
9

Basic kernels and kernel types

There are two key properties that are required of a kernel function for an
application. Firstly, it should capture the measure of similarity appropri-
ate to the particular task and domain, and secondly, its evaluation should
require significantly less computation than would be needed in an explicit
evaluation of the corresponding feature mapping φ. Both of these issues will
be addressed in the next four chapters but the current chapter begins the
consideration of the efficiency question.

A number of computational methods can be deployed in order to short-
cut the computation: some involve using closed-form analytic expressions,
others exploit recursive relations, and others are based on sampling. This
chapter aims to show several different methods in action, with the aim of
illustrating how to design new kernels for specific applications. It will also
pave the way for the final three chapters that carry these techniques into
the design of advanced kernels.

We will also return to an important theme already broached in Chapter 3,
namely that kernel functions are not restricted to vectorial inputs: kernels
can be designed for objects and structures as diverse as strings, graphs, text
documents, sets and graph-nodes. Given the different evaluation methods
and the diversity of the types of data on which kernels can be defined,
together with the methods for composing and manipulating kernels outlined
in Chapter 3, it should be clear how versatile this approach to data modelling
can be, allowing as it does for refined customisations of the embedding map
φ to the problem at hand.

291

292 Basic kernels and kernel types

9.1 Kernels in closed form

We have already seen polynomial and Gaussian kernels in Chapters 2 and
3. We start by revisiting these important examples, presenting them in a
different light in order to illustrate a series of important design principles
that will lead us to more sophisticated kernels. The polynomial kernels in
particular will serve as a thread linking this section with those that follow.

Polynomial kernels In Chapter 3, Proposition 3.24 showed that the space
of valid kernels is closed under the application of polynomials with positive
coefficients. We now give a formal definition of the polynomial kernel.

Definition 9.1 [Polynomial kernel] The derived polynomial kernel for a
kernel κ1 is defined as

κ (x, z) = p (κ1 (x, z)) ,

where p (·) is any polynomial with positive coefficients. Frequently, it also
refers to the special case

κd (x, z) = (〈x, z〉 + R)d ,

defined over a vector space X of dimension n, where R and d are parameters.

Expanding the polynomial kernel κd using the binomial theorem we have

κd (x, z) =
d∑

s=0

(
d

s

)
Rd−s 〈x, z〉s . (9.1)

Our discussion in Chapter 3 showed that the features for each component
in the sum together form the features of the whole kernel. Hence, we have
a reweighting of the features of the polynomial kernels

κ̂s (x, z) = 〈x, z〉s , for s = 0, . . . , d.

Recall from Chapter 3 that the feature space corresponding to the kernel
κ̂s (x, z) has dimensions indexed by all monomials of degree s, for which we
use the notation

φi(x) = xi = xi11 xi22 . . . xinn ,

where i = (i1, . . . , in) ∈ N
n satisfies

n∑
j=1

ij = s.

9.1 Kernels in closed form 293

The features corresponding to the kernel κd (x, z) are therefore all functions
of the form φi(x) for i satisfying

n∑
j=1

ij ≤ d.

Proposition 9.2 The dimension of the feature space for the polynomial
kernel κd (x, z) = (〈x, z〉 + R)d is(

n + d

d

)
.

Proof We will prove the result by induction over n. For n = 1, the number
is correctly computed as d + 1. Now consider the general case and divide
the monomials into those that contain at least one factor x1 and those that
have i1 = 0. Using the induction hypothesis there are

(
n+d−1
d−1

)
of the first

type of monomial, since there is a 1-1 correspondence between monomials of
degree at most d with one factor x1 and monomials of degree at most d− 1
involving all base features. The number of monomials of degree at most d

satisfying i1 = 0 is on the other hand equal to
(
n−1+d

d

)
since this corresponds

to a restriction to one fewer input feature. Hence, the total number of all
monomials of degree at most d is equal to(

n + d− 1
d− 1

)
+

(
n− 1 + d

d

)
=

(
n + d

d

)
,

as required.

Remark 9.3 [Relative weightings] Note that the parameter R allows some
control of the relative weightings of the different degree monomials, since by
equation (9.1), we can write

κd (x, z) =
d∑

s=0

asκ̂s (x, z) ,

where

as =
(
d

s

)
Rd−s.

Hence, increasing R decreases the relative weighting of the higher order
polynomials.

294 Basic kernels and kernel types

Remark 9.4 [On computational complexity] One of the reasons why it is
possible to reduce the evaluation of polynomial kernels to a very simple
computation is that we are using all of the monomials. This has the effect
of reducing the freedom to control the weightings of individual monomials.
Paradoxically, it can be much more expensive to use only a subset of them,
since, if no pattern exists that can be exploited to speed the overall compu-
tation, we are reduced to enumerating each monomial feature in turn. For
some special cases, however, recursive procedures can be used as a shortcut
as we now illustrate.

All-subsets kernel As an example of a different combination of features
consider a space with a feature φA for each subset A ⊆ {1, 2, . . . , n} of the
input features, including the empty subset. Equivalently we can represent
them as we did for the polynomial kernel as features

φi(x) = xi11 xi22 . . . xinn ,

with the restriction that i = (i1, . . . , in) ∈ {0, 1}n. The feature φA is given
by multiplying together the input features for all the elements of the subset

φA (x) =
∏
i∈A

xi.

This generates all monomial features for all combinations of up to n different
indices but here, unlike in the polynomial case, each factor in the monomial
has degree 1.

Definition 9.5 [All-subsets embedding] The all-subsets kernel is defined by
the embedding

φ : x �−→ (φA (x))A⊆{1,...,n} ,

with the corresponding kernel κ⊆(x, z) given by

κ⊆(x, z) = 〈φ (x) ,φ (z)〉 .

There is a simple computation that evaluates the all-subsets kernel as the
following derivation shows

κ⊆(x, z) = 〈φ (x) ,φ (z)〉 =
∑

A⊆{1,...,n}
φA (x)φA (z) =

∑
A⊆{1,...,n}

∏
i∈A

xizi

=
n∏

i=1

(1 + xizi) ,

9.1 Kernels in closed form 295

where the last step follows from an application of the distributive law. We
summarise this in the following computation.

Computation 9.6 [All-subsets kernel] The all-subsets kernel is computed
by

κ⊆ (x, z) =
n∏

i=1

(1 + xizi)

for n-dimensional input vectors.

Note that each subset in this feature space is assigned equal weight unlike
the variable weightings characteristic of the polynomial kernel. We will see
below that the same kernel can be formulated in a recursive way, giving rise
to a class known as the ANOVA kernels. They build on a theme already ap-
parent in the above where we see the kernel expressed as a sum of products,
but computed as a product of sums.

Remark 9.7 [Recursive computation] We can clearly compute the polyno-
mial kernel of degree d recursively in terms of lower degree kernels using the
recursion

κd (x, z) = κd−1 (x, z) (〈x, z〉 + R) .

Interestingly it is also possible to derive a recursion in terms of the input
dimensionality n. This recursion follows the spirit of the inductive proof for
the dimension of the feature space given for polynomial kernels. We use the
notation

κms (x, z) = (〈x1:m, z1:m〉 + R)s ,

where x1:m denotes the restriction of x to its first m features. Clearly we
can compute

κ0
s (x, z) = Rs and κm0 (x, z) = 1.

For general m and s, we divide the products in the expansion of

(〈x1:m, z1:m〉 + R)s

into those that contain at least one factor xmzm and those that contain no
such factor. The sum of the first group is equal to sκms−1 (x, z)xmzm since
there is a choice of s factors in which the xmzm arises, while the remaining
factors are drawn in any way from the other s−1 components in the overall

296 Basic kernels and kernel types

product. The sum over the second group equals κm−1
s (x, z), resulting in the

recursion

κms (x, z) = sκms−1 (x, z)xmzm + κm−1
s (x, z) .

Clearly, this is much less efficient than the direct computation of the defini-
tion, since we must compute O (nd) intermediate values giving a complex-
ity of O (nd), even if we save all the intermediate values, as compared to
O (n + d) for the direct method. The approach does, however, motivate the
use of recursion introduced below for the computation of kernels for which
a direct route does not exist.

Gaussian kernels Gaussian kernels are the most widely used kernels and
have been extensively studied in neighbouring fields. Proposition 3.24 of
Chapter 3 verified that the following kernel is indeed valid.

Definition 9.8 [Gaussian kernel] For σ > 0, the Gaussian kernel is defined
by

κ (x, z) = exp

(
−‖x − z‖2

2σ2

)
.

For the Gaussian kernel the images of all points have norm 1 in the re-
sulting feature space as κ (x,x) = exp (0) = 1. The feature space can be
chosen so that the images all lie in a single orthant, since all inner products
between mapped points are positive.

Note that we are not restricted to using the Euclidean distance in the
input space. If for example κ1 (x, z) is a kernel corresponding to a feature
mapping φ1 into a feature space F1, we can create a Gaussian kernel in F1

by observing that

‖φ1 (x) − φ1 (z)‖2 = κ1 (x,x) − 2κ1 (x, z) + κ1 (z, z) ,

giving the derived Gaussian kernel as

κ (x, z) = exp
(
−κ1 (x,x) − 2κ1 (x, z) + κ1 (z, z)

2σ2

)
.

The parameter σ controls the flexibility of the kernel in a similar way to the
degree d in the polynomial kernel. Small values of σ correspond to large
values of d since, for example, they allow classifiers to fit any labels, hence
risking overfitting. In such cases the kernel matrix becomes close to the
identity matrix. On the other hand, large values of σ gradually reduce the

9.2 ANOVA kernels 297

kernel to a constant function, making it impossible to learn any non-trivial
classifier. The feature space has infinite-dimension for every value of σ but
for large values the weight decays very fast on the higher-order features.
In other words although the rank of the kernel matrix will be full, for all
practical purposes the points lie in a low-dimensional subspace of the feature
space.

Remark 9.9 [Visualising the Gaussian feature space] It can be hard to
form a picture of the feature space corresponding to the Gaussian kernel.
As described in Chapter 3 another way to represent the elements of the
feature space is as functions in a Hilbert space

x �−→ φ (x) = κ (x, ·) = exp

(
−‖x − ·‖2

2σ2

)
,

with the inner product between functions given by〈
�∑

i=1

αiκ (xi, ·) ,
�∑

j=1

βjκ (xj , ·)
〉

=
�∑

i=1

�∑
j=1

αiβjκ (xi,xj) .

To a first approximation we can think of each point as representing a new
potentially orthogonal direction, but with the overlap to other directions
being bigger the closer the two points are in the input space.

9.2 ANOVA kernels

The polynomial kernel and the all-subsets kernel have limited control of
what features they use and how they weight them. The polynomial kernel
can only use all monomials of degree d or of degree up to d with a weighting
scheme depending on just one parameter R. As its name suggests, the
all-subsets kernel is restricted to using all the monomials corresponding to
possible subsets of the n input space features. We now present a method
that allows more freedom in specifying the set of monomials.

The ANOVA kernel κd of degree d is like the all-subsets kernel except that
it is restricted to subsets of the given cardinality d. We can use the above
notation xi to denote the expression xi11 xi22 . . . xinn , where i = (i1, . . . , in) ∈
{0, 1}n with the further restriction that

n∑
j=1

ij = d.

For the case d = 0 there is one feature with constant value 1 corresponding

298 Basic kernels and kernel types

to the empty set. The difference between the ANOVA and polynomial kernel
κd (x, z) is the exclusion of repeated coordinates.

ANOVA stands for ANalysis Of VAriance, the first application of Hoeffd-
ing’s decompositions of functions that led to this kernel (for more about the
history of the method see Section 9.10). We now give the formal definition.

Definition 9.10 [ANOVA embedding] The embedding of the ANOVA ker-
nel of degree d is given by

φd : x �−→ (φA (x))|A|=d ,

where for each subset A the feature is given by

φA (x) =
∏
i∈A

xi = xiA ,

where iA is the indicator function of the set A.

The dimension of the resulting embedding is clearly
(
n
d

)
, since this is the

number of such subsets, while the resulting inner product is given by

κd (x, z) = 〈φd(x),φd(z)〉 =
∑
|A|=d

φA (x)φA (z)

=
∑

1≤i1<i2<···<id≤n

(xi1zi1)(xi2zi2) . . . (xidzid)

=
∑

1≤i1<i2<···<id≤n

d∏
j=1

xijzij .

Note again the sums of products in the definition of the kernel.

Remark 9.11 [Feature space] Notice that this is a proper subspace of the
embedding space generated by a polynomial kernel of degree d, since instead
of imposing 1 ≤ i1 < i2 < · · · < id ≤ n, the polynomial kernel only requires
the weaker restriction 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n. The weighting of the
subspace of features considered for the ANOVA kernel is also uniform in the
polynomial kernel, but the weightings of the features with repeated indices
is higher.

We have been keen to stress that it should be possible to evaluate a kernel
faster than by an explicit computation of the feature vectors. Here, for an
explicit computation, the number of operations grows as d

(
n
d

)
since there

are
(
n
d

)
features each of which requires O (d) operations to evaluate. We

now consider a recursive method of computation following the spirit of the
recursive evaluation of the polynomial kernel given in Remark 9.7.

9.2 ANOVA kernels 299

Naive recursion We again introduce a series of intermediate kernels. Again
using the notation x1:m = (x1, . . . , xm) we introduce, for m ≥ 1 and s ≥ 0

κms (x, z) = κs (x1:m, z1:m) ,

which is the ANOVA kernel of degree s applied to the inputs restricted to the
first m coordinates. In order to evaluate κms (x, z) we now argue inductively
that its features can be divided into two groups: those that contain xm and
the remainder. There is a 1-1 correspondence between the first group and
subsets of size d−1 restricted to x1:m−1, while the second group are subsets
of size d restricted to x1:m−1. It follows that

κms (x, z) = (xmzm)κm−1
s−1 (x, z) + κm−1

s (x, z) . (9.2)

The base of the recursion occurs when m < s or s = 0. Clearly, we have

κms (x, z) = 0, if m < s, (9.3)

since no subset of size s can be found, while

κm0 (x, z) = 1, (9.4)

as the empty set has a feature value of 1. We summarise this in the following
computation.

Computation 9.12 [ANOVA recursion] The ANOVA kernel is given by
the following recursion

κm0 (x, z) = 1, if m ≥ 0,

κms (x, z) = 0, if m < s,

κms (x, z) = (xmzm)κm−1
s−1 (x, z) + κm−1

s (x, z)

The computational framework presented here forms the basis for several
further generalisations that will be discussed in this and subsequent chapters
leading to the introduction of string kernels in Chapter 11.

Remark 9.13 [Cost of naive recursion] As we observed above, a direct
computation of the kernel by expicit evaluation of the features would in-
volve O

(
d
(
n
d

))
operations. If we were to implement the recursion given in

equations (9.2) to (9.4), this would also remain very costly. If we denote
with a function T (m, s) the cost of performing the recursive calculation of

300 Basic kernels and kernel types

κms (x, z), we can use the recurrence relation to deduce the following estimate
for the number of operations:

T (m, s) = T (m− 1, s) + T (m− 1, s− 1) + 3

> T (m− 1, s) + T (m− 1, s− 1),

with T (m, s) = 1 for m < s and T (m, 0) = 1. For these base values we have
the inequality

T (m, s) ≥
(
m

s

)
,

while using an inductive assumption gives

T (m, s) > T (m− 1, s) + T (m− 1, s− 1)

≥
(
m− 1

s

)
+

(
m− 1
s− 1

)
=

(
m

s

)
.

Hence the cost of computing the kernel κd (x, z) is at least
(
n
d

)
which is still

exponential in the degree d.

Dynamic programming evaluation The naive recursion is inefficient
because it repeats many of the same computations again and again. The
key to a drastic reduction in the overall computational complexity is to save
the values of κms (x, z) in a dynamic programming table indexed by s and
m as they are computed:

DP m = 1 2 · · · n

s = 0 1 1 · · · 1
1 x1z1 x1z1 + x2z2 · · · ∑n

i=1 xizi
2 0 κ2

2 (x, z) · · · κn2 (x, z)
...

...
...

. . .
...

d 0 0 · · · κnd (x, z)

(9.5)

If we begin computation with the first row from left to right and continue
down the table taking each row in turn, the evaluation of a particular entry
depends on the entry diagonally above to its left and the entry immediately
to its left. Hence, both values will already be available in the table. The
required kernel evaluation is the bottom rightmost entry in the table. We
summarise in the following algorithm.

Algorithm 9.14 [ANOVA kernel] The ANOVA kernel κd is computed in
Code Fragment 9.1.

9.2 ANOVA kernels 301

Input vectors x and z of length n, degree d
Process for j = 0 : n
2 DP (0, j) = 1;
3 end
6 for k = 1 : d
7 DP (k, k − 1) = 0;
9 for j = k : n
10 DP (k, j) = DP (k, j − 1) + x (j) z (j) DP (k − 1, j − 1) ;
11 end
12 end
Output kernel evaluation κd (x, z) = DP (d, n)

Code Fragment 9.1. Pseudocode for ANOVA kernel.

Cost of the computation The computation involves

3
(
nd− d(d− 1)

2

)

numerical operations. If we take into account that entries κms (x, z) with
m > n− d + s cannot affect the result, this can be reduced still further.

Remark 9.15 [Dynamic programming notation] Such a staged recursive
implementation is often referred to as a dynamic programming, though dy-
namic programs can involve more complex evaluations at each stage and
can be run over more general structures such as graphs rather than simple
tables. We will use a uniform notation for showing dynamic programming
tables following the example of (9.5), with DP in the upper left corner indi-
cating this type of table. See Appendix B for details of the different table
types.

Remark 9.16 [On using different degrees] Observe that the final column in
the table contains the ANOVA kernel evaluations for all degrees up to and
including d. It is therefore possible, at very little extra cost, to evaluate the
kernel

κ≤d (x, z) =
d∑

s=0

κs (x, z) ,

302 Basic kernels and kernel types

or indeed any appropriate reweighting of the component kernels. If we take
this to the extreme value of d = n, we recover the all-subsets kernel

κ⊆(x, z) = κ≤n (x, z) =
n∑

s=0

κs (x, z) ,

though the method of computation described here is a lot less efficient than
that given in Remark 9.1

κ⊆(x, z) =
n∏

i=1

(1 + xizi) ,

which provides a simpler recursion of complexity only O (3n). Viewed re-
cursively we can see

κ⊆(xm, zm) = κ⊆(xm−1, zm−1) (1 + xmzm) ,

corresponding to dividing all subsets into those that contain m and those
that do not.

Remark 9.17 [Uneven term weighting] In both the ANOVA kernel and
the all-subsets kernel, we have the freedom to downplay some features and
emphasise others by simply introducing a weighting factor ai ≥ 0 whenever
we evaluate

aixizi,

so that, for example, the all-subsets kernel becomes

κ⊆(x, z) =
n∏

i=1

(1 + aixizi) .

In the case of the ANOVA evaluation it is also possible to vary weightings
of the features depending on the structure of the monomial. For example,
monomials with non-consecutive indices can have their weights reduced.
This will form a key ingredient in the string kernels.

Computation 9.18 [Alternative recursion for the ANOVA kernel] Other
recursive computations are possible for the ANOVA kernel. When originally
introduced, the recursion given was as follows

κ0 (x, z) = 1

κd (x, z) =
1
d

d∑
s=1

(−1)s+1κd−s (x, z) κ̄s (x, z)

9.2 ANOVA kernels 303

where κ̄s (x, z) =
∑n

i=1(xizi)
s.

Remark 9.19 [Correctness of alternative recursion] The correctness of this
alternative can be verified formally. Intuitively, since κ̄s (x, z) = 〈x, z〉, the
first term in the sum is

1
d
κd−1 (x, z) 〈x, z〉 ,

which includes the d subsets as features with weighting 1, but also includes
features φi(x) for which some components have repeated entries. The second
term removes these but introduces others which are in turn removed by the
following term and so on. The complexity of this method using tables is
O

(
nd + d2

)
, which is comparable to Algorithm 9.14. However the version

discussed above is more useful for extensions to the case of strings and is
numerically more stable.

Remark 9.20 [Extensions to general kernels on structures] We can view
the individual components xizi in the ANOVA kernel as a base kernel

κi (x, z) = xizi.

Indeed the reweighting scheme discussed in Remark 9.17 can be seen as
changing this base kernel to

κi (x, z) = aixizi.

Taking this view suggests that we could compare data types more general
than real numbers in each coordinate, be they discrete objects such as char-
acters, or multi-coordinate vectors. More generally we can simply replace
the n coordinates by n general base kernels that provide different methods
of comparing the two objects. We do not require that the ith kernel depends
only on the ith coordinate. It might depend on a set of coordinates that
could overlap with the coordinates affecting other features. In general all
of the base kernels could depend on all of the input coordinates. Given a
sequence κ1 (x, z) , . . . , κn (x, z) of base kernels, this more general version of
the ANOVA kernel therefore has the following form

κAd (x, z) =
∑

1≤i1<i2<···<id≤n

d∏
j=1

κij (x, z) .

There are many different applications where this might prove useful. For
example it allows us to consider the case when the inputs are discrete struc-
tures with d components, with κi (x, z) providing a comparison of the ith

304 Basic kernels and kernel types

subcomponent. Both recursions can still be used. For example the original
recursion becomes

κms (x, z) = κm (x, z)κm−1
s−1 (x, z) + κm−1

s (x, z) ,

while for the second recursion we must replace the evaluation of κ̄s (x, z) by

κ̄s (x, z) =
n∑

i=1

κi (x, z)
s .

9.3 Kernels from graphs

The ANOVA kernel is a method that allows us to be slightly more selective
about which monomials are included. Clearly it is, however, very far from
general. Ideally we would like to extend the range of selective options avail-
able while still retaining the efficient computation it affords. We will achieve
this by first showing how the all-subsets kernel computation can be repre-
sented using a graph. This will suggest a more general family of methods
that subsumes all three examples considered so far.

As a first example consider the all-subsets kernel. We can illustrate the
computation

κ⊆ (x, z) =
n∏

i=1

(1 + xizi)

with the graph shown in Figure 9.1. Here the computation flows from left

1

x y1 1 x y2 2 x yn n

1 1

Fig. 9.1. Kernel graph for the all-subsets kernel.

to right with the value at a node given by summing over the edges reaching
that node, the value at the previous node times the value on the edge. The
double edges enable us to code the fact that the previous value is multiplied
by the factor

(1 + xizi) .

9.3 Kernels from graphs 305

We can view the graph as an illustration of the computational strategy,
but it also encodes the features of the kernel as the set of directed paths
from the leftmost to the rightmost vertex. Each such path must go through
each vertex using either the upper or lower edge. Using the lower edge
corresponds to including the feature while using the upper edge means that
it is left out. It follows that there are 2n paths in 1-1 correspondence with
the subsets of {1, . . . , n}, that is with the coordinates of the kernel feature
mapping.

The perspective afforded by illustrating the kernel computation as a graph
suggests defining a more general set of kernels in terms of a general graph
structure.

Consider a directed (edges have an associated direction) graph G = (V,E)
where V is a set of vertices with two labelled vertices: s the source vertex
and t the sink vertex. The set E of directed edges without loops is labelled
with the base kernels. For the all-subsets kernel these were either a constant
or xizi for some i, but in general we could consider the base kernels κi (x, z)
in the spirit of Remark 9.20. If we treat a constant function as a kernel we
can simply view the edges e ∈ E as indexing a kernel κe (x, z). Note that
we will denote path p by the sequence of vertices it contains, for example

p = (u0u1 . . . ud) ,

where it is understood that (ui → ui+1) ∈ E for i = 1, . . . , d − 1. If
(ud → v) ∈ E then pv denotes the path

(u0u1 . . . udv) .

We summarise in the following definition.

Definition 9.21 A kernel graph is a directed graph G = (V,E) with a
source vertex s of in-degree 0 and sink vertex t of out-degree 0. Furthermore,
each edge e is labelled with a kernel κe. Let Pst be the set of directed paths
from vertex s to vertex t and for a path p = (u0u1 · · ·ud) let

κp (x, z) =
d∏

i=1

κ(ui−1→ui) (x, z) ,

that is, the product of the kernels associated with the edges of p. We now
introduce the graph kernel specified by the graph G by

κG (x, z) =
∑
p∈Pst

κp (x, z) =
∑
p∈Pst

d∏
i=1

κ(ui−1→ui) (x, z) .

306 Basic kernels and kernel types

For simplicity we assume that no vertex has a directed edge to itself. If the
graph has no directed loops we call the graph simple, while in general we
allow directed loops involving more than one edge.

A graph kernel can be seen to be a kernel since sums and products of
kernels are kernels though for graphs with loops there will be an issue of
convergence of the infinite sums involved. Notice that if the base kernels
are the simple products xizi or the constant 1, then we have each path
corresponding to a monomial feature formed as the product of the factors
on that path.

Remark 9.22 [Vertex labelled versus edge labelled graphs] We have in-
troduced kernel graphs by labelling the edges with base kernels. It is also
possible to label the vertices of the graph and again define the kernel as the
sum over all paths with the features for a path being the product of the
features associated with nodes on the path. We omit these details as they
do not add any additional insights.

Remark 9.23 [Flexibility of graph kernels] Clearly the range of options
available using different graphs G is very large. By adjusting the structure
of the graph we can control which monomial features are included. We have
even allowed the possibility of graphs with loops that would give rise to
infinite feature spaces including monomials of arbitrary length. We have
been able to significantly broaden the definition of the kernels, but can we
retain the efficient computational methods characteristic of the all-subsets
kernel? In particular if the graph is directed does the computation dictated
by the directed graph really compute the kernel?

Computation of graph kernels Given a kernel graph G = (V,E), con-
sider introducing a kernel for each vertex u ∈ V defined by

κu (x, z) =
∑
p∈Psu

κp (x, z) .

Hence, we have κG (x, z) = κt (x, z) and we take κs (x, z) = 1. Consider a
vertex u. All paths arriving at u from s must reach u by a directed edge
into u. Similarly, any path p from s to a vertex v that has a directed edge e

to u can be extended to a path pu from s to u. We can therefore decompose
the sum

κu (x, z) =
∑
p∈Psu

κp (x, z) =
∑

v:v→u

∑
p∈Psv

κpu (x, z)

9.3 Kernels from graphs 307

=
∑

v:v→u

κ(v→u) (x, z)
∑
p∈Psv

κp (x, z)

=
∑

v:v→u

κ(v→u) (x, z)κv (x, z) . (9.6)

This is a set of linear equations for the vector of unknown values

κ = (κu (x, z))u∈V \s .

If we define the square matrix A indexed by V \ s to have entries

Auv =

κ(v→u) (x, z) if (v → u) ∈ E

−1 if u = v,
0 otherwise,

(9.7)

and the vector b to have entries

bu =
{
−κ(a→u) (x, z) if (a → u) ∈ E

0 otherwise,
(9.8)

then we can rewrite equation (9.6) to give the computation:

Computation 9.24 [General graph kernels] Using A given by (9.7) and b
by (9.8), the evaluation of the general graph kernel is obtained by solving

Aκ = b,

and returning

κ (x, z) = κt (x, z) .

Hence, provided the matrix A is invertible, we can in general solve the
system in O

(
|V |3

)
steps to evaluate the kernel. The question of invertibility

is related to the fact that once the graph has loops we cannot guarantee
in general that the kernel evaluation will be bounded. Hence, care must
be taken in defining graphs with loops. There are several types of graph
structures other than the simple graph kernels with no loops for which more
efficient computations exist.

If the graph is simple we can order the computation so that the values
needed to compute κu (x, z) have already been evaluated. We must perform
a so-called topological sort of the vertices to obtain an order that is compat-
ible with the partial order determined by the directed edges. This results
in the computation described by the graph structure, multiplying the val-
ues stored at the previous nodes with the factor on the edge and summing,
giving a complexity of O (|E|).

308 Basic kernels and kernel types

Algorithm 9.25 [Simple graph kernels] Computation of simple graph ker-
nels is given in Code Fragment 9.2.

Input vectors x and z of length n, simple graph kernel G = (V,E)

Process Find an ordering ui of the vertices of G
2 such that ui → uj implies i < j.

DP (1) = 1;
6 for i = 2 : |V |
7 DP (i) = 0;
9 for j : uj → ui

10 DP (i) = DP (i) + κ(uj→ui) (x, z) DP (j) ;
11 end
12 end
Output kernel evaluation κG (x, z) = DP (|V |)

Code Fragment 9.2. Pseudocode for simple graph kernels.

Remark 9.26 [Message passing] The evaluation of the array entry DP (i) at
the vertex ui can be viewed as the result of a set of messages received from
vertices uj , for which there is an edge uj → ui. The message passed by the
vertex uj is its computed value DP (j). Algorithms of this type are referred
to as message passing algorithms and play an important role in Bayesian
belief networks.

Example 9.27 [Polynomial kernel] We can also represent the polynomial
kernel as a simple graph kernel. The graph corresponding to its computation
is shown in Figure 9.2. Clearly, paths from the leftmost to rightmost vertex

Fig. 9.2. Kernel graph for the polynomial kernel.

again correspond to its features, but notice how many different paths give
rise to the same feature. It is this that gives rise to the different weightings
that the various monomials receive.

9.3 Kernels from graphs 309

Example 9.28 [ANOVA kernel] Recall the recursive computation of the
ANOVA kernel illustrated in Table (9.5). Now consider creating a graph
whose vertices are the entries in the table with directed edges to a vertex
from the entries used to compute the value stored at that vertex. The edges
are labelled with the factor that is applied to the value in the computation.
Hence, for example, the vertex (1, 2) corresponding to the entry for s = 1
and m = 2 has a directed edge labelled x2y2 from vertex (0, 1) and an edge
from (1, 1) labelled 1. This corresponds to the recursive computation

κ2
1 (x, z) = (x2z2)κ2−1

1−1 (x, z) + κ2−1
1 (x, z) .

We have included one extra vertex (0, 0) corresponding to s = 0 and m = 0
with edges labelled 1 from vertex (0, i) to (0, i + 1) for i = 0, . . . , n − 1.
Finally, vertices (s,m) with s > m together with associated edges have been
deleted since they correspond to entries that are always 0. The graph is
shown in Figure 9.3. We can view the graph as an illustration of the com-
putational strategy, but it also encodes the features of the kernel as the set
of directed paths from the vertex (0, 0) to the vertex (d, n). Each such path
corresponds to the monomial formed by the product of all the factors on the
path. Hence, for example, the path (0, 0) (1, 1) · · · (d, d) (d, d + 1) · · · (d, n)
corresponds to the feature x1x2 · · ·xd. Clearly, to reach the vertex (d, n)
we must move down d rows; each time we do so the feature indexing that
column is included. Hence, each path corresponds to one set of d features
with different paths selecting a different subset.

Remark 9.29 [Regular language kernels] There is a well-known equivalence
between languages specified by regular expressions, also known as regular
languages, and languages recognised by non-deterministic or deterministic
finite state automata (FSA). We can use directed labelled graphs to specify
non-deterministic FSAs. The nodes of the graph correspond to the states of
the FSA, with the source being the initial state, and the sink the accepting
state. The directed edges are labelled with symbols from the alphabet of
the language or a symbol ε for so-called ε-transitions that do not generate
a symbol. Hence, we can view a kernel graph as a non-deterministic FSA
over the alphabet of base kernels, where ε-transitions correspond to edges
labelled by 1. The languages of the non-deterministic FSA is the set of finite
strings that are accepted by the FSA. This is exactly the set of monomial
features specified by the kernel graph with the only difference that for the
kernel graph a reordering of the base kernels specifies the same feature, while
for the FSA, permuting the symbols in a string creates a distinct word in
the language. Modulo this difference, we can use regular expressions as a

310 Basic kernels and kernel types

Fig. 9.3. Kernel graph for the ANOVA kernel.

shorthand for specifying the monomial features that we wish to include in
our feature space, with the guarantee that the evaluation of the resulting
kernel will be polynomial in the number of states of an equivalent non-
deterministic FSA.

9.4 Diffusion kernels on graph nodes

One of the appeals of using kernel methods for pattern analysis is that
they can be defined on non-vectorial data, making it possible to extend the
application of the techniques to many different types of objects. In later
chapters we will define specialist kernels for strings and trees to further
illustrate this point, but here we introduce a method that can take any basic

9.4 Diffusion kernels on graph nodes 311

comparison rule and convert it into a valid kernel. All that is required is some
measure of similarity that captures at the simplest level association between
two objects, perhaps only non-zero for objects that are closely related. The
construction will use this to construct a refined similarity that relates all
objects and is guaranteed to be a kernel.

The method again uses paths in graphs to create more complex relations
between objects. In the kernel graphs described in the previous section the
labelling of the graph was adjusted for each kernel evaluation κG (x, z). In
this section we describe how similar ideas can be used to define a new kernel
over a set of data, where each data item is associated with a vertex of the
graph.

Definition 9.30 [Base similarity graph] A base similarity graph for a dataset
S is a graph G = (S,E), whose vertices are the data items in S, while
the (undirected) links between them are labelled with some base similarity
measure τ (x, z). The (base) similarity matrix B = B1 of G is indexed by
the elements of S with entries

Bxz = τ (x, z) = τ1 (x, z) .

In general, the base similarity could be a simple method of comparing the
objects with the only restriction that it must be symmetric. Furthermore,
no assumption is made that it corresponds to a kernel, though if it is a kernel
the method will deliver derived kernels. This would therefore allow us to
create more complex kernels in a principled way.

Remark 9.31 [Finite domains] In general a base similarity over a finite do-
main could be specified by the similarity matrix B. This is the most general
way to specify it. Both the kernels defined in this section are introduced
for finite domains and deal directly with the similarity matrix. However,
for large (or infinite) domains we require a compact function that exploits
some features of the data, to create a similarity between objects. We will
see that the kernels introduced here can be extended in this way when we
treat a specific application area in Chapter 10. We want to emphasise here
that the kernels can be defined between elements of non-metric spaces as
long as some base comparisons are available.

Consider now the similarity τ2 (x, z) obtained by summing the products

312 Basic kernels and kernel types

of the weights on all paths of length 2 between two vertices x and z:

τ2 (x, z) =
∑

(x0x1x2)∈P 2
xz

2∏
i=1

τ1 (xi−1,xi) ,

where we use P k
xz to denote the set of paths of length k starting at x and

finishing at z.

Remark 9.32 [Paths as features] Notice that in this case we cannot view
the paths as features, since the set of paths used in the sum depends on
the arguments of the kernel function. This is in contrast to the fixed set of
paths used for the graph kernels. We cannot therefore conclude that this is
a kernel simply by considering sums and products of kernels.

Now consider how to compute the corresponding similarity matrix B2

τ2 (x, z) = (B2)xz =
∑

(x0x1x2)∈P 2
xz

2∏
i=1

τ1 (xi−1,xi)

=
∑

(x,x1)∈E
τ1 (x,x1) τ1 (x1, z)

= B2
xz.

Hence, the new similarity matrix is simply the square of the base similarity
matrix. It now is immediately apparent that the resulting function τ2 is
indeed a kernel, since the square of a symmetric matrix is always positive
semi-definite, as its eigenvectors remain unchanged but the corresponding
eigenvalues are each squared.

If we want to determine the features of this kernel we rewrite the sum as

(B2)xz =
∑

(x,x1)∈E
τ1 (x,x1) τ1 (x1, z) =

�∑
i=1

τ1 (x,xi) τ1 (xi, z)

=
〈
(τ1 (x,xi))

�
i=1 , (τ1 (z,xi))

�
i=1

〉
,

where we have assumed that the datapoints are given as

S = {x1,x2, . . . ,x�} .

Hence, the kernel corresponds to the projection into the space with features
given by the evaluation of the base similarity with each of the examples

φ : x �−→ (τ1 (x,xi))
�
i=1 .

9.4 Diffusion kernels on graph nodes 313

The intuition behind this construction is that we can enhance the base
similarity by linking objects that share a number of ‘common friends’. Hence
we might consider taking a combination of the two matrices

B1 + B2.

We can similarly extend the consideration to paths of length k

τk (x, z) =
∑

(x0x1...xk)∈Pk
xz

k∏
i=1

τ1 (xi−1,xi) .

A simple inductive argument shows that the corresponding similarity matrix
Bk satisfies

Bk = Bk.

We would expect the relevance of longer paths to decay since linking objects
through long paths might create erroneous measures of similarity. We can
control the contribution of longer paths by introducing a decay factor λ into
a general sum. For example if we choose

K =
∞∑
k=0

1
k!
λkBk,

we can write

K = exp (λB) ,

leading to the following definition.

Definition 9.33 [Exponential diffusion kernel] We will refer to

K = exp (λB)

as the exponential diffusion kernel of the base similarity measure B.

Definition 9.34 [von Neumann diffusion kernel] An alternative combination
gives rise to the so-called von Neumann diffusion kernel

K =
∞∑
k=0

λkBk = (I − λB)−1 ,

which will only exist provided

λ < ‖B‖−1
2 ,

where ‖B‖2 is the spectral radius of B.

314 Basic kernels and kernel types

Note that the justification that the diffusion kernels are indeed valid ker-
nels is contained in Remark 9.36 below.

Computation 9.35 [Evaluating diffusion kernels] We can evaluate these
kernels by performing an eigen-decomposition of B, apply the corresponding
function to the eigenvalues and remultiply the components back together.
This follows from the fact that for any polynomial p (x)

p
(
V′ΛV

)
= V′p (Λ)V,

for any orthonormal matrix V and diagonal matrix Λ. This strategy works
since B is symmetric and so can be expressed in the form

B = V′ΛV,

where Λ contains its real eigenvalues.

Remark 9.36 [Eigenvalues and relation to kernel PCA] The computation
also re-emphasises the point that all of the kernels have the same eigenvectors
as B: they simply apply a reweighting to the eigenvalues. Note that using
the diffusion construction when the base similarity measure is a kernel can
therefore be viewed as a soft version of kernel PCA. PCA applies a threshold
function to the eigenvalues, setting those smaller than λk to zero. In contrast
the diffusion kernels apply a function to each eigenvalue: (1 − µλ)−1 for the
von Neumann kernel and exp (µλ) for the exponential kernel, that increases
the relative weight of the larger eigenvalues when compared to the smaller
ones. The fact that the functions (1 − µλ)−1 and exp (µλ) have positive
values for λ in the indicated range ensures that the kernel matrices are
indeed positive semi-definite.

We will further explore these kernels in applications to textual data in
Chapter 10.

9.5 Kernels on sets

As another example of a non-vectorial space consider the set of subsets P(D)
of a fixed domain D, a set sometimes referred to as the power set of D. The
elements of the input space are therefore sets. They could include all the
subsets of D or some subselection of the whole power set

X ⊆ P(D).

Consider now two elements A1 and A2 of X, that is two subsets of the
domain D. In Chapter 2 we gave one example of a kernel κ (A1, A2) on such

9.5 Kernels on sets 315

subsets of D defined as

κ (A1, A2) = 2|A1∩A2|.

In this section we will extend the range of available kernels.
Suppose that D is equipped with a measure or probability density function

µ. If D is finite this is simply a mapping from D to the positive reals. For
infinite D there are technical details involving a σ-algebra of subsets known
as the measurable sets. We must assume that the sets included in X are all
measurable. In either case µ defines an integration over the set D

µ (f) =
∫
D
f (a) dµ (a) ,

for so-called measurable functions. In particular the indicator function IA
of a measurable set A defines the measure (or probability) of the set by

µ (A) = µ (IA) ∈ R
+.

Definition 9.37 [Intersection kernel] We now define the intersection kernel
over the subsets of D by

κ∩ (A1, A2) = µ (A1 ∩A2) ,

that is, the measure of the intersection between the two sets.

This can be seen to be a valid kernel by considering the feature space of
all measurable functions with the inner product defined by

〈f1, f2〉 =
∫
D
f1 (a) f2 (a) dµ (a) .

The feature mapping is now given by

φ : A �−→ IA,

implying that

κ∩ (A1, A2) = µ (A1 ∩A2) =
∫
D
IA1∩A2 (a) dµ (a)

=
∫
D
IA1 (a) IA2 (a) dµ (a) = 〈IA1 , IA2〉

= 〈φ (A1) ,φ (A2)〉 ,

as required. This construction also makes clear that we could have mapped
to the indicator function of the complementary set provided the measure of
this set is finite.

316 Basic kernels and kernel types

Definition 9.38 [Union complement kernel] Assuming that µ (D) = 1, we
have the union complement kernel

κ̃ (A1, A2) = µ ((D \A1) ∩ (D \A2)) = 1 − µ (A1 ∪A2) .

There are many cases in which we may want to represent data items as
sets. There is also the potential for an interesting duality, since we represent
an object by the items it contains, while the items themselves can also be
described by the set of objects they are contained in. This duality will be
exploited in the case of kernels for text briefly discussed here but covered in
detail in Chapter 10.

Example 9.39 Consider a document as a set of words from a dictionary
D. The similarity between two documents d1 and d2 will then be the mea-
sure of the intersection between those two sets. The importance of a word
can also be encoded in a distribution over D weighting the calculation of the
measure of the intersection. As mentioned above we can also compare words
by defining a function over documents indicating in which documents they
appear. This induces a duality between term-based and document-based
representations that can be exploited in many ways. This duality corre-
sponds to the duality implied by kernel-based representations, and hence
when using this kind of data there is an interesting interpretation of dual
features that will be explored further in Chapter 10.

Remark 9.40 [Agreement kernel] We can sum the two kernels κ∩ and κ̃

described above to obtain the kernel

κ (A1, A2) = κ̃ (A1, A2) + κ∩ (A1, A2)

= 1 − µ (A1 ∪A2) + µ (A1 ∩A2)

= 1 − µ (A1 \A2) − µ (A2 \A1) ,

that is, the measure of the points on which the two indicator functions agree.
If we used indicator functions I−A which mapped elements not in the set to
−1, then, after introducing a factor of 1/2, this would give rise to the kernel

κ̂ (A1, A2) =
1
2

〈
I−A1

, I−A2

〉
=

1
2

(κ (A1, A2) − µ (A1 \A2) − µ (A2 \A1))

=
1
2
− µ (A1 \A2) − µ (A2 \A1) .

9.6 Kernels on real numbers 317

The second kernel is simply the first minus 1/2. This will be a better starting
point since it leaves more options open – we can always add 1/2 as this is
equivalent to adding an extra feature with constant value

√
1/2, but in

general we cannot subtract a constant from the kernel matrix.

9.6 Kernels on real numbers

There is an interesting application of the intersection kernel that defines
further kernels for real numbers. This can in turn be combined with the
ANOVA kernel construction to obtain new kernels between vectors. Let us
first consider real numbers x, z ∈ R. The simplest and most obvious kernel
is of course

κ (x, z) = xz,

though we can equally use the polynomial or Gaussian kernel construction
in one-dimension to obtain for example

κ (x, z) = exp
(
−(x− z)2

2σ2

)
.

Now consider representing x ∈ R
+ by the interval [0, x], that is the set

{y : 0 ≤ y ≤ x}. Applying an intersection kernel with the standard integra-
tion measure we obtain

κ (x, z) = min (x, z) . (9.9)

Hence, normalising we obtain that

κ (x, z) =
min(x, z)√

min(x, x) min(z, z)
=

min(x, z)√
xz

is a kernel. Similarly representing x ∈ R
+ by the interval [0, x−p] for some

p > 0 and applying the intersection construction, we obtain that

κ (x, z) =
1

max(x, z)p

is a kernel, which when normalised gives the kernel

κ (x, z) =
(xz)p/2

max(x, z)p
.

For p = 1 we have

κ (x, z) =
√
xz

max(x, z)
, (9.10)

318 Basic kernels and kernel types

while for p = 2 we get an interesting variant of the standard inner product

κ (x, z) =
xz

max(x, z)2
.

If there is an upper bound C on the value of x we can map to the interval
[x,C] to obtain the kernel

κ (x, z) = C − max (x, z) .

Furthermore we are not restricted to using 1-dimensional sets. For example
mapping x ∈ R

+ to the rectangle

[0, x] ×
[
0, x−1

]
,

results in an intersection kernel

κ (x, z) =
min (x, z)
max(x, z)

.

Of course the 2-dimensional construction is more natural for two-dimensional
vectors and gives kernels such as

κ ((x1, x2) , (z1, z2)) = min (x1, z1)min (x2, z2)

and

κ ((x1, x2) , (z1, z2)) =
√
x1x2z1z2

max (x1, z1) max (x2, z2)
.

Actually these last two kernels could have been obtained by applying the
generalised ANOVA construction of degree 2 (see Remark 9.20) using the
base kernels given in equations (9.9) and (9.10) respectively.

Finally consider mapping z ∈ R to the function g (|· − z|) ∈ L2 (µ) for
some fixed g and defining the inner product via the integration

κ (z1, z2) =
∫

g (|x− z1|) g (|x− z2|) dµ (x) .

This is clearly a kernel since the image of z is a point in the corresponding
Hilbert space. Taking µ to be the standard measure, the choice of the
function g could be a Gaussian to give a soft comparison of two numbers or
for example a threshold function

g (x) =
{

1 if x ≤ C;
0 otherwise.

This results in the kernel

κ (z1, z2) = max (0, 2C − |z1 − z2|) . (9.11)

9.6 Kernels on real numbers 319

Remark 9.41 [Distance induced by min kernel] The distance induced by
the ‘min’ kernel of equation (9.9) is

‖φ (x) − φ (z)‖2 = x + z − 2 min(x, z)

= max(x, z) − min(x, z) = |x− z| ,

as opposed to the normal Euclidean distance induced by the standard kernel
xz.

Remark 9.42 [Spline kernels] Notice that we can put together the ideas
of the generalised ANOVA construction of Remark 9.20 with the the ‘min’
kernel

κ (x, z) = min (x, z)

to obtain the so-called spline kernels for multi-dimensional data.

Derived subsets kernel Our final example of defining kernels over sets
considers the case where we already have a kernel κ0 defined on the elements
of a universal set U .

Definition 9.43 [Derived subsets kernel] Given a base kernel κ0 on a set
U , we define the subset kernel derived from κ0 between finite subsets A and
B of U by

κ (A,B) =
∑
a∈A

∑
b∈B

κ0 (a, b) .

The following proposition verifies that a derived subsets kernel is indeed
a kernel.

Proposition 9.44 Given a kernel κ0 on a set U the derived subsets kernel
κ is an inner product in an appropriately defined feature space and hence is
a kernel.

Proof Let φ0 be an embedding function into a feature space F0 for the
kernel κ0 so that

κ0 (a, b) = 〈φ0 (a) ,φ0 (b)〉 .

Consider the embedding function for a finite subset A ⊆ U defined by

φ (A) =
∑
a∈A

φ0 (a) ∈ F0.

320 Basic kernels and kernel types

We have

κ (a, b) =
∑
a∈A

∑
b∈B

κ0 (a, b) =
∑
a∈A

∑
b∈B

〈φ0 (a) ,φ0 (b)〉

=

〈∑
a∈A

φ0 (a) ,
∑
b∈B

φ0 (b)

〉
= 〈φ (A) ,φ (B)〉 ,

as required.

Example 9.45 Another application of the derived subsets kernel idea is in
allowing deformed matches in normal kernels. This can be useful when we
want to introduce specific invariances into the kernel design. Suppose we are
computing the kernel between the images x, z ∈ X of two handwritten char-
acters. We know that the two arguments should be considered equivalent
if slight transformations of the images are applied, such as small rotations,
translations, thickenings and even the addition of some noise. Suppose we
devise a function

φ : X → P(X)

that expands the argument to a set of arguments that are all equivalent to
it, hence introducing a ‘jittering’ effect. The similarity of two images x and
z can now be measured in P(X) between the sets of images φ (x) and φ (z)
using the derived subsets kernel for a base kernel for comparing images.

9.7 Randomised kernels

There are cases of kernels where the feature space is explicitly constructed
by a vector

φ (x) = (φi (x))i∈I ,

and each of the individual φi (x) are simple to compute, but the size of the set
I makes complete evaluation of the feature vector prohibitively expensive.
If the feature space inner product is given by

κ (x, z) =
〈
(φi (x))i∈I , (φi (z))i∈I

〉
=

∑
i∈I

µiφi (x)φi (z) ,

with
∑

i µi = 1 then we can estimate the value of the inner product by
sampling indices according to µ and forming an empirical estimate of the
inner product through an average of N randomly drawn features

κ̂ (x, z) =
1
N

∑
i∼µ

φi (x)φi (z) .

9.7 Randomised kernels 321

We can bound the maximal deviation that can be caused by changing a
single feature by 2c/N where [−c, c] is a bound on the range of the functions
φi. Applying McDiarmid’s Theorem 4.5 we obtain

P {κ̂ (x, z) − Eκ̂ (x, z) ≥ ε} ≤ exp

(
−2ε2∑N

i=1 4c2/N2

)
= exp

(−Nε2

2c2

)
.

Observing that Eκ̂ (x, z) = κ (x, z) and that the same argument can be
applied to −κ̂ (x, z) gives

P {|κ̂ (x, z) − κ (x, z)| ≥ ε} ≤ 2 exp
(−Nε2

2c2

)
.

Hence, with high probability we obtain a good estimate of the true kernel
evaluation even using only a modest number of features. If for example we
require that with probability at least 1−δ all of the entries in an �×� kernel
matrix are within ε of their true values, we should choose N so that

2 exp
(−Nε2

2c2

)
≤ 2δ

� (� + 1)
,

implying that

N ≥ 2c2

ε2
ln

� (� + 1)
δ

.

This leads to the following computation.

Computation 9.46 [Evaluating randomised kernels] With probability at
least 1−δ we can estimate all the entries of the kernel matrix of a randomised
kernel to accuracy ε by sampling

N ≥ 2c2

ε2
ln

� (� + 1)
δ

features φk and setting

κ̂ (xi,xj) =
1
N

N∑
k=1

φk (xi)φk (xj) ,

for i, j = 1, . . . , �, where the range of the features is bounded in [−c, c].

Remark 9.47 [Sampling intersection kernels] One example where this could
arise is in kernels defined in terms of intersection of sets

κ∩ (A1, A2) = µ (A1 ∩A2) .

322 Basic kernels and kernel types

The features here are the elements of the domain D. If the structure of
the sets makes it difficult to integrate the measure over their intersection,
we may be able to use the randomisation approach. This is equivalent to
estimating the integral

µ (A1 ∩A2) =
∫
D
IA1∩A2 (a) dµ (a)

via a Monte Carlo random sampling. Hence, if we can efficiently generate
random examples according to µ, we can apply the randomisation approach.
An example where this might be relevant is for a kernel between boolean
functions. Estimating when a boolean function has any satisfying assign-
ment becomes NP-hard even if, for example, we restrict the structure of the
function to a disjunctive normal form with 3 literals per clause. Hence, an
exact evaluation of the integral would be computationally infeasible. We
can, however, sample binary vectors and check if they satisfy both func-
tions. Note that such a kernel would be needed in an application where the
examples were boolean functions and we were looking for patterns among
them.

9.8 Other kernel types

This section concludes this chapter’s overview of methods for designing ker-
nels by outlining the three kernel types to be presented in the last three
chapters of the book. Although they will be discussed in detail later, it is
worth placing them in the context of the current survey to furnish a fuller
picture of the diversity of data and techniques available.

9.8.1 Kernels from successive embeddings

We saw in Chapter 3 that the class of kernel functions satisfies a series of
closure properties. Furthermore, we saw that as long as we can show the
existence of an embedding function φ such that

κ (x, z) = 〈φ (x) ,φ (z)〉

then we know that κ is a kernel, even if we are not able either computation-
ally or explicitly to construct φ. These two facts open up the possibility
of defining kernels by successive adjustments, either performing successive
embeddings or manipulating the given kernel function (or matrix). In this
way we can sculpt the feature space for the particular application.

We must exploit knowledge of the domain by designing a series of simple

9.8 Other kernel types 323

embeddings each of which could for example introduce some invariance into
the embedding by ensuring that all transformations of an example under a
particular invariance are mapped to the same image. Any classifier using
the resulting kernel will be invariant to that transformation. Note also that
further embeddings cannot undo this invariance. Hence, the final kernel will
exhibit invariance to all of the transformations considered.

The overall kernel resulting from a sequence of such embeddings is by def-
inition a valid kernel, although we might not be able to explicitly construct
its features. The proof of validity follows the stages of its construction by
composing the sequence of successive embeddings to create the embedding
corresponding to the overall kernel

φ (x) = ψ1 (x) ◦ψ2 (x) ◦ · · · ◦ψn (x) .

Figure 9.4 illustrates this point with a sequence of two embeddings progres-
sively increasing the separation of the datapoints associated with the two
classes of a classification problem.

Fig. 9.4. A sequence of two embeddings can be composed to create an overall
embedding with desirable properties.

Example 9.48 In Chapter 10 we will see this approach applied in the case of
text documents, where we can successively embed a document to gradually
take care of synonymy, semantics, stop words, removal of document length
information, and so on. Each of these properties is realised by composing
with an additional embedding function and can be seen as implementing
an invariance. A similar approach may well be applicable in other domains
such as, for example, machine vision.

324 Basic kernels and kernel types

9.8.2 Kernels over general structures

In Remark 9.20 we saw how the ANOVA construction could be used to define
a kernel in a recursive fashion, provided a set of base kernels was available.
This situation is not uncommon in recursively-defined data structures, such
as strings and trees. For example, comparing two symbols in the sequence
provides a base kernel for the case of strings. We will show how this can
be used to recursively build a kernel between sequences of symbols, hence
enabling pattern analysis of documents, DNA sequences, etc.

This approach makes it possible to build general kernels defined over
structured data objects, provided we have a way to compare the elemen-
tary components of such structures. Typically the method of combination
corresponds to a recursive computation. The approach is not restricted to
strings or mathematical structures such as trees or graphs, but can be ap-
plied to complex objects that arise in particular application domains such
as web pages, chemometrics, and so on.

9.8.3 Kernels from generative information

When designing a kernel for a particular application it is vital that it should
incorporate as much domain knowledge as possible. At the simplest level
the similarity measure defined by the kernel should reflect our understanding
of the relative distances between data items. Indeed one advantage of the
kernel approach is that this question is often easier to answer than the direct
definition of pattern functions that would otherwise be needed.

There are, however, other more sophisticated methods of incorporating
such domain knowledge. For example we can construct a model of the way
that the data are generated, in what are known as generative models. In
this approach, the generative models could be deterministic or probabilistic,
and could be either simple functions or complex graphical structures such
as finite state automata or hidden Markov models (HMMs). In Chapter
12 we will explore methods for converting these models of the data into
kernel functions, hence developing several frameworks for incorporating prior
knowledge in a principled way including the well-known Fisher kernels.

9.9 Summary

• Many kernels can be computed in closed form including the polynomial
and Gaussian kernels.

• Many kernels can be defined using recursive relations including the poly-
nomial kernel, the all-subsets kernel and the ANOVA kernel.

9.10 Further reading and advanced topics 325

• Graph kernels generalise the family of recursively-defined kernels allowing
more detailed sculpting of which features are to be included.

• Kernels over graph nodes can be defined in terms of diffusion processes
starting from a general base similarity measure.

• Simple kernels can be defined based on fundamental set operations.
• Sampling can enable accurate estimation of kernels whose feature set pro-

hibits efficient exact evaluation.

9.10 Further reading and advanced topics

In the early years of research on kernel methods only functions in closed
form were considered. The introduction of ANOVA kernels gave the first
example of kernels defined by means of a recursive relation, which could be
efficiently evaluated using dynamic programming. That in turn triggered
the observation that other kernels could be defined in terms of recursive
relations, or even in terms of very general computational procedures. At
the same time, the idea that kernels need to be defined on vectorial inputs
was been recognised as unnecessarily restrictive. From 1999 the first kernels
between strings defined by means of recursions started to appear [155], [154],
[52]. After those first contributions, a flood of different approaches have been
proposed, the main ones are summarised in this chapter with more detailed
presentations of many of them deferred to Chapter 11. More recently it has
been recognised that one does not even need to have a kernel function at
all, just a kernel matrix for the available data. This has led to optimisation
procedures for directly inferring the kernel matrix, which are not discussed
here.

Gaussian and polynomial kernels were already discussed in the first pa-
per on support vector machines [16]. Gaussian kernels in particular have
been investigated for a long time within the literature on reproducing ker-
nel Hilbert spaces [153]. ANOVA kernels were first suggested by Burges
and Vapnik (under the name of Gabor kernels) in 1995 [21] in the form
described in Computation 9.18. The recursion described in Algorithm 9.14
was proposed by Chris Watkins in 1999 [154]. The paper of Takimoto and
Warmuth 2002 [130] introduces the ‘all subsets kernel’ as well as the idea of
kernels based on paths in a graph.

These regular language kernels are related to the rational kernels proposed
in [26].

Diffusion kernels were proposed by Imre Kondor in [80], while von Neu-
mann kernels were introduced in [69]. The bag-of-words kernels were pro-

326 Basic kernels and kernel types

posed by Thorsten Joachims [65] and can be considered as an example of
kernels between sets.

The discussion of kernels over sets or between numbers is largely a col-
lection of folk results, but strongly influenced by discussions with Chris
Watkins.

Kernels over general structures were simultaneouly elaborated by Watkins
and by Haussler [155], [154], [52] and will be discussed in further detail in
Chapter 11.

Kernels based on data compression ideas from information theory have
been proposed [36] and form yet another approach for defining similarity
measures satisfying the finitely positive semi-definite property. Kernels de-
fined on sets of points have also been recently explored in [63], while an
interesting approach for graph kernels has been proposed by [73].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.

