightly more
general tree kernel. The features will now be all subtrees rather than just
the co-rooted ones. Again we are considering unlabelled trees. The definition
is as follows.

Definition 11.64 [All-subtree kernel] The feature space associated with the
all-subtree kernel is indexed by I = T , the set of all proper trees with the
embedding given by

φS (T) =
{

1 if S is a subtree of T ;
0 otherwise.

The associated kernel is defined as

κ (T1, T2) = 〈φ (T1) ,φ (T2)〉 =
∑
S∈T

φS (T1)φS (T2) .

388 Kernels for structured data: strings, trees, etc.

The evaluation of this kernel can be reduced to the case of co-rooted
subtrees by observing that

κ (T1, T2) =
∑

v1∈T1,v2∈T2

κr (τ (v1) , τ (v2)) . (11.7)

In other words the all-subtree kernel can be computed by evaluating the
co-rooted kernel for all pairs of nodes in the two trees. This follows from
the fact that any subtree of a tree T is a co-rooted subtree of the complete
subtree τ (v) for some node v of T .

Rather than use this computation we would like to find a direct recursion
for κ (T1, T2). Clearly if T1 or T2 is a leaf node we have

κ (T1, T2) = 0.

Furthermore, we can partition the sum (11.7) as follows

κ (T1, T2) =
∑

v1∈T1,v2∈T2

κr (τ (v1) , τ (v2))

= κr (T1, T2) +
d+(r(T1))∑

i=1

κ (τ (chi (r (T1))) , T2)

+
d+(r(T2))∑

i=1

κ (T1, τ (chi (r (T2))))

−
d+(r(T1))∑

i=1

d+(r(T2))∑
j=1

κ (τ (chi (r (T1))) , τ (chj (r (T2)))) ,

since the subtrees are either co-rooted in both T1 and T2 or are subtrees of a
child of r (T1) or a child of r (T2). However, those that are not co-rooted with
either T1 or T2 will be counted twice making it necessary to subtract the final
sum. We therefore have Algorithm 11.65, again based on the construction of
a table indexed by the nodes of the two trees using dynamic programming.
We will assume that the nj nodes vj1, . . . , v

j
nj of the tree Tj have been ordered

so that the parent of a node has a later index. Hence, the final node vjnj

is the root of Tj . This ordering will be used to index the tables DP (i1, i2)
and DPr (i1, i2). The algorithm first completes the table DPr (i1, i2) with the
value of the co-rooted tree kernel before it computes the all-subtree kernel in
the array DP (i1, i2). We will also assume for the purposes of the algorithm
that childj

k (i) gives the index of the kth child of the node indexed by i in
the tree Tj . Similarly, d+

j (i) is the out-degree of the node indexed by i in
the tree Tj .

11.7 Kernels for structured data 389

Algorithm 11.65 [All-subtree kernel] The computation of the all-subtree
kernel is given in Code Fragment 11.8.

Input unlabelled trees T1 and T2

Process Assume vj1, . . . , v
j
nj

a compatible ordering of nodes of Tj , j = 1, 2
2 for i1 = 1 : n1

3 for i2 = 1 : n2

4 if d+
1 (i1) 	= d+

2 (i2) or d+
1 (i1) = 0

5 DPr (i1, i2) = 0;
6 else
7 DPr (i1, i2) = 1;
8 for k = 1 : d+

1 (i1)
9 DPr (i1, i2) = DPr (i1, i2) ∗

(
DPr

(
child1

k (i1) , child2
k (i2)

)
+ 1

)
;

10 end
11 end
12 end
13 for i1 = 1 : n1

14 for i2 = 1 : n2

15 if d+
1 (i1) = 0 or d+

2 (i2) = 0
16 DP (i1, i2) = 0;
17 else
18 DP (i1, i2) = DPr (i1, i2) ;
19 for j1 = 1 : d+

1 (i1)
20 DP (i1, i2) = DP (i1, i2) + DP

(
child1

j1 (i1) , i2
)
;

21 for j2 = 1 : d+
2 (i2)

22 DP (i1, i2) = DP (i1, i2) + DP
(
i1, child2

j2 (i2)
)
;

23 for j1 = 1 : d+
1 (i1)

24 DP (i1, i2) = DP (i1, i2) − DP
(
child1

j1 (i1) , child2
j2 (i2)

)
;

25 end
26 end
27 end
28 end
Output κ (T1, T2) = DP (n1, n2)

Code Fragment 11.8. Pseudocode for the all-subtree kernel.
.

Cost of the computation The structure of the algorithm makes clear
that the complexity of evaluating the kernel can be bounded by

O
(
|T1| |T2| d2

max

)
,

where dmax is the maximal out-degree of the nodes in the two trees.

390 Kernels for structured data: strings, trees, etc.

Remark 11.66 [On labelled trees] Algorithm 11.65 does not take into ac-
count possible labellings of the nodes of the tree. As we observed for the
co-rooted tree kernel, the computation of the co-rooted table DPr (i1, i2)
could be significantly sped up by replacing line 4 with

4 if d+ (v1) 	= d+ (v2) or d+ (v1) = 0 or label (v1) 	= label (v2).

However, no such direct simplification is possible for the computation of
DP (i1, i2). If the labelling is such that very few nodes share the same label,
it may be faster to create small separate DPr tables for each type and simply
sum over all of these tables to compute

κ (T1, T2) = DP (n1, n2) ,

avoiding the need to create the complete table for DP (i1, i2), 1 ≤ i1 < n1,
1 ≤ i2 < n2.

Notice how the all-subtree kernel was defined in terms of the co-rooted
subtrees. We first defined the simpler co-rooted kernel and then summed its
evaluation over all possible choices of subtrees. This idea forms the basis of
a large family of kernels, based on convolutions over substructures. We now
turn to examine a more general framework for these kernels.

11.7.2 Structured data: a framework

The approach used in the previous sections for comparing strings, and sub-
sequently trees, can be extended to handle more general types of data struc-
tures. The key idea in the examples we have seen has been first to define a
way of comparing sub-components of the data such as substrings or subtrees
and then to sum these sub-kernels over a set of decompositions of the data
items.

We can think of this summing process as a kind of convolution in the sense
that it averages over the different choices of sub-component. In general the
operation can be thought of as a convolution if we consider the different
ways of dividing the data into sub-components as analagous to dividing an
interval into two subintervals. We will build this intuitive formulation into
the notion of a convolution kernel. We begin by formalising what we mean
by structured data.

As discussed at the beginning of Section 11.7, a data type is said to be
‘structured’ if it is possible to decompose it into smaller parts. In some cases
there is a natural way in which this decomposition can occur. For example a
vector is decomposed into its individual components. However, even here we

11.7 Kernels for structured data 391

can think of other possible decompositions by for example selecting a subset
of the components as we did for the ANOVA kernel. A string is structured
because it can be decomposed into smaller strings or symbols and a tree can
be decomposed into subtrees.

The idea is to compute the product of sub-kernels comparing the parts
before summing over the set of allowed decompositions. It is clear that when
we create a decomposition we need to specify which kernels are applicable
for which sub-parts.

Definition 11.67 [Decomposition Structure] A decomposition structure for
a datatype D is specified by a multi-typed relation R between an element
x of D and a finite set of tuples of sub-components each with an associated
kernel

((x1, κ1) , . . . , (xd, κd)) ,

for various values of d. Hence

R (((x1, κ1) , . . . , (xd, κd)) , x)

indicates that x can be decomposed into components x1, . . . , xd each with
an attached kernel. Note that the kernels may vary between different de-
compositions of the same x, so that just as x1 depends on the particular
decomposition, so does κ1. The relation R is a subset of the disjoint sum
of the appropriate cartesian product spaces. The set of all admissible parti-
tionings of x is defined as

R−1(x) =
D⋃

d=1

{((x1, κ1) , . . . , (xd, κd)) : R (((x1, κ1) , . . . , (xd, κd)) , x)} ,

while the type T (x) of the tuple x = ((x1, κ1) , . . . , (xd, κd)) is defined as

T (x) = (κ1, . . . , κd) .

Before we discuss how we can view many of the kernels we have met as
exploiting decompositions of this type, we give a definition of the convolution
or R-kernel that arises from a decomposition structure R.

Definition 11.68 [Convolution Kernels] Let R be a decomposition structure
for a datatype D. For x and z elements of D the associated convolution

392 Kernels for structured data: strings, trees, etc.

kernel is defined as

κR(x, z) =
∑

x∈R−1(x)

∑
z∈R−1(z)

[T (x) = T (z)]
|T (x)|∏
i=1

κi (xi, zi) .

We also refer to this as the R-convolution kernel or R-kernel for short. Note
that the product is only defined if the boolean expression is true, but if this
is not the case the square bracket function is zero.

Example 11.69 In the case of trees discussed above, we can define the
decomposition structures R1 and R2 by:

R1 ((S, κ0) , T) if and only if S is a co-rooted subtree of T ;

R2 ((S, κ0) , T) if and only if S is a subtree of T ;

where κ0 (S1, S2) = 1 if S1 = S2 and 0 otherwise. The associated R-kernels
are clearly the co-rooted subtree kernel and the all-subtree kernel respec-
tively.

Example 11.70 For the case of the co-rooted tree kernel we could also
create the recursive decomposition structure R by:

R1 (((T1, κR + 1) , . . . , (Td, κR + 1)) , T)

if and only if T1, . . . , Td are the trees at the children of the root r (T) ;

R1 ((T, 0) , T) if T is an improper tree.

By the definition of the associated R-kernel we have

κR (S, T) =

0 if d+ (r (S)) 	= d+ (r (T)) or d+ (r (S)) = 0;∏d+(r(T))
i=1 (κR (τ (chi (r (T))) , τ (chi (r (S)))) + 1)

otherwise.

This is precisely the recursive definition of the co-rooted subtree kernel.

The two examples considered here give the spirit of the more flexible de-
composition afforded by R-decomposition structures. We now give examples
that demonstrate how the definition subsumes many of the kernels we have
considered in earlier chapters.

Example 11.71 Suppose X is a vector space of dimension n. Let κi be
the kernel defined by

κi (x, z) = xizi.

11.7 Kernels for structured data 393

Consider the decomposition structure

R = {(((x, κi1) , . . . , (x, κid)) ,x) : 1 ≤ i1 < i2 < · · · < id ≤ n, x ∈ R
n} .

Here the associated R-kernel is defined as

κR (x, z) =
∑

1≤i1<···<id≤n

d∏
j=1

κij (x, z) =
∑

1≤i1<···<id≤n

d∏
j=1

xizi,

which we have already met in Chapter 9 as the ANOVA kernel. The gener-
alisation of the ANOVA kernel to arbitrary subkernels described in Remark
9.20 seems even more natural in this presentation. Note how the kernel has
again the sum of products structure that we have seen recurring in many
different guises.

Example 11.72 The more complex kernels defined over graphs can also
be recreated as R-kernels if we index the subkernels κe by the edges e ∈ E

of the graph G = (V,E). The R-structure for a graph kernel defined by the
identified vertices a and b in G is now given by

R ={(((
x, κ(u0→u1)

)
, . . . ,

(
x, κ(ud−1→ud)

))
,x

)
: x ∈ R

n, (u0, . . . , ud) ∈ Pab

}
,

where Pab is the set of paths from node a to node b, represented by the
sequence of edges. This follows straightforwardly from the definition of the
graph kernel as

κG (x, z) =
∑
p∈Pab

d∏
i=1

κ(ui−1→ui) (x, z) .

Notice that the type match in the definition of the R-kernel ensures that
only matching paths enter into the sum.

Example 11.73 A very similar structure to the ANOVA case can be used
to create the Gaussian kernel. Here we consider the base kernels to be

κi (x, z) = exp

(
−(xi − zi)

2

2σ2

)

and the structure to be given by

R = {(((x, κ1) , . . . , (x, κn)) ,x) : x ∈ R
n} ,

394 Kernels for structured data: strings, trees, etc.

so that the associated R-kernel is simply

κR (x, z) =
n∏

i=1

κi (x, z) =
d∏

i=1

exp

(
−(xi − zi)

2

2σ2

)

= exp

(
−

∑d
i=1 (xi − zi)

2

2σ2

)
= exp

(
−‖x − z‖2

2σ2

)
.

Example 11.74 It is very simple to construct decomposition structures
for the various string kernels. For example the gap-weighted k-subsequences
kernel is created using

R =
{((

u, λl(i)κ0

)
, s

)
: s ∈ Σ∗, i ∈ Ik, u = s (i)

}
,

where κ0 is the kernel returning 1 if the substrings are identical and 0
otherwise.

R-convolution kernels seem to provide a very natural generalisation of
both ANOVA and graph kernels on the one hand and the tree and substring
kernels on the other hand. There are clear distinctions between the struc-
tures in these two cases. In the ANOVA and graph kernels the components
are chosen to be the whole structure and the variation is made between the
kernels used to compare the objects, while in the tree and substring ker-
nel the variation is mainly focussed on the substructure selection with the
kernels usually being identical.

These observations suggest that there is much unexplored flexibility in
the R-kernels definition that has the potential to lead to many interesting
new kernels. For example using a graph structure to determine how the
kernels of different sub-components are combined might be a first step in
this directions. The simplest example might be combining the ANOVA
construction with the recursive definition of the co-rooted tree kernel given
in Example 11.70.

Such combinations raise two questions. First, are the associated R-kernels
for decomposition structures always kernels? Second, when can we expect to
be able to find efficient methods for computing the R-kernel even when the
sums involved are exponentially large? We will not attempt to investigate
the second question any further, but provide a brief justification that R-
kernels are indeed kernels.

Proposition 11.75 Let κR be the kernel defined by the decomposition struc-
ture R. It follows that κR is an inner product in an appropriately defined
feature space.

11.8 Summary 395

Proof We will apply Proposition 9.44 by showing that the kernel κR is a
subset kernel over an appropriately defined universal set. The set in question
for a data item x is R−1 (x), which by the definition of a decomposition
structure is finite as required. The elements of the set are compared using
the product of valid kernels and hence the subset is defined with elements
that are compared with a valid kernel. The result follows. In the case of a
recursive definition, an additional inductive argument must be made using
structural induction over the decomposition structure.

Remark 11.76 [Syntactical Pattern Recognition] The class of kernels we
have developed in this section provides a link with the field of structural pat-
tern recognition. Syntactic or structural pattern recognition deals with the
problem of detecting common patterns in sets of structured data, typically
representing them as rules. By using kernels that operate on structured data,
we are ‘interpolating’ between statistical and syntactic pattern recognition,
two branches of pattern analysis that rarely interact.

11.8 Summary

• Strings of symbols can be compared by kernels that sum the number of
common substrings or subsequences.

• Dynamic programming techniques allow us to compute such kernels effi-
ciently.

• A whole range of variations on this theme allow one to tune a kernel to
the particular application.

• Trie-based computation provides fast evaluation of some restrictions of
these kernels.

• Kernels can also be defined over more complex structures such as trees.
• Convolution kernels define a framework that subsumes both structure and

ANOVA style kernels.

11.9 Further reading and advanced topics

Although the first papers dealing with kernels for strings and trees appeared
in 1999, there is already a considerable literature dealing with this problem.
Watkins and Haussler [155], [154], [52] certainly are to be credited with
starting this research direction, where ideas from classical string matching
algorithms, based on dynamic programming, were used to construct recur-
sive kernels. A good starting point for understanding the techniques used

396 Kernels for structured data: strings, trees, etc.

by them are the very readable books by Dan Gusfield [50] and Durbin et al.
[42].

The first application of these theoretical ideas came in the field of text
categorisation, with the paper of Lodhi et al. [91], followed by applica-
tions in bioinformatics. The computational cost of dynamic programming
approaches to string kernels slowed down their uptake in larger-scale appli-
cations, until the publication of a series of papers demonstrating the use of
different computational techniques for performing very similar computations
at much cheaper cost, for example using tries [88], [87]. Spectrum kernels
and the other methods have been applied to large real world problems in
bioinformatics [85], [86]. Novel methods of computation using suffix trees
are described in [151]. Our discussion of trie-based kernels was based on
these papers, whereas the discussion on dynamic programming kernels goes
back to Watkins.

Although motivated by string analysis, Haussler’s framework is very gen-
eral, and can motivate kernels for very diverse types of data. For example
[23] presents the dynamic programming method for comparing two trees in
the context of language parsing.

Ralf Herbrich’s book presents some variations of the basic recursions for
gappy string matching kernels [53]. An excellent introduction to string com-
putations by means of dynamic programming is given in [50] and a discus-
sion of the merits of bottom-up over top-down computations of recurrence
relations can be found in [24].

Finally, recent work by Mohri, Cortes and Haffner [25] on Rational Kernels
is closely related to what we have presented here, but is not discussed in
this chapter for lack of space. For constantly updated pointers to online
literature and free software see the book’s companion website: www.kernel-
methods.net

