
10

Kernels for text

The last decade has seen an explosion of readily available digital text that
has rendered attempts to analyse and classify by hand infeasible. As a re-
sult automatic processing of natural language text documents has become a
main research interest of Artificial Intelligence (AI) and computer science in
general. It is probably fair to say that after multivariate data, natural lan-
guage text is the most important data format for applications. Its particular
characteristics therefore deserve specific attention.

We will see how well-known techniques from Information Retrieval (IR),
such as the rich class of vector space models, can be naturally reinterpreted
as kernel methods. This new perspective enriches our understanding of the
approach, as well as leading naturally to further extensions and improve-
ments. The approach that this perspective suggests is based on detecting
and exploiting statistical patterns of words in the documents. An important
property of the vector space representation is that the primal–dual dialectic
we have developed through this book has an interesting counterpart in the
interplay between term-based and document-based representations.

The goal of this chapter is to introduce the Vector Space family of kernel
methods highlighting their construction and the primal–dual dichotomy that
they illustrate. Other kernel constructions can be applied to text, for ex-
ample using probabilistic generative models and string matching, but since
these kernels are not specific to natural language text, they will be discussed
separately in Chapters 11 and 12.

327



328 Kernels for text

10.1 From bag of words to semantic space

Although the task of automatically analysing the meaning of a document
falls under the heading of natural language processing, it was the IR commu-
nity that developed the relatively simple representation that is today most
commonly used to assess the topic of a document. This representation is
known as the vector space model (VSM) or the ‘bag-of-words’ approach. It
is this technique that forms the basis of the kernels developed in this chap-
ter. As mentioned above, other representations of text are certainly possible
including those relying on a string level analysis or on probabilistic models.
These approaches will be mentioned as special cases in later chapters that
are mainly concerned with other data formats.

One of the aims of this chapter is to show that by using the VSM to
create kernels, it is possible to extend its applicability beyond IR to the
full range of tasks that can be solved using the kernel approach, including
correlation analysis, novelty-detection, classification, ranking, clustering and
so on. Some of these tasks reappear with different names in the context of
document analysis. For example document classification is often referred to
as categorisation, on-line classification as filtering, while novelty detection is
known as new topic detection.

10.1.1 Representing text

The simplest possible version of the VSM is the representation of a document
as a bag-of-words. A bag is a set in which repeated elements are allowed,
so that not only the presence of a word but also its frequency is taken into
account. Hence, a document is represented by the words it contains, with
the ordering of the words and punctuation being ignored. This implies that
some grammatical information is lost, since there is no representation of the
word ordering. This furthermore implies that phrases are also broken into
their constituent words and hence the meaning of a phrase such as ‘bread
winner’ is lost. We begin with some definitions.

Definition 10.1 [Vector space model] Words are any sequence of letters
from the basic alphabet separated by punctuation or spaces. We use term
synonymously with word. A dictionary can be defined by some permanent
predefined set of terms, but in practice we only need to consider those words
actually appearing in the documents being processed. We refer to this full
set of documents as the corpus and the set of terms occurring in the corpus
as the dictionary . Hence, we can view a document as a bag of terms or
bag-of-words. We can represent a bag as a vector in a space in which each



10.1 From bag of words to semantic space 329

dimension is associated with one term from the dictionary

φ : d �−→ φ (d) = (tf (t1, d) , tf (t2, d) , . . . , tf (tN , d)) ∈ R
N ,

where tf (ti, d) is the frequency of the term ti in the document d. Hence, a
document is mapped into a space of dimensionality N being the size of the
dictionary, typically a very large number.

Despite the high-dimensionality of the dictionary, the vector associated
with a given document is sparse, i.e. has most of its entries equal to 0, since
it will contain only very few of the vast number of possible words.

Definition 10.2 [Document–term matrix] The document–term matrix of a
corpus is the matrix whose rows are indexed by the documents of the corpus
and whose columns are indexed by the terms. The (i, j)th entry gives the
frequency of term tj in document di

D =




tf (t1, d1) · · · tf (tN , d1)
...

. . .
...

tf (t1, d�) · · · tf (tN , d�)


 .

The term–document matrix is the transpose D′of the document–term ma-
trix. The term-by-term matrix is given by D′D while the document-by-
document matrix is DD′.

Note that the document–term matrix is simply the data matrix X we have
used consistently throughout this book. Hence, the term-by-term matrix is
� times the covariance matrix, while the document-by-document matrix is
the corresponding kernel matrix.

Remark 10.3 [Interpreting duality] An interesting feature of the VSM will
be an additional interpretation of the duality between representations of
kernel algorithms. Here the dual representation corresponds to a document
view of the problem, while the primal description provides a term view. In
the same way that a document can be seen as the counts of the terms that
appear in it, a term can be regarded as the counts of the documents in which
it appears. These two views are represented by the rows of a document–term
matrix with the rows of its transpose giving the representation of terms.

Since it is often the case that the corpus size is less than the number of
terms or dictionary size, it is sometimes useful to compute in a document-
based or dual representation, whereas for intuitive and interpretational pur-
poses it is usually better to work in the term-based or primal representation.



330 Kernels for text

We can exploit the power of duality in kernel methods by stating the prob-
lem in the intuitive term representation, and then dualising it to provide a
document-based implementation.

10.1.2 Semantic issues

The representation of documents provided by the VSM ignores any semantic
relation between words. One important issue is to improve the vector space
representation to ensure that documents containing semantically equivalent
words are mapped to similar feature vectors.

For example synonymous words give two ways of saying the same thing,
but are assigned distinct components. Hence, the VSM despite retaining
enough information to take account of this similarity, is unable to do so
without extra processing. We will present a range of methods that aim to
address this and related problems.

On the other hand, the case of homonymy when a single word has two
distinct meanings is an example that the VSM will be less able to handle
since it has thrown away the contextual information that could disambiguate
the meaning. Despite this, some context can be derived from the statistics of
the words in the document. We begin, however, by mentioning two simpler
operations that can improve the quality of the embedding.

The first is to apply different weights wi to each coordinate or equivalently
to give varying weights to the terms. Perhaps the simplest example of this
is the removal of uninformative terms such as ‘and’, ‘of’, ‘the’, and so on.
This is equivalent to assigning a weight of 0 to these coordinates. This
technique was pioneered in the IR literature, where such words are referred
to as stop words, with the complete set known as the stop list. We consider
more general weighting schemes in the next section.

The second effect that can cause problems is the influence of the length
of a document. Clearly, the longer a document the more words it contains
and hence, the greater the norm of its associated vector. If the length of the
document is not relevant for the tasks we are trying to solve, for example
categorisation by topic, it makes sense to remove this effect by normalising
the embedding vectors. Using the technique developed in Chapter 5 and
given in (5.1), we define a kernel that discards this information as follows

κ̂(x,y) =
〈

φ(x)
‖φ(x)‖ ,

φ(y)
‖φ(y)‖

〉
=

κ(x,y)√
κ(x,x)κ(y,y)

.

Typically the normalisation is implemented as either the first transformation
or as the final embedding. We will not consider the normalisation for each



10.2 Vector space kernels 331

of the different semantic embeddings but assume that when required it is
included as a final stage.

Remark 10.4 [On successive embeddings] The operations can be performed
in sequence, creating a series of successive embeddings, each of which adds
some additional refinement to the semantics of the representation, for ex-
ample term weighting followed by normalisation. This chapter will describe
a number of operations designed to refine the semantic quality of the rep-
resentation. Any of these refinements can be included in a sequence. As
described in the last chapter, if we compose these successive embeddings we
create a single map that incorporates different aspects of domain knowledge
into the representation.

10.2 Vector space kernels

Given a document, we have seen how it can be represented by a row vector

φ (d) = (tf (t1, d) , tf (t2, d) , . . . , tf (tN , d)) ∈ R
N ,

in which each entry records how many times a particular term is used in
the document. Typically φ (d) can have tens of thousands of entries, often
more than the number of training examples. Nonetheless, for a particu-
lar document the representation is extremely sparse, having only relatively
few non-zero entries. This preliminary embedding can then be refined by
successive operations that we will examine later in the chapter.

As indicated in Definition 10.2 we can create a document–term matrix D
whose rows are the vectors associated with the documents of the corpus. It
is common in IR to work with the transpose or term–document matrix D′,
but we have chosen to maintain consistency with our use in earlier chapters
of the matrix X, whose rows are the feature vectors of the training examples.
Hence, there is a direct correspondence between X and D where features
become terms and examples become documents.

Definition 10.5 [Vector space kernel] Within the VSM we can create a
kernel matrix as

K = DD′

corresponding to the vector space kernel

κ (d1, d2) = 〈φ (d1) ,φ (d2)〉 =
N∑
j=1

tf (tj , d1) tf (tj , d2) .



332 Kernels for text

Cost of the computation In order to compute the kernel κ we must
first convert the document into a list of the terms that they contain. This
process is known as tokenisation. It has been a fundamental processing
technique of computer science since the design of the first compilers. Each
term encountered in the corpus is assigned its own unique number. This
ensures that the list of terms in a document can be reordered into ascending
term order together with an associated frequency count. In this way the
document is converted into a list L (d) rather than the impractically long
explicit vector φ (d). It is now a relatively simple and efficient task to
compute

κ (d1, d2) = A (L (d1) , L (d2)) ,

using the lists L (d1) and L (d2) as inputs, where the algorithm A (·, ·) tra-
verses the lists, computing products of frequencies whenever the term num-
bers match. In summary, the computation of the kernel does not involve
explicit evaluation of the feature vectors φ (d), but uses an intermediate
representation of a list L (d) of terms. Hence, although we are working in
a space that is typically of very high dimension, the computation of the
projections and subsequent inner product evaluation can be implemented in
a time proportional to the sum of the lengths of the two documents

O (|d1| + |d2|) .

We should contrast this approach with systems that require explicit weights
to be maintained for each component.

Remark 10.6 [Nonlinear embeddings] Throughout this chapter we will
restrict ourselves to considering linear transformations of the basic VSM,
always laying emphasis on the power of capturing important domain knowl-
edge. However, it is of course possible to consider nonlinear embeddings
using standard kernel constructions. For example a polynomial kernel over
the normalised bag-of-words representation

κ̄ (d1, d2) = (κ (d1, d2) + 1)d = (〈φ (d1) ,φ (d2)〉 + 1)d ,

uses all n-tuples of words for 0 ≤ n ≤ d as features. The same approach
can be used for any of the vector space kernels using polynomial kernels or
other kernel constructions such as the Gaussian kernel.



10.2 Vector space kernels 333

10.2.1 Designing semantic kernels

As indicated above the bag-of-words representation has many shortcomings,
partly the neglecting of the word order but also of the semantic content
of the words themselves. In order to address this second omission, we will
consider transformations of the document vectors φ (d). The VSM considers
only the simplest case of linear transformations of the type φ̃ (d) = φ (d)S,
where S is a matrix that could be diagonal, square or, in general, any N ×k

matrix. Using this transformation the corresponding kernel takes the form

κ̃ (d1, d2) = φ (d1)SS′φ (d2)
′ = φ̃ (d1) φ̃ (d2)

′ .

That this is a kernel follows directly from the explicit construction of a
feature vector. We refer to S as the semantic matrix. Different choices
of the matrix S lead to different variants of the VSMs. As indicated in
Remark 10.4 we will often create S as a composition of several stages. We
will examine some of these in the coming subsections. Hence, we might
define

S = RP,

where R is a diagonal matrix giving the term weightings or relevances, while
P is a proximity matrix defining the semantic spreading between the different
terms of the corpus.

Term weighting As mentioned in the previous section not all words have
the same importance in establishing the topic of a document. Indeed, in IR
the so-called stop words are removed before the analysis starts. The entropy
or the frequency of a word across the documents in a corpus can be used to
quantify the amount of information carried by a word. This is an ‘absolute’
measure in the sense that it takes no account of particular topics or tasks.
For categorisation one could also define a relative measure of the importance
of a word with respect to the given topic, such as the mutual information.
Here we consider an absolute measure known as idf that weights terms as a
function of their inverse document frequency. Suppose that there are � doc-
uments in the corpus and let df (t) be the number of documents containing
the term t. The usual measure of inverse document frequency for a term t

is then given by

w (t) = ln
(

�

df (t)

)
.

Implicit in this weighting is the possibility of stop words, since if a term is
contained in every document then df (t) = � and w (t) = 0, effectively ex-



334 Kernels for text

cluding the term from the dictionary and hence reducing the dimensionality
of the feature space. For efficiency reasons it is still preferable to create an
explicit stop list of terms that should a priori be excluded from the features.

The use of the logarithmic function ensures that none of the weights can
become too large relative to the weight of a term that occurs in roughly half
of the documents. This is occasionally further controlled by removing words
that occur in fewer than one or two documents, since they are viewed as too
exceptional to be of use in analysing future documents.

Given a term weighting w (t) whether defined by the idf rule or some
alternative scheme, we can now define a new VSM by choosing the matrix
R to be diagonal with entries

Rtt = w (t) .

The associated kernel simply computes the inner product

κ̃ (d1, d2) = φ (d1)RR′φ (d2)
′ =

∑
t

w (t)2 tf (t, d1) tf (t, d2) ,

again clearly implementable by a weighted version Aw of the algorithm A:

κ̃ (d1, d2) = Aw (L (d1) , L (d2)) .

The evaluation of this kernel involves both term frequencies and inverse
document frequencies. It is therefore often referred to as the tf–idf repre-
sentation. Since these measures do not use label information, they could
also be estimated from an external, larger unlabelled corpus that provides
background knowledge for the system.

Term proximity matrix The tf–idf representation implements a down-
weighting of irrelevant terms as well as highlighting potentially discrimina-
tive ones, but nonetheless is still not capable of recognising when two terms
are semantically related. It is therefore not able to establish a connection
between two documents that share no terms, even when they address the
same topic through the use of synonyms. The only way that this can be
achieved is through the introduction of semantic similarity between terms.
Within the VSM this requires that a proximity matrix P has non-zero off-
diagonal entries Pij > 0 when the term i is semantically related to the term
j. Given such a matrix, the vector space kernel

κ̃ (d1, d2) = φ (d1)PP′φ (d2)
′ (10.1)

corresponds to representing a document by a less sparse vector φ (d)P that
has non-zero entries for all terms that are semantically similar to those



10.2 Vector space kernels 335

present in the document ḋ. This is closely related to a technique from
IR known as ‘query expansion’, where a query is expanded to include not
only the actual query terms but any terms that are semantically related.
Alternatively, we can view the matrix PP′ as encoding a semantic strength
between terms. This is perhaps most clearly apparent if we let Q = PP′

and expand the equation (10.1)

κ̃ (d1, d2) =
∑
i,j

φ (d1)i Qijφ (d2)j ,

so that we can view Qij as encoding the amount of semantic relation between
terms i and j. Note that defining the similarity by inferring Q requires
the additional constraint that Q be positive semi-definite, suggesting that
defining P will in general be more straightforward.

Remark 10.7 [Stemming] One method of detecting some semantic simi-
larities is known as stemming . This technique, implemented as part of the
tokeniser, automatically removes inflexions from words, hence ensuring that
different forms of the same word are treated as equivalent terms. For ex-
ample ‘structural’, ‘structure’ and ‘structured’ would all be mapped to the
common stem ‘structure’ and so be treated as the same term. This effec-
tively performs a dimension reduction, while linking the different forms of
the word as semantically identical. We can implement this within the VSM
by setting Pij = s−1/2, for all terms i, j that are reduced to the same stem,
where s is the number of distinct terms involved. Of course this is just
of theoretical interest as in practice the terms are all mapped to a single
stemmed term in the list L (d).

10.2.2 Designing the proximity matrix

Remark 10.7 suggests a way of defining the proximity matrix P by putting
non-zero entries between those terms whose semantic relation is apparent
from their common stem. The question remains of how we can obtain more
general semantic matrices that link synonymous or related terms that do
not share a common core. We now give a series of methods for obtaining
semantic relationships or learning them directly from a corpus be it the
training corpus or a separate set of documents. Though we present the
algorithms in a term-based representation, we will in many cases show how
to implement them in dual form, hence avoiding the explicit computation
of the matrix P.



336 Kernels for text

Explicit construction of the proximity matrix Perhaps the most nat-
ural method of incorporating semantic information is by inferring the relat-
edness of terms from an external source of domain knowledge. In this section
we briefly describe one such approach. In the next section we will see how
we can use co-occurrence information to infer semantic relations between
terms, hence avoiding the need to make use of such external information.

A semantic network such as Wordnet provides a way to obtain term-
similarity information. A semantic network encodes relationships between
words of a dictionary in a hierarchical fashion, where the more general terms
occur higher in the tree structure, so that for example ‘spouse’ occurs above
‘husband’ and ‘wife’, since it is their hypernym. We can use the distance
between two terms in the hierarchical tree provided by Wordnet to give an
estimate of their semantic proximity. This can then be used to modify the
metric of the vector space of the bag-of-words feature space.

In order to introduce this information into the kernel, we can handcraft
the matrix P by setting the entry Pij to reflect the semantic proximity
between the terms i and j. A simple but effective choice is to set this equal
to the inverse of their distance in the tree, that is the length of the shortest
path connecting them. The use of this semantic proximity gives rise to the
vector space kernel

κ̃ (d1, d2) = φ (d1)PP′φ (d2)
′ .

Generalised vector space model An early attempt to overcome the lim-
itations of the VSMs by introducing semantic similarity between terms is
known as the generalised VSM or GVSM. This method aims at capturing
term–term correlations by looking at co-occurrence information. Two terms
are considered semantically related if they frequently co-occur in the same
documents. Indeed this simple observation forms the basis of most of the
techniques we will develop in this chapter. This means that two documents
can be seen as similar even if they do not share any terms, but the terms
they contain co-occur in other documents. The GVSM method represents a
document by a vector of its similarities with the different documents in the
corpus, in other words a document is represented by the embedding

φ (d) = φ (d)D′,

where D is the document–term matrix, equivalent to taking P = D′. This
definition does not make immediately clear that it implements a semantic



10.2 Vector space kernels 337

similarity, but if we compute the corresponding kernel

κ̃ (d1, d2) = φ (d1)D′Dφ (d2)
′ .

Now we can observe that the matrix D′D has a nonzero (i, j)th entry if and
only if there is a document in the corpus in which the ith and jth terms
co-occur, since (

D′D
)
ij

=
∑
d

tf (i, d) tf (j, d) .

So two terms co-occurring in a document are considered related with the
strength of the relationship given by the frequency and number of their co-
occurrences. If there are fewer documents than terms, this has the effect of
dimensionality reduction by mapping from the vectors indexed by terms to
a lower-dimensional space indexed by the documents of the corpus. Though
appealing, the GVSM is too naive in its use of the co-occurrence information.
The coming subsections examine more subtle uses of this information to
create more refined semantics.

Latent semantic kernels The IR community developed a very effective
vector space representation of documents that can capture semantic informa-
tion through the use of co-occurrence information known as latent semantic
indexing (LSI). Conceptually, LSI follows the same approach as GVSMs,
only that the technique used to extract the semantic information from the
co-occurrences is very different making use as it does of singular value de-
composition (SVD). We will see that this amounts to a special choice of the
matrix P with some useful properties.

Recall from Section 6.1 that the SVD of the matrix D′ is

D′ = UΣV′

where Σ is a diagonal matrix of the same dimensions as D, and U and V
are unitary matrices whose columns are the eigenvectors of D′D and DD′

respectively. LSI now projects the documents into the space spanned by the
first k columns of U, using these new k-dimensional vectors for subsequent
processing

d �−→ φ (d)Uk,

where Uk is the matrix containing the first k columns of U. This choice
can be motivated by recalling that the eigenvectors define the subspace that
minimises the sum-squared differences between the points and their projec-
tions, that is it defines the subspace with minimal sum-squared residuals as



338 Kernels for text

spelled out in Proposition 6.12. Hence, the eigenvectors for a set of docu-
ments can be viewed as concepts described by linear combinations of terms
chosen in such a way that the documents are described as accurately as
possible using only k such concepts.

Note that terms that co-occur frequently will tend to align in the same
eigenvectors, since SVD merges highly correlated dimensions in order to
define a small number of dimensions able to reconstruct the whole feature
vector. Hence, the SVD is using the co-occurrence information in a sophis-
ticated algorithm that can maximise the amount of information extracted
by a given number of dimensions.

The definition of LSI shows that it is identical to performing PCA in the
feature space as described in (6.12). Hence, the new kernel becomes that of
kernel PCA

κ̃ (d1, d2) = φ (d1)UkU′
kφ (d2)

′ ,

showing that the matrix P has in this case been chosen equal to Uk. If we
compare this with the GVSM we can write its projection as

κGSVM (d1, d2) = φ (d1)D′Dφ (d2)
′ = φ (d1)U′ΣUφ (d2)

′ .

Hence, there are two adaptations that have taken place when compared to
GVSM. Firstly, dimensionality reduction has been introduced through the
restriction to k eigenvectors, and secondly the removal of the matrix Σ has
ensured that the projections of the data are orthonormal.

The fact that LSI is equivalent to PCA also implies that we can implement
the algorithm in the dual representation to obtain from (6.12) the evaluation
of the projection as follows.

Computation 10.8 [Latent semantic kernels]Latent semantic kernels are
implemented by projecting onto the features

φ(d)Uk =


λ

−1/2
i

�∑
j=1

(vi)j κ(dj , d)




k

i=1

,

where κ is the base kernel, and λi,vi are the eigenvalue, eigenvector pairs
of the kernel matrix.

The base kernel can now be chosen as the bag-of-words kernel or more
generally a complex kernel involving term weightings or even the polynomial
construction. For this reason we refer to this dual construction as latent
semantic kernels (LSK).



10.2 Vector space kernels 339

Again we see the sculpting of the feature space through a series of trans-
formations each using additional domain knowledge to further refine the
semantics of the embedding. If we wish to represent the LSKs with a prox-
imity matrix we can do so by taking

P = UkU′

since this leads to an identical kernel, while the matrix P is now square and
so defines connection strengths between the different terms. Notice how as
k increases, the matrix tends to the identity, returning to the treatment of
all terms as semantically distinct. Hence, the value of k controls the amount
of semantic smoothing that is introduced into the representation.

Exploiting multilingual corpora Aligned corpora are formed of pairs
of documents that are translations of each other in two languages. They
are examples of the paired training sets introduced when we considered
canonical correlation analysis in Section 6.5. We can treat the translation
as a complex label for the first document, or consider the two versions as
two views of the same object.

In this way we can use a bilingual corpus to learn a semantic mapping that
is useful for tasks that have nothing to do with the second language. The
translations can be seen as complex labels that enable us to elicit refined
semantic mappings that project the documents onto key directions that are
able to remove semantically irrelevant aspects of the representation.

LSKs can be used to derive a more refined language independent represen-
tation. This is achieved by concatenating the two versions of the document
into a single bilingual text. LSI is then applied to create a set of k semantic
dimensions. A new document or query in only one language is projected
using the projections derived from the eigenvectors obtained from the con-
catenated documents.

The latent semantic approach looks for directions of maximum variance
but is restricted by its concatenation of the feature spaces of the two lan-
guages. An alternative method for creating semantic features is to use kernel
CCA. This method treats the two versions of the document as two views of
the same semantic object. It therefore finds independent projections for the
two languages that map to a common semantic space. This space can be
used for further document analysis.

Remark 10.9 [Cross-lingual information retrieval] Cross-lingual informa-
tion retrieval (CLIR) is concerned with the task of retrieving documents
in one language with queries from a different language. The technique is



340 Kernels for text

intended for users who have a passive knowledge of a language enabling
them to read documents, but not sufficient expertise to choose a suitable
query for the information they require. The semantic space provides an ideal
representation for performing CLIR.

Semantic diffusion kernels We would like to continue our exploitation
of the dual perspective between document-based and term-based represen-
tations. If we regard documents as similar that share terms, we have seen
how we can equally well regard as related terms that co-occur in many
documents. This suggests we might extend the similarity implications even
further by, for example, regarding documents that share terms that co-occur
as similar – this is the effect of using the co-occurrence analysis in further
processing. Extrapolating this interaction suggests the introduction of a re-
currence relation. For this section we will denote the matrix D′D with G
and as usual DD′ is the base kernel matrix K. Consider refined similarity
matrices K̂ between documents and Ĝ between terms defined recursively by

K̂ = µDĜD′ + K and Ĝ = µD′K̂D + G. (10.2)

We can interpret this as augmenting the similarity given by K through
indirect similarities measured by G and vice versa. The factor µ < ‖K‖−1

ensures that the longer range effects decay exponentially (recall that ‖K‖ =
maxλ∈λ(K) |λ| denotes the spectral norm of K).

Recall Definition 9.34 of the von Neumann diffusion kernel K̄ over a base
kernel K1 in Section 9.4

K̄ = (I − λK1)
−1

We can characterise the solution of the above recurrences in the following
proposition.

Proposition 10.10 Provided µ < ‖K‖−1 = ‖G‖−1, the kernel K̂ that
solves the recurrences (10.2) is K times the von Neumann kernel over the
base kernel K, while the matrix Ĝ satisfies

Ĝ = G(I − µG)−1.

The proof of the proposition is given in Appendix A.3.
Note that we can view K̂(µ) as a kernel based on the proximity matrix

P =
√

µĜ + I since

DPP′D′ = D(µĜ + I)D′ = µDĜD′ + K = K̂(µ).

Hence, the solution Ĝ defines a refined similarity between terms.



10.3 Summary 341

The kernel K̂ combines these indirect link kernels with an exponentially
decaying weight. This and the diffusion kernels suggest an alternative weight-
ing scheme that shows faster decay. Given a kernel K, consider the expo-
nential diffusion kernel of Definition 9.33

K̄(µ) = K
∞∑
t=1

µtKt

t!
= K exp(µK).

One advantage of this definition is that the series is convergent for all values
of µ, so that no restrictions need to be placed on this parameter. The next
proposition gives the semantic proximity matrix corresponding to K̄(µ).

Proposition 10.11 Let K̄(µ) = K exp(µK). Then K̄(µ) corresponds to a
semantic proximity matrix

exp
(µ

2
G

)
.

Again the proof of the proposition can be found in Appendix A.3.

Remark 10.12 [Applying the diffusion kernels to unseen data] Note that
for the case of text the application of the derived kernel is not restricted
to the examples used in the kernel matrix. As with kernel PCA we can
project new examples into the coordinate system determined by the principal
axes and reweight them with the appropriate function of the corresponding
eigenvalue. Hence, we can compute the diffusion construction on a modestly
sized training set, but apply it to previously unseen data.

10.3 Summary

• The VSM developed in the IR community provides a rich source of kernels
for the analysis of text documents.

• The simplest example is the bag-of-words kernel that treats all terms in
the corpus as independent features.

• Refinements of the VSM are characterised by the use of different semantic
matrices S.

Term weighting schemes lead to diagonal semantic matrices
Off-diagonal entries can be set using external sources such as semantic
nets.
Alternatively we can learn semantic relations through co-occurrence anal-
ysis of the training corpus.



342 Kernels for text

The GVSM gives the simplest approach, with latent semantic kernels and
diffusion kernels making more refined use of the co-occurrence informa-
tion.
Multilingual corpora can further refine the choice of semantic concepts as
well as enabling cross-lingual information analysis.

10.4 Further reading and advanced topics

Kernel methods provide a natural framework for pattern analysis in text.
This is not just through their interpretation of duality, but also because
the function of a kernel in deciding if two documents, sentences or words
have a similar meaning is much easier than actually analysing that meaning.
This similarity measure can often be obtained by borrowing methods from
different disciplines, as is evident from the diverse literature on which this
chapter has been based.

The conventional VSM was introduced in 1975 by Salton et al. [112], and
became the standard representation of documents in IR. Its use as a kernel,
proposed by Joachims [66], is equivalent to setting the matrix P = I. A
number of variations on that theme have been suggested, for example the
GVSM [164], LSI [37] and many others, all of which have an obvious kernel
counterpart.

Following this first embedding, a number of other, possibly nonlinear,
mappings can be performed. Both Joachims, and Dumais et al. [41] used
polynomial and Gaussian kernels to further refine the vector space repre-
sentation, so further mapping the data into a richer space, for classification
tasks using support vector machines.

The European project KerMIT has developed a number of new and sophis-
ticated representations, kernels and algorithms, and their website contains
a number of publications concerned with kernels for text, see www.euro-
kermit.org. Also the book by Thorsten Joachims [67] is entirely devoted to
text classification using kernel methods.

The survey paper [64] contains a framework using as a unifying concept
the proximity matrix. The paper [126] discusses the semantic smoothing
as performed by means of semantic networks and a particular choice of
proximity matrix. The paper on latent semantic kernels [35, 31] discusses
the use of those ideas within kernel methods, and the paper by [84] compares
a number of choices of term weighting schemes, and hence indirectly of
embedding maps.

The use of kCCA for cross language analysis is presented in [150] and the
use of diffusion kernels in [69] (more background information about kernel



10.4 Further reading and advanced topics 343

CCA can be found in Section 6.9 and diffusion kernels in Section 9.10). Other
methods for cross-language analysis include adaptations of LSI described in
[90]. Combinations of text and hyperlink information, in hypertext kernels,
are described in [67].

Of course other kernels for text can be devised which do not use the VSM,
as those based on string matching [91], and and probabilistic modeling, as
in [57], but are better addressed within the context of Chapters 11 and 12.
See Section 11.9 and Section 12.4 for more references.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net


