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Ranking, clustering and data visualisation

In this chapter we conclude our presentation of kernel-based pattern anal-
ysis algorithms by discussing three further common tasks in data analysis:
ranking, clustering and data visualisation.

Ranking is the problem of learning a ranking function from a training set
of ranked data. The number of ranks need not be specified though typically
the training data comes with a relative ordering specified by assignment to
one of an ordered sequence of labels.

Clustering is perhaps the most important and widely used method of un-
supervised learning: it is the problem of identifying groupings of similar
points that are relatively ‘isolated’ from each other, or in other words to
partition the data into dissimilar groups of similar items. The number of
such clusters may not be specified a priori. As exact solutions are often com-
putationally hard to find, effective approximations via relaxation procedures
need to be sought.

Data visualisation is often overlooked in pattern analysis and machine
learning textbooks, despite being very popular in the data mining literature.
It is a crucial step in the process of data analysis, enabling an understand-
ing of the relations that exist within the data by displaying them in such
a way that the discovered patterns are emphasised. These methods will al-
low us to visualise the data in the kernel-defined feature space, something
very valuable for the kernel selection process. Technically it reduces to find-
ing low-dimensional embeddings of the data that approximately retain the
relevant information.
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8.1 Discovering rank relations

Ranking a set of objects is an important task in pattern analysis, where the
relation sought between the datapoints is their relative rank. An example
of an application would be the ranking of documents returned to the user
in an information retrieval task, where it is hard to define a precise absolute
relevance measure, but it is possible to sort by the user’s preferences. Based
on the query, and possibly some partial feedback from the user, the set of
documents must be ordered according to their suitability as answers to the
query.

Another example of ranking that uses different information is the task
known as collaborative filtering. Collaborative filtering aims to rank items
for a new user based only on rankings previously obtained from other users.
The system must make recommendations to the new user based on informa-
tion gleaned from earlier users. This problem can be cast in the framework
of learning from examples if we treat each new user as a new learning task.
We view each item as an example and the previous users’ preferences as its
features.

Example 8.1 If we take the example of a movie recommender system, a film
is an example whose features are the gradings given by previous users. For
users who have not rated a particular film the corresponding feature value
can be set to zero, while positive ratings are indicated by a positive feature
value and negative ratings by a negative value. Each new user corresponds
to a new learning task. Based on a small set of supplied ratings we must
learn to predict the ranking the user would give to films he or she has not
yet seen.

In general we consider the following ranking task. Given a set of ranked
examples, that is objects x ∈ X assigned to a label from an ordered set Y , we
are required to predict the rank of new instances. Ranking could be tackled
as a regression or classification problem by treating the ranks as real-values
or the assignment to a particular rank value as a classification. The price of
making these reductions is not to make full use of the available information
in the reduction to classification or the flexibility inherent in the ordering
requirement in the reduction to regression. It is therefore preferable to treat
it as a problem in its own right and design specific algorithms able to take
advantage of the specific nature of that problem.

Definition 8.2 [Ranking] A ranking problem is specified by a set

S = {(x1, y1), . . . , (x�, y�)}
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of instance/rank pairs. We assume an implicit kernel-defined feature space
with corresponding feature mapping φ so that φ(xi) is in R

n for some n,
1 ≤ n ≤ ∞. Furthermore, we assume its rank yi is an element of a finite set
Y with a total order relation. We say that xi is preferred over xj (or vice
versa) if yi � yj (or yi ≺ yj). The objects xi and xj are not comparable
if yi = yj . The induced relation on X is a partial ordering that partitions
the input space into equivalence classes. A ranking rule is a mapping from
instances to ranks r : X → Y .

Remark 8.3 [An alternative reduction] One could also transform it into the
problem of predicting the relative ordering of all possible pairs of examples,
hence obtaining a 2-class classification problem. The problem in this ap-
proach would be the extra computational cost since the sample size for the
algorithm would grow quadratically with the number of examples. If on the
other hand the training data is given in the form of all relative orderings, we
can generate a set of ranks as the equivalence classes of the equality relation
with the induced ordering.

Definition 8.4 [Linear ranking rules] A linear ranking rule first embeds the
input data into the real axis R by means of a linear function in the kernel-
defined feature space f(x) = 〈w,φ (x)〉. The real-value is subsequently
converted to a rank by means of |Y | thresholds by, y ∈ Y that respect the
ordering of Y , meaning that y ≺ y′ implies by ≤ by′ . We will denote by b
the k-dimensional vector of thresholds. The ranking of an instance x is then
given by

rw,b(x) = min {y ∈ Y : f(x) = 〈w,φ (x)〉 < by} ,

where we assume that the largest label has been assigned a sufficiently large
value to ensure the minimum always exists. If w is given in a dual repre-
sentation

w =
�∑

i=1

αiφ (xi) ,

the ranking function is

rw,b(x) = min

{
y ∈ Y : f(x) =

�∑
i=1

αiκ (xi,x) < by

}
.

A linear ranking rule partitions the input space into |Y | + 1 equivalence
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classes corresponding to parallel bands defined by the direction w and the
thresholds bi as shown in the two upper diagrams of Figure 8.1. The lower
diagrams give examples of nonlinear rankings arising from the use of appro-
priate kernel functions.

Fig. 8.1. Examples of the partitioning resulting from linear and nonlinear ranking
functions.

Remark 8.5 [Degrees of freedom] The example of Figure 8.1 shows an
important freedom available to ranking algorithms namely that the classes
need not be equally spaced, we just need the ordering right. This is the
key difference between the ranking functions we are considering and using
regression on, for example, integer-ranking values.
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Remark 8.6 [Ordering within ranks] The ranking functions described above
have an additional feature in that the elements within each equivalence class
can also be ordered by the value of the function g(x), though we will ignore
this information. This is a consequence of the fact that we represent the
ranking by means of an embedding from X to the real line.

The algorithms we will discuss differ in the way w and b are chosen and
as a result also differ in their statistical and computational properties. On
the one hand, statistical considerations suggest that we seek stable functions
whose testing performance matches the accuracy achieved on the training
set. This will point for example to notions such as the margin while con-
trolling the norm of w. On the other hand, the computational cost of the
algorithm should be kept as low as possible and so the size of the optimiza-
tion problem should also be considered. Finally, we will want to use the
algorithm in a kernel-defined feature space, so a dual formulation should
always be possible.

8.1.1 Batch ranking

The starting point for deriving a batch-ranking algorithm will be consider-
ation of statistical stability. Our strategy for deriving a stability bound will
be to create an appropriate loss function that measures the performance of
a choice of ranking function given by w and b. For simplicity the measure
of error will just be a count of the number of examples that are assigned the
wrong rank, while the generalisation error will be the probability that a ran-
domly drawn test example receives the wrong rank. For a further discussion
of the loss function, see Remark 8.12.

Taking this view we must define a loss function that upper bounds the
ranking loss, but that can be analysed using Theorem 4.9. We do this by
defining two classification problems in augmented feature spaces such that
getting both classifications right is equivalent to getting the rank right. We
can think of one classification guaranteeing the rank is big enough, and the
other that it is not too big.

Recoding the problem The key idea is to add one extra feature to the
input vectors for each rank, setting their values to zero for all but the rank
corresponding to the correct rank. The feature corresponding to the correct
rank if available is set to 1. We use φ to denote this augmented vector

φ (x, y) = [φ (x) , 0, . . . , 0, 1, 0, . . . , 0] = [φ (x) , ey] ,
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where we use ey to denote the unit vector with yth coordinate equal to 1.
We now augment the weight vector by a coordinate of −by in the position
of the feature corresponding to rank y ∈ Y

ŵb =
[
w,−b0,−b1,−b2, . . . ,−b|Y |

]
,

where for simplicity of notation we have assumed that Y = {1, . . . , |Y |} and
have chosen b0 to be some value smaller than 〈w,φ (x)〉 for all w and x.
Using this augmented representation we how have

〈ŵb,φ (x, y)〉 = 〈w,φ (x)〉 − by,

where y is the rank of x. Now if (w,b) correctly ranks an example (x, y)
then

y = rw,b(x) = min
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
= min

{
y′ ∈ Y : 〈ŵb,φ (x, y)〉 < by′ − by

}
,

implying that

〈ŵb,φ (x, y)〉 < 0. (8.1)

Furthermore, we have

〈ŵb,φ (x, y − 1)〉 = 〈w,φ (x)〉 − by−1,

and so if (w,b) correctly ranks (x, y) then

y = rw,b(x) = min
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
= min

{
y′ ∈ Y : 〈ŵb,φ (x, y − 1)〉 < by′ − by−1

}
,

implying that

〈ŵb,φ (x, y − 1)〉 ≥ 0. (8.2)

Suppose that inequalities (8.1) and (8.2) hold for (w,b) on an example
(x, y). Then since 〈ŵb,φ (x, y)〉 < 0, it follows that 〈w,φ (x)〉 < by and so

y ∈
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
,

while 〈ŵb,φ (x, y − 1)〉 ≥ 0 implies 〈w,φ (x)〉 ≥ by−1 hence

y − 1 
∈
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
,

giving

rw,b(x) = min
{
y′ ∈ Y : 〈w,φ (x)〉 < by′

}
= y,

the correct rank. Hence we have shown the following proposition
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Proposition 8.7 The ranker rw,b(·) correctly ranks (x, y) if and only if
〈ŵb,φ (x, y)〉 < 0 and 〈ŵb,φ (x, y − 1)〉 ≥ 0.

Hence the error rate of rw,b(x) is bounded by the classifier rate on the
extended set. The proposition therefore reduces the analysis of the ranker
rw,b(x) to that of a classifier in an augmented space.

Stability of ranking In order to analyse the statistical stability of ranking,
we need to extend the data distribution D on X×Y to the augmented space.
We simply divide the probability of example (x, y) equally between the two
examples (φ (x, y) ,−1) and (φ (x, y − 1) , 1). We then apply Theorem 4.17
to upper bound the classifier error rate with probability 1 − δ by

1
�γ

�∑
i=1

(
ξli + ξui

)
+

4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
,

where ξui , ξ
l
i are the slack variables measuring the amount by which the ex-

ample (xi, yi) fails to meet the margin γ for the lower and upper thresholds.
Hence, we can bound the error of the ranker by

PD (rw,b(x) 
= y) ≤ 2
�γ

�∑
i=1

(
ξli + ξui

)
+

8
�γ

√
tr(K) + 6

√
ln(2/δ)

2�
, (8.3)

where the factor 2 arises from the fact that either derived example being
misclassified will result in a ranking error.

Ranking algorithms If we ignore the effects of the vector b on the norm
of ŵb we can optimise the bound by performing the following computation.

Computation 8.8 [Soft ranking] The soft ranking bound is optimised as
follows

minw,b,γ,ξu,ξl −γ + C
∑�

i=1

(
ξui + ξli

)
subject to 〈w,φ (xi)〉 ≤ byi − γ + ξli, yi 
= |Y |, ξli ≥ 0,

〈w,φ (xi)〉 ≥ byi−1 + γ − ξui , yi 
= 1, ξui ≥ 0,
i = 1, . . . , �, and ‖w‖2 = 1.

(8.4)

Applying the usual technique of creating the Lagrangian and setting
derivatives equal to zero gives the relationships

1 =
�∑

i=1

(
αu
i + αl

i

)
,
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w =
1
2λ

�∑
i=1

(
αu
i − αl

i

)
φ (xi) ,

∑
i:yi=y

αl
i =

∑
i:yi=y−1

αu
i , y = 2, . . . , |Y | ,

0 ≤ αu
i , α

l
i ≤ C.

Resubstituting into the Lagrangian results in the dual Lagrangian:

L(αu,αl, λ) = − 1
4λ

�∑
i,j=1

(
αu
i − αl

i

)(
αu
j − αl

j

)
κ (xi,xj) − λ.

As in previous cases optimising for λ gives an objective that is the square
root of the objective of the equivalent dual optimisation problem contained
in the following algorithm.

Algorithm 8.9 [ν-ranking] The ν-ranking algorithm is implemented in
Code Fragment 8.1.

Input S = {(x1, y1), . . . , (x�, y�)}, ν ∈ (0, 1]
maxαu,αl W (αu,αl) = −∑�

i,j=1

(
αu
i − αl

i

) (
αu
j − αl

j

)
κ(xi,xj),

subject to
∑

i:yi=y α
l
i =
∑

i:yi=y−1 α
u
i , y = 2, . . . , |Y |,

0 ≤ αu
i , α

l
i ≤ 1/ (ν�) , i = 1, . . . , �,

∑�
i=1

(
αu
i + αl

i

)
= 1

compute αi = αu∗
i − αl∗

i

f(x) =
∑�

i=1 αiκ(xi,x)
b =

(
b1, . . . , b|Y |−1,∞

)
where by = 0.5 (f (xi) + f (xj))

γ = 0.5 (f (xj) − f (xi))
where (xi, y), (xj , y + 1) satisfy 0 < αl∗

i < 1/ (ν�)
and 0 < αu∗

j < 1/ (ν�),
output rα,b(x), γ

Code Fragment 8.1. Pseudocode for the soft ranking algorithm.

The next theorem characterises the output of Algorithm 8.9.

Theorem 8.10 Fix ν ∈ (0, 1]. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

drawn according to a distribution D over X × Y , where Y = {1, . . . , |Y |}
is a finite set of ranks and suppose rα,b(x), γ is the output of Algorithm
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8.9, then rα,b(x) optimises the bound of (8.3). Furthermore, there are at
most ν� training points that fail to achieve a margin γ from both adjacent
thresholds and hence have non-zero slack variables, while at least ν� of the
training points have margin at least γ.

Proof By the derivation given above setting C = 1/ (ν�), the solution vector
is a rescaled version of the solution of the optimisation problem (8.4). The
setting of the values by follows from the Karush–Kuhn–Tucker conditions
that ensure ξl∗i = 0 and the appropriate rescaling of f (xi) is γ∗ from the
upper boundary if 0 < αl∗

i < C, with the corresponding result when 0 <

αu∗
j < C. The bounds on the number of training points achieving the margin

follow from the bounds on αu
i and αl

i.

Remark 8.11 [Measuring stability] We have omitted an explicit general-
isation bound from the proposition to avoid the message getting lost in
technical details. The bound could be computed by ignoring b|Y | and b0
and removing one of the derived examples for points with rank 1 or |Y | and
hence computing the margin and slack variables for the normalised weight
vector. These could then be plugged into (8.3).

Remark 8.12 [On the loss function] We have measured loss by counting
the number of wrong ranks, but the actual slack variables get larger the
further the distance to the correct rank. Intuitively, it does seem reasonable
to count a bigger loss if the rank is out by a greater amount. Defining a loss
that takes the degree of mismatch into account and deriving a corresponding
convex relaxation is beyond the scope of this book.

This example again shows the power and flexibility of the overall approach
we are advocating. The loss function that characterises the performance of
the task under consideration is upper bounded by a loss function to which
the Rademacher techniques can be applied. This in turn leads to a uniform
bound on the performance of the possible functions on randomly generated
test data. By designing an algorithm to optimise the bound we therefore
directly control the stability of the resulting pattern function. A careful
choice of the loss function ensures that the optimisation problem is convex
and hence has a unique optimum that can be found efficiently using standard
optimisation algorithms.
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8.1.2 On-line ranking

With the exception of Section 7.4 all of the algorithms that we have so
far considered for classification, regression, novelty-detection and, in the
current subsection, for ranking all assume that we are given a set of training
examples that can be used to drive the learning algorithm towards a good
solution. Unfortunately, training sets are not always available before we
start to learn.

Example 8.13 A case in point is Example 8.1 given above describing the
use of collaborative filtering to recommend a film. Here we start with no
information about the new user. As we obtain his or her views of a few
films we must already begin to learn and hence direct our recommendations
towards films that are likely to be of interest.

The learning paradigm that considers examples being presented one at a
time with the system being allowed to update the inferred pattern function
after each presentation is known as on-line learning .

Perhaps the best known on-line learning algorithm is the perceptron al-
gorithm given in Algorithm 7.52. We now describe an on-line ranking algo-
rithm that follows the spirit of the perceptron algorithm. Hence, it considers
one example at a time ranking it using its current estimate of the weight
vector w and ranking thresholds b. We again assume that the weight vector
is expressed in the dual representation

w =
�∑

i=1

αiφ (xi) ,

where now the value of αi can be positive or negative. The αi are initialised
to 0. The vector b must be initialised to an ordered set of integer values,
which can, for example, be taken to be all 0, except for b|Y |, which is set to
∞ and remains fixed throughout.

If an example is correctly ranked then no change is made to the current
ranking function rα,b(x). If on the other hand the estimated rank is wrong
for an example (xi, yi), an update is made to the dual variable αi as well as
to one or more of the rank thresholds in the vector b.

Suppose that the estimated rank y < yi. In this case we decrement
thresholds by′ for y′ = y, . . . , yi−1 by 1 and increment αi by yi−y. When y >

yi we do the reverse by incrementing the thresholds by′ for y′ = yi, . . . , y− 1
by 1 and decrementing αi by y−yi. This is given in the following algorithm.
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Algorithm 8.14 [On-line ranking] The on-line ranking algorithm is imple-
mented in Code Fragment 8.2.

Input training sequence (x1, y1), . . . , (x�, y�), . . .
Process α = 0, b = 0, b|Y | = ∞, i = 0
2 repeat
3 i = i + 1
4 y = rα,b (xi)
3 if y < yi
4 αi = αi + yi − y
5 y′ = y′ − 1 for y′ = y, . . . , yi − 1
6 else if y > yi
7 αi = αi + yi − y
8 y′ = y′ + 1 for y′ = yi, . . . , y − 1
9 end
10 until finished
Output rα,b(x)

Code Fragment 8.2. Pseudocode for on-line ranking.

In order to verify the correctness of Algorithm 8.14 we must check that
the update rule preserves a valid ranking function or in other words that
the vector of thresholds remains correctly ordered

y < y′ =⇒ by ≤ by′ .

In view of the initialisation of b to integer values and the integral updates,
the property could only become violated in one of two cases. The first is if
by = by+1 and we increment by by 1, while leaving by+1 fixed. It is clear from
the update rule above that this could only occur if the estimated rank was
y+1, a rank that cannot be returned when by = by+1. A similar contradiction
shows that the other possible violation of decrementing by+1 when by = by+1

is also ruled out. Hence, the update rule does indeed preserve the ordering
of the vector of thresholds.

Stability analysis of on-line ranking We will give an analysis of the
stability of Algorithm 8.14 based on the bound given in Theorem 7.54 for
the perceptron algorithm. Here, the bound is in terms of the number of
updates made to the hypothesis. Since the proof is identical to that of
Theorem 7.54, we do not repeat it here.

Theorem 8.15 Fix δ > 0. If the ranking perceptron algorithm makes 1 ≤
k ≤ �/2 updates before converging to a hypothesis rα,b (x) that correctly
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ranks a training set

S = {(x1, y1), . . . , (x�, y�)}

drawn independently at random according to a distribution D, then with
probability at least 1− δ over the draw of the set S, the generalisation error
of rα,b (x) is bounded by

PD (rα,b (x) 
= y) ≤ 1
�− k

(
k ln � + ln

�

2δ

)
. (8.5)

Thus, a bound on the number of updates of the perceptron-ranking algo-
rithm can be translated into a generalisation bound of the resulting classifier
if it has been run until correct ranking of the (batch) training set has been
achieved. For practical purposes this gives a good indication of how well the
resulting ranker will perform since we can observe the number of updates
made and plug the number into the bound (7.25). From a theoretical point
of view one would like to have some understanding of when the number of
updates can be expected to be small for the chosen algorithm.

We now give an a priori bound on the number of updates of the perceptron-
ranking algorithm by showing that it can be viewed as the application of the
perceptron algorithm for a derived classification problem and then applying
Novikoff’s Theorem 7.53. The weight vector w∗ will be the vector solving
the maximal margin problem for the derived training set

Ŝ = {(φ (x, y) ,−1) , (φ (x, y − 1) , 1) : (x, y) ∈ S}

for a ranking training set S. The updates of the perceptron-ranking algo-
rithm correspond to slightly more complex examples

φ
(
x, y : y′

)
=

y′−1∑
u=y

φ (x, u) .

When the estimated rank y < yi the example (φ (x, y : yi) , 1) is misclassi-
fied and updating on this example is equivalent to the perceptron-ranking
algorithm update. Similarly, when the estimated rank y > yi the example
(φ (x, yi : y) ,−1) is misclassified and the updates again correspond. Hence,
since ∥∥φ (x, y : y′

)∥∥2 ≤ (|Y | − 1)
(
‖φ (x)‖2 + 1

)
,

we can apply Theorem 7.53 to bound the number of updates by

(|Y | − 1)
(
R2 + 1

)
γ2

,
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where R is a bound on the norm of the feature vectors φ (x) and γ is the
margin obtained by the corresponding hard margin batch algorithm. This
gives the following corollary.

Corollary 8.16 Fix δ > 0. Suppose the batch ranking algorithm with ν =
1/� has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}

drawn independently at random according to a distribution D and contained
in a ball of radius R about the origin. Then with probability at least 1 − δ

over the draw of the set S, the generalisation error of the ranking function
rα,b (x) obtained by running the on-line ranking algorithm on S in batch
mode is bounded by

PD (rα,b (x) 
= y) ≤ 2
�

(
(|Y | − 1)

(
R2 + 1

)
γ2

ln � + ln
�

2δ

)
,

provided

(|Y | − 1)
(
R2 + 1

)
γ2

≤ �

2
.

8.2 Discovering cluster structure in a feature space

Cluster analysis aims to discover the internal organisation of a dataset by
finding structure within the data in the form of ‘clusters’. This generic
word indicates separated groups of similar data items. Intuitively, the di-
vision into clusters should be characterised by within-cluster similarity and
between-cluster (external) dissimilarity. Hence, the data is broken down
into a number of groups composed of similar objects with different groups
containing distinctive elements. This methodology is widely used both in
multivariate statistical analysis and in machine learning.

Clustering data is useful for a number of different reasons. Firstly, it can
aid our understanding of the data by breaking it into subsets that are signif-
icantly more uniform than the overall dataset. This could assist for example
in understanding consumers by identifying different ‘types’ of behaviour that
can be regarded as prototypes, perhaps forming the basis for targeted mar-
keting exercises. It might also form the initial phase of a more complex
data analysis. For example, rather than apply a classification algorithm to
the full dataset, we could use a separate application for each cluster with
the intention of rendering the local problem within a single cluster easier to
solve accurately. In general we can view the clustering as making the data
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simpler to describe, since a new data item can be specified by indicating its
cluster and then its relation to the cluster centre.

Each application might suggest its own criterion for assessing the quality
of the clustering obtained. Typically we would expect the quality to involve
some measure of fit between a data item and the cluster to which it is
assigned. This can be viewed as the pattern function of the cluster analysis.
Hence, a stable clustering algorithm will give assurances about the expected
value of this fit for a new randomly drawn example. As with other pattern
analysis algorithms this will imply that the pattern of clusters identified in
the training set is not a chance occurrence, but characterises some underlying
property of the distribution generating the data.

Perhaps the most common choice for the measure assumes that each clus-
ter has a centre and assesses the fit of a point by its squared distance from
the centre of the cluster to which it is assigned. Clearly, this will be min-
imised if new points are assigned to the cluster whose centre is nearest. Such
a division of the space creates what is known as a Voronoi diagram of re-
gions each containing one of the cluster centres. The boundaries between
the regions are composed of intersecting hyperplanes each defined as the set
of points equidistant from some pair of cluster centres.

Throughout this section we will adopt the squared distance criterion for
assessing the quality of clustering, initially based on distances in the input
space, but subsequently generalised to distances in a kernel-defined feature
space. In many ways the use of kernel methods for clustering is very natu-
ral, since the kernel-defines pairwise similarities between data items, hence
providing all the information needed to assess the quality of a clustering.
Furthermore, using kernels ensures that the algorithms can be developed
in full generality without specifying the particular similarity measure being
used.

Ideally, all possible arrangements of the data into clusters should be tested
and the best one selected. This procedure is computationally infeasible in
all but very simple examples since the number of all possible partitions
of a dataset grows exponentially with the number of data items. Hence,
efficient algorithms need to be sought. We will present a series of algorithms
that make use of the distance in a kernel-defined space as a measure of
dissimilarity and use simple criteria of performance that can be used to
drive practical, efficient algorithms that approximate the optimal solution.

We will start with a series of general definitions that are common to all
approaches, before specifying the problem as a (non-convex) optimisation
problem. We will then present a greedy algorithm to find sub-optimal solu-
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tions (local minima) and a spectral algorithm that can be solved globally at
the expense of relaxing the optimisation criterion.

8.2.1 Measuring cluster quality

Given an unlabelled set of data

S = {x1, . . . ,x�} ,

we wish to find an assignment of each point to one of a finite – but not
necessarily prespecified – number N of classes. In other words, we seek a
map

f : S → {1, 2, . . . , N} .

This partition of the data should be chosen among all possible assignments
in such a way as to solve the measure of clustering quality given in the
following computation.

Computation 8.17 [Cluster quality] The clustering function should be
chosen to optimise

f = argmin
f

∑
i,j:fi=f(xi)=f(xj)=fj

‖φ (xi) − φ (xj)‖2 , (8.6)

where we have as usual assumed a projection function φ into a feature space
F , in which the kernel κ computes the inner product

κ (xi,xj) = 〈φ (xi) ,φ (xj)〉 .

We will use the short notation fi = f (xi) throughout this section. Figure
8.2 shows an example of a clustering of a set of data into two clusters with
an indication of the contributions to (8.6). As indicated above this is not the
most general clustering criterion that could be considered, but we begin by
showing that it does have a number of useful properties and does subsume
some apparently more general criteria. A first criticism of the criterion is
that it does not seem to take into account the between-cluster separation,
but only the within-cluster similarity. We might want to consider a criterion
that balanced both of these two factors

min
f



∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λ
∑

i,j:fi �=fj

‖φ (xi) − φ (xj)‖2


 . (8.7)
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Fig. 8.2. An example of a clustering of a set of data.

However, observe that we can write

∑
i,j:fi �=fj

‖φ (xi) − φ (xj)‖2 =
�∑

i,j=1

‖φ (xi) − φ (xj)‖2

−
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2

= A−
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2 ,

where A is constant for a given dataset. Hence, equation (8.7) can be ex-
pressed as

min
f



∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λ
∑

i,j:fi �=fj

‖φ (xi) − φ (xj)‖2




= min
f


(1 + λ)

∑
i,j:fi=fj

‖φ (xi) − φ (xj)‖2 − λA


 ,

showing that the same clustering function f solves the two optimisations
(8.6) and (8.7). These derivations show that minimising the within-cluster
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distances for a fixed number of clusters automatically maximises the between-
cluster distances.

There is another nice property of the solution of the optimisation criterion
(8.6). If we simply expand the expression, we obtain

opt =
∑

i,j:fi=fj

‖φ (xi) − φ (xj)‖2

=
N∑
k=1

∑
i:fi=k

∑
j:fj=k

〈φ (xi) − φ (xj) ,φ (xi) − φ (xj)〉

=
N∑
k=1

2


∣∣f−1 (k)

∣∣ ∑
i:fi=k

κ (xi,xi) −
∑
i:fi=k

∑
j:fj=k

κ (xi,xj)




=
N∑
k=1

2
∣∣f−1 (k)

∣∣ ∑
i:fi=k

‖φ(xi) − µk‖2 ,

where the last line follows from (5.4) of Chapter 5 expressing the average-
squared distance of a set of points from their centre of mass, and

µk =
1

|f−1 (k)|
∑

i∈f−1(k)

φ (xi) (8.8)

is the centre of mass of those examples assigned to cluster k, a point often
referred to as the centroid of the cluster. This implies that the optimisation
criterion (8.6) is therefore also equivalent to the criterion

f = argmin
f

N∑
k=1


 ∑

i:fi=k

‖φ(xi) − µk‖2


 = argmin

f

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
,

(8.9)
that seeks a clustering of points minimising the sum-squared distances to
the centres of mass of the clusters. One might be tempted to assume that
this implies the points are assigned to the cluster whose centroid is nearest.
The following theorem shows that indeed this is the case.

Theorem 8.18 The solution of the clustering optimisation criterion

f = argmin
f

∑
i,j:fi=fj

‖φ (xi) − φ (xj)‖2

of Computation 8.17 can be found in the form

f (xi) = argmin
1≤k≤N

‖φ (xi) − µk‖ ,
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where µj is the centroid of the points assigned to cluster j.

Proof Let µk be as in equation (8.8). If we consider a clustering function g

defined on S that assigns points to the nearest centroid

g (xi) = argmin
1≤k≤N

‖φ (xi) − µk‖ ,

we have, by the definition of g

�∑
i=1

∥∥∥φ(xi) − µg(xi)

∥∥∥2
≤

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
. (8.10)

Furthermore, if we let

µ̂k =
1

|g−1 (k)|
∑

i∈g−1(k)

φ (xi)

it follows that
�∑

i=1

∥∥∥φ(xi) − µ̂g(xi)

∥∥∥2
≤

�∑
i=1

∥∥∥φ(xi) − µg(xi)

∥∥∥2
(8.11)

by Proposition 5.2. But the left-hand side is the value of the optimisation
criterion (8.9) for the function g. Since f was assumed to be optimal we
must have

�∑
i=1

∥∥∥φ(xi) − µ̂g(xi)

∥∥∥2
≥

�∑
i=1

∥∥∥φ(xi) − µf(xi)

∥∥∥2
,

implying with (8.10) and (8.11) that the two are in fact equal. The result
follows.

The characterisation given in Proposition 8.18 also indicates how new data
should be assigned to the clusters. We simply use the natural generalisation
of the assignment as

f (x) = argmin
1≤k≤N

‖φ (x) − µk‖ .

Once we have chosen the cost function of Computation 8.17 and observed
that its test performance is bound solely in terms of the number of centres
and the value of equation (8.6) on the training examples, it is clear that any
clustering algorithm must attempt to minimise the cost function. Typically
we might expect to do this for different numbers of centres, finally selecting
the number for which the bound on ED min

1≤k≤N
‖φ (x) − µk‖2 is minimal.
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Hence, the core task is given a fixed number of centres N find the partition
into clusters which minimises equation (8.6). In view of Proposition 8.18,
we therefore arrive at the following clustering optimisation strategy.

Computation 8.19 [Clustering optimisation strategy] The clustering op-
timisation strategy is given by

input S = {x1, . . . ,x�}, integer N

process µ = argminµ

∑�
i=1 min1≤k≤N ‖φ (xi) − µk‖2

output f (·) = argmin1≤k≤N ‖φ (·) − µk‖

Figure 8.3 illustrates this strategy by showing the distances (dotted ar-
rows) involved in computed the sum-squared criterion. The minimisation of
this sum automatically maximises the indicated distance (dot-dashed arrow)
between the cluster centres.

Fig. 8.3. The clustering criterion reduces to finding cluster centres to minimise
sum-squared distances.

Remark 8.20 [Stability analysis] Furthermore we can see that this strat-
egy suggests an appropriate pattern function for our stability analysis to
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estimate

ED min
1≤k≤N

‖φ (x) − µk‖2 ;

the smaller the bound obtained the better the quality of the clustering
achieved.

Unfortunately, unlike the optimisation problems that we have described
previously, this problem is not convex. Indeed the task of checking if there
exists a solution with value better than some threshold turns out to be NP-
complete. This class of problems is generally believed not to be solvable
in polynomial time, and we are therefore forced to consider heuristic or
approximate algorithms that seek solutions that are close to optimal.

We will describe two such approaches in the next section. The first will
use a greedy iterative method to seek a local optimum of the cost function,
hence failing to be optimal precisely because of its non-convexity. The sec-
ond method will consider a relaxation of the cost function to give an approx-
imation that can be globally optimised. This is reminiscent of the approach
taken to minimise the number of misclassification when applying a support
vector machine to non-separable data. By introducing slack variables and
using their 1-norm to upper bound the number of misclassifications we can
approximately minimise this number through solving a convex optimisation
problem.

The greedy method will lead to the well-known k-means algorithm, while
the relaxation method gives spectral clustering algorithms. In both cases
the approaches can be applied in kernel-defined feature spaces.

Remark 8.21 [Kernel matrices for well-clustered data] We have seen how
we can compute distances in a kernel-defined feature space. This will provide
the technology required to apply the methods in these spaces. It is often
more natural to consider spaces in which unrelated objects have zero inner
product. For example using a Gaussian kernel ensures that all distances
between points are less than

√
2 with the distances becoming larger as the

inputs become more orthogonal. Hence, a good clustering is achieved when
the data in the same cluster are concentrated close to the prototype and
the prototypes are nearly orthogonal. This means that the kernel matrix
for clustered data – assuming without loss of generality that the data are
sorted by cluster – will be a perturbation of a block-diagonal matrix with
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one block for each cluster

B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4




Note that this would not be the case for other distance functions where, for
example, negative inner products were possible.

On between cluster distances There is one further property of this min-
imisation that relates to the means of the clusters. If we consider the co-
variance matrix of the data, we can perform the following derivation

�C =
�∑

i=1

(φ (xi) − φS) (φ (xi) − φS)′

=
�∑

i=1

(
φ (xi) − µfi + µfi − φS

) (
φ (xi) − µfi + µfi − φS

)′

=
�∑

i=1

(
φ (xi) − µfi

) (
φ (xi) − µfi

)′

+
N∑
k=1


 ∑

i:fi=k

(φ (xi) − µk)


 (µk − φS)′

+
N∑
k=1

(µk − φS)
∑
i:fi=k

(φ (xi) − µk)
′

+
�∑

i=1

(
µfi − φS

) (
µfi − φS

)′

=
�∑

i=1

(
φ (xi) − µfi

) (
φ (xi) − µfi

)′

+
N∑
k=1

∣∣f−1 (k)
∣∣ (µk − φS) (µk − φS)′ .

Taking traces of both sides of the equation we obtain

tr (�C) =
�∑

i=1

∥∥φ (xi) − µfi

∥∥2 +
N∑
k=1

∣∣f−1 (k)
∣∣ ‖µk − φS‖2 .
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The first term on the right-hand side is just the value of the Computation
8.19 that is minimised by the clustering function, while the value of the left-
hand side is independent of the clustering. Hence, the clustering criterion
automatically maximises the trace of the second term on the right-hand side.
This corresponds to maximising

N∑
k=1

∣∣f−1 (k)
∣∣ ‖µk − φS‖2 ;

in other words the sum of the squares of the distances from the overall mean
of the cluster means weighted by their size. We again see that optimising the
tightness of the clusters automatically forces their centres to be far apart.

8.2.2 Greedy solution: k-means

Proposition 8.18 confirms that we can solve Computation 8.17 by identifying
centres of mass of the members of each cluster. The first algorithm we
will describe attempts to do just this and is therefore referred to as the k-
means algorithm. It keeps a set of cluster centroids C1, C2, . . . , CN that are
initialised randomly and then seeks to minimise the expression

�∑
i=1

∥∥φ(xi) − Cf(xi)

∥∥2 , (8.12)

by adapting both f as well as the centres. It will converge to a solution in
which Ck is the centre of mass of the points assigned to cluster k and hence
will satisfy the criterion of Proposition 8.18.

The algorithm alternates between updating f to adjust the assignment of
points to clusters and updating the Ck giving the positions of the centres
in a two-stage iterative procedure. The first stage simply moves points to
the cluster whose cluster centre is closest. Clearly this will reduce the value
of the expression in (8.12). The second stage repositions the centre of each
cluster at the centre of mass of the points assigned to that cluster. We have
already analysed this second stage in Proposition 5.2 showing that moving
the cluster centre to the centre of mass of the points does indeed reduce the
criterion of (8.12).

Hence, each stage can only reduce the expression (8.12). Since the number
of possible clusterings is finite, it follows that after a finite number of itera-
tions the algorithm will converge to a stable clustering assignment provided
ties are broken in a deterministic way. If we are to implement in a dual form
we must represent the clusters by an indicator matrix A of dimension �×N
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containing a 1 to indicate the containment of an example in a cluster

Aik =
{

1 if xi is in cluster k;
0 otherwise.

We will say that the clustering is given by matrix A. Note that each row
of A contains exactly one 1, while the column sums give the number of
points assigned to the different clusters. Matrices that have this form will
be known as cluster matrices. We can therefore compute the coordinates of
the centroids Ck as the N columns of the matrix

X′AD,

where X contains the training example feature vectors as rows and D is
a diagonal N × N matrix with diagonal entries the inverse of the column
sums of A, indicating the number of points ascribed to that cluster. The
distances of a new test vector φ(x) from the centroids is now given by

‖φ(x) − Ck‖2 = ‖φ(x)‖2 − 2 〈φ(x), Ck〉 + ‖Ck‖2

= κ (x,x) − 2
(
k′AD

)
k

+
(
DA′XX′AD

)
kk

,

where k is the vector of inner products between φ(x) and the training ex-
amples. Hence, the cluster to which φ(x) should be assigned is given by

argmin
1≤k≤N

‖φ(x) − Ck‖2 = argmin
1≤k≤N

(
DA′KAD

)
kk

− 2
(
k′AD

)
k
,

where K is the kernel matrix of the training set. This provides the rule for
classifying new data. The update rule consists in reassigning the entries in
the matrix A according to the same rule in order to redefine the clusters.

Algorithm 8.22 [Kernel k-means] Matlab code for the kernel k-means al-
gorithm is given in Code Fragment 8.3.

Despite its popularity, this algorithm is prone to local minima since the
optimisation is not convex. Considerable effort has been devoted to finding
good initial guesses or inserting additional constraints in order to limit the
effect of this fact on the quality of the solution obtained. In the next section
we see two relaxations of the original problem for which we can find the
global solution.

8.2.3 Relaxed solution: spectral methods

In this subsection, rather than relying on gradient descent methods to tackle
a non-convex problem, we make a convex relaxation of the problem in order
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% original kernel matrix stored in variable K
% clustering given by a ell x N binary matrix A
% and cluster allocation function f
% d gives the distances to cluster centroids
A = zeros(ell,N);
f = ceil(rand(ell,1)* N);
for i=1,ell
A(i,f(i)) = 1;

end
change = 1;
while change = 1
change = 0;
E = A * diag(1./sum(A));
Z = ones(ell,1)* diag(E’*K*E)’- 2*K*E;
[d, ff] = min(Z, [], 2);
for i=1,ell
if f(i) ~= ff(i)
A(i,ff(i)) = 1;
A(i, f(i)) = 0;
change = 1;
end

end
f = ff;

end

Code Fragment 8.3. Matlab code to perform k-means clustering.

to obtain a closed form approximation. We can then study the approxima-
tion and statistical properties of its solutions.

Clustering into two classes We first consider the simpler case when there
are just two clusters. In this relaxation we represent the cluster assignment
by a vector y ∈ {−1,+1}�, that associates to each point a {−1,+1} label.
For the two classes case the clustering quality criterion described above is
minimised by maximising∑

yi �=yj

‖φ (xi) − φ (xj)‖2 .

Assuming that the data is normalised and the sizes of the clusters are equal
this will correspond to minimising the so-called cut cost

2
∑
yi �=yj

κ (xi,xj) =
�∑

i,j=1

κ (xi,xj) −
�∑

i,j=1

yiyjκ (xi,xj) ,

subject to y ∈ {−1,+1}�,
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since it measures the kernel ‘weight’ between vertices in different clusters.
Hence, we must solve

max y′Ky
subject to y ∈ {−1,+1}�.

We can relax this optimisation by removing the restriction that y be a
binary vector while controlling its norm. This is achieved by maximising
the Raleigh quotient (3.2)

max
y′Ky
y′y

.

As observed in Chapter 3 this is solved by the eigenvector of the matrix K
corresponding to the largest eigenvalue with the value of the quotient equal
to the eigenvalue λ1. Hence, we obtain a lower bound on the cut cost of

0.5


 �∑

i,j=1

κ (xi,xj) − λ1


,

giving a corresponding lower bound on the value of the sum-squared cri-
terion. Though such a lower bound is useful, the question remains as to
whether the approach can suggest useful clusterings of the data. A very
natural way to do so in this two-cluster case is simply to threshold the vec-
tor y hence converting it to a binary clustering vector. This naive approach
can deliver surprisingly good results though there is no a priori guarantee
attached to the quality of the solution.

Remark 8.23 [Alternative criterion] It is also possible to consider minimis-
ing a ratio between the cut size and a measure of the size of the clusters.
This leads through similar relaxations to different eigenvalue problems. For
example if we let D be the diagonal matrix with entries

Dii =
�∑

j=1

Kij ,

then useful partitions can be derived from the eigenvectors of

D−1K, D−1/2KD−1/2 and K − D

with varying justifications. In all cases thresholding the resulting vectors
delivers the corresponding partitions. Generally the approach is motivated
using the Gaussian kernel with its useful properties discussed above.
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Multiclass clustering We now consider the more general problem of multi-
class clustering. We start with an equivalent formulation of the sum-of-
squares minimization problem as a trace maximization under special con-
straints. By successively relaxing these constraints we are led to an approx-
imate algorithm with nice global properties.

Consider the derivation and notation introduced to obtain the program
for k-means clustering. We can compute the coordinates of the centroids Ck

as the N columns of the matrix

X′AD,

where X is the data matrix, A a matrix assigning points to clusters and D a
diagonal matrix with inverses of the cluster sizes on the diagonal. Consider
now the matrix

X′ADA′.

It has � columns with the ith column a copy of the cluster centroid corre-
sponding to the ith example. Hence, we can compute the sum-squares of
the distances from the examples to their corresponding cluster centroid as∥∥X′ADA′ − X′∥∥2

F
=
∥∥(I� − ADA′)X∥∥2

F

= tr
(
X′ (I� − ADA′)X)

= tr
(
XX′)− tr

(√
DA′XX′A

√
D
)

,

since (
I� − ADA′)2 =

(
I� − ADA′)

as A′AD =
√

DA′A
√

D = IN , indicating that (I� − ADA′) is a projection
matrix. We have therefore shown the following proposition.

Proposition 8.24 The sum-squares cost function ss(A) of a clustering,
given by matrix A can be expressed as

ss(A) = tr (K) − tr
(√

DA′KA
√

D
)

,

where K is the kernel matrix and D = D (A) is the diagonal matrix with
the inverses of the column sums of A.

Since the first term is not affected by the choice of clustering, the propo-
sition leads to the Computation.
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Computation 8.25 [Multiclass clustering] We can minimise the cost ss(A)
by solving

maxA tr
(√

DA′KA
√

D
)

subject to A is a cluster matrix and D = D (A).

Remark 8.26 [Distances of the cluster centres from the origin] We can see
that tr

(√
DA′KA

√
D
)

is the sum of the squares of the cluster centroids,
relating back to our previous observations about the sum-square criterion
corresponding to maximising the sum-squared distances of the centroids
from the overall centre of mass of the data. This shows that this holds for
the origin as well and since an optimal clustering is invariant to translations
of the coordinate axes, this will be true of the sum-squared distances to any
fixed point.

We have now arrived at a constrained optimisation problem whose solution
solves to the min-squared clustering criterion. Our aim now is to relax the
constraints to obtain a problem that can be optimised exactly, but whose
solution will not correspond precisely to a clustering. Note that the matrices
A and D = D (A) satisfy

√
DA′A

√
D = IN = H′H, (8.13)

where H = A
√

D. Hence, only requiring that this � × N matrix satisfies
equation (8.13), we obtain the relaxed maximization problem given in the
computation.

Computation 8.27 [Relaxed multiclass clustering] The relaxed maximisa-
tion for multiclass clustering is obtained by solving

max tr (H′KH)
subject to H′H = IN ,

The solutions of Computation 8.27 will not correspond to clusterings, but
may lead to good clusterings. The important property of the relaxation is
that it can be solved in closed-form.

Proposition 8.28 The maximum of the trace tr (H′KH) over all � × N

matrices satisfying H′H = IN is equal to the sum of the first N eigenvalues
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of K

max
H′H=IN

tr
(
H′KH

)
=

N∑
k=1

λk

while the H∗ realising the optimum is given by

VNQ,

where Q is an arbitrary N × N orthonormal matrix and VN is the � × N

matrix composed of the first N eigenvectors of K. Furthermore, we can
lower bound the sum-squared error of the best clustering by

min
A clustering matrix

ss(A) = tr (K) − max
A clustering matrix

tr
(√

DA′KA
√

D
)

≥ tr (K) − max
H′H=IN

tr
(
H′KH

)
=

�∑
k=N+1

λk.

Proof Since H′H = IN the operator P = HH′ is a rank N projection. This
follows from the fact that (HH′)2 = HH′HH′ = HINH′ = HH′ and
rankH =rankH′H =rank IN = N . Therefore

INH′KHIN = H′HH′XX′HH′H =
∥∥H′PX

∥∥2

F
= ‖PX‖2

F .

Hence, we seek the N -dimensional projection of the columns of X that max-
imises the resulting sum of the squared norms. Treating these columns as the
training vectors and viewing maximising the projection as minimising the
residual we can apply Proposition 6.12. It follows that the maximum will be
realised by the eigensubspace spanned by the N eigenvectors corresponding
to the largest eigenvalues for the matrix XX′ = K. Clearly, the projection
is only specified up to an arbitrary N ×N orthonormal transformation Q.

At first sight we have not gained a great deal by moving to the relaxed
version of the problem. It is true that we have obtained a strict lower bound
on the quality of clustering that can be achieved, but the matrix H that
realises that lower bound does not in itself immediately suggest a method of
performing a clustering that comes close to the bound. Furthermore, in the
case of multi-class clustering we do not have an obvious simple thresholding
algorithm for converting the result of the eigenvector analysis into a clus-
tering as we found in the two cluster examples. We mention three possible
approaches.
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Re-clustering One approach is to apply a different clustering algorithm
in the reduced N -dimensional representation of the data, when we map
each example to the corresponding row of the matrix VN , possibly after
performing a renormalisation.

Eigenvector approach We will describe a different method that is related
to the proof of Proposition 8.28. Consider the choice H∗ = VN that realises
the optimum bound of the proposition. Let W = VN

√
ΛN be obtained

from VN by multiplying column i by
√
λi, i = 1, . . . , N . We now form the

cluster matrix A by setting the largest entry in each row of W to 1 and the
remaining entries to 0.

QR approach An alternative approach is inspired by a desire to construct
an approximate cluster matrix which is related to VN by an orthonormal
transformation

A ≈ VNQ,

implying that

V′
N ≈ QA′.

If we perform a QR decomposition of V′
N we obtain

V′
N = Q̂R

with Q̂ an N ×N orthogonal matrix and R an N × � upper triangular. By
assigning vector i to the cluster index by the row with largest entry in the
column i of matrix R, we obtain a cluster matrix A′ ≈ R, hence giving a
value of ss(A) close to that given by the bound.

8.3 Data visualisation

Visualisation refers to techniques that can present a dataset

S = {x1, . . . ,x�}

in a manner that reveals some underlying structure of the data in a way
that is easily understood or appreciated by a user. A clustering is one
type of structure that can be visualised. If for example there is a natural
clustering of the data into say four clusters, each one grouped tightly around
a separate centroid, our understanding of the data is greatly enhanced by
displaying the four centroids and indicating the tightness of the clustering
around them. The centroids can be thought of as prototypical data items.
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Hence, for example in a market analysis, customers might be clustered into a
set of typical types with individual customers assigned to the type to which
they are most similar.

In this section we will consider a different type of visualisation. Our aim
is to provide a two- or three-dimensional ‘mapping’ of the data, hence dis-
playing the data points as dots on a page or as points in a three-dimensional
image. This type of visualisation is of great importance in many data mining
tasks, but it assumes a special role in kernel methods, where we typically
embed the data into a high-dimensional vector space. We have already
considered measures for assessing the quality of an embedding such as the
classifier margin, correlation with output values and so on. We will also
in later chapters be looking into procedures for transforming prior models
into embeddings. However once we arrive at the particular embedding, it
is also important to have ways of visually displaying the data in the chosen
feature space. Looking at the data helps us get a ‘feel’ for the structure of
the data, hence suggesting why certain points are outliers, or what type of
relations can be found. This can in turn help us pick the best algorithm
out of the toolbox of methods we have been assembling since Chapter 5.
In other words being able to ‘see’ the relative positions of the data in the
feature space plays an important role in guiding the intuition of the data
analyst.

Using the first few principal components, as computed by the PCA al-
gorithm of Chapter 6, is a well-known method of visualisation forming the
core of the classical multidimensional scaling algorithm. As already demon-
strated in Proposition 6.12 PCA minimises the sum-squared norms of the
residuals between the subspace representation and the actual data.

Naturally if one wants to look at the data from an angle that emphasises a
certain property, such as a given dichotomy, other projections can be better
suited, for example using the first two partial least squares features. In this
section we will assume that the feature space has already been adapted to
best capture the view of the data we are concerned with but typically using
a high-dimensional kernel representation. Our main concern will therefore
be to develop algorithms that can find low-dimensional representations of
high-dimensional data.

Multidimensional scaling This problem has received considerable atten-
tion in multivariate statistics under the heading of multidimensional scal-
ing (MDS). This is a series of techniques directly aimed at finding optimal
low-dimensional embeddings of data mostly for visualisation purposes. The
starting point for MDS is traditionally a matrix of distances or similarities
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rather than a Gram matrix of inner products or even a Euclidean embed-
ding. Indeed the first stages of the MDS process aim to convert the matrix
of similarities into a matrix of inner products. For metric MDS it is assumed
that the distances correspond to embeddings in a Euclidean space, while for
non-metric MDS these similarities can be measured in any way. Once an
approximate inner product matrix has been formed, classical MDS then uses
the first two or three eigenvectors of the eigen-decomposition of the resulting
Gram matrix to define two- or three-dimensional projections of the points
for visualisation. Hence, if we make use of a kernel-defined feature space the
first stages are no longer required and MDS reduces to computing the first
two or three kernel PCA projections.

Algorithm 8.29 [MDS for kernel-embedded data] The MDS algorithm for
data in a kernel-defined feature space is as follows:

input Data S = {x1, . . . ,x�} , dimension k = 2, 3.
process Kij = κ (xi,xj), i, j = 1, . . . , �

K − 1
� jj

′K − 1
�Kjj′ + 1

�2
(j′Kj) jj′,

[V,Λ] = eig (K)
αj = 1√

λj
vj , j = 1, . . . , k.

x̃i =
(∑�

i=1 α
j
iκ(xi,x)

)k
j=1

output Display transformed data S̃ = {x̃1, . . . , x̃�}.

Visualisation quality We will consider a further method of visualisation
strongly related to MDS, but which is motivated by different criteria for
assessing the quality of the representation of the data.

We can define the problem of visualisation as follows. Given a set of points

S = {φ (x1) , . . . ,φ (x�)}

in a kernel-defined feature space F with

φ : X −→ F ,

find a projection τ from X into R
k, for small k such that

‖τ (xi) − τ (xj)‖ ≈ ‖φ (xi) − φ (xj)‖ , for i, j = 1, . . . , �.

We will use τ s to denote the projection onto the sth component of τ and with
a slight abuse of notation, as a vector of these projection values indexed by
the training examples. As mentioned above it follows from Proposition 6.12
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that the embedding determined by kernel PCA minimises the sum-squared
residuals

�∑
i=1

‖τ (xi) − φ (xi)‖2 ,

where we make τ an embedding into a k-dimensional subspace of the feature
space F . Our next method aims to control more directly the relationship
between the original and projection distances by solving the following com-
putation.

Computation 8.30 [Visualisation quality] The quality of a visualisation
can be optimsed as follows

minτ E(τ ) =
�∑

i,j=1

〈φ (xi) ,φ (xj)〉 ‖τ (xi) − τ (xj)‖2

=
�∑

i,j=1

κ (xi,xj) ‖τ (xi) − τ (xj)‖2 ,

subject to ‖τ s‖ = 1, τ s ⊥ j, s = 1, . . . , k, (8.14)

and τ s ⊥ τ t, s, t = 1, . . . , k.

Observe that it follows from the constraints that
�∑

i,j=1

‖τ (xi) − τ (xj)‖2 =
�∑

i,j=1

k∑
s=1

(τ s(xi) − τ s(xj))
2

=
k∑

s=1

�∑
i,j=1

(τ s(xi) − τ s(xj))
2

= 2
k∑

s=1


�

�∑
i=1

τ s(xi)2 −
�∑

i,j=1

τ s(xi)τ s(xj)




= 2�k − 2
k∑

s=1

�∑
i=1

τ s(xi)
�∑

j=1

τ s(xj) = 2�k.

It therefore follows that, if the data is normalised, solving Computation 8.30
corresponds to minimising

E(τ ) =
�∑

i,j=1

(
1 − 0.5 ‖φ (xi) − φ (xj)‖2

)
‖τ (xi) − τ (xj)‖2
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= 2�k −
�∑

i,j=1

0.5 ‖φ (xi) − φ (xj)‖2 ‖τ (xi) − τ (xj)‖2 ,

hence optimising the correlation between the original and projected squared
distances. More generally we can see minimisation as aiming to put large
distances between points with small inner products and small distances be-
tween points having large inner products. The constraints ensure equal
scaling in all dimensions centred around the origin, while the different di-
mensions are required to be mutually orthogonal to ensure no structure is
unnecessarily reproduced.

Our next theorem will characterise the solution of the above optimisation
using the eigenvectors of the so-called Laplacian matrix. This matrix can
also be used in clustering as it frequently possesses more balanced properties
than the kernel matrix. It is defined as follows.

Definition 8.31 [Laplacian matrix] The Laplacian matrix L (K) of a kernel
matrix K is defined by

L (K) = D − K,

where D is the diagonal matrix with entries

Dii =
�∑

j=1

Kij .

Observe the following simple property of the Laplacian matrix. Given any
real vector v = (v1, . . . , v�) ∈ R

�

�∑
i,j=1

Kij (vi − vj)
2 = 2

�∑
i,j=1

Kijv
2
i − 2

�∑
i,j=1

Kijvivj

= 2v′Dv − 2v′Kv = 2v′L (K)v.

It follows that the all 1s vector j is an eigenvector of L (K) with eigenvalue 0
since the sum is zero if vi = vj = 1. It also implies that if the kernel matrix
has positive entries then L (K) is positive semi-definite. In the statement of
the following theorem we separate out λ1 as the eigenvalue 0 , while ordering
the remaining eigenvalues in ascending order.

Theorem 8.32 Let

S = {x1, . . . ,x�}
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be a set of points with kernel matrix K. The visualisation problem given
in Computation 8.30 is solved by computing the eigenvectors v1,v2, . . . ,v�

with corresponding eigenvalues 0 = λ1, λ2 ≤ . . . ≤ λ� of the Laplacian
matrix L (K). An optimal embedding τ is given by τ i = vi+1, i = 1, . . . , k
and the minimal value of E(τ ) is

2
k+1∑
�=2

λ�.

If λk+1 < λk+2 then the optimal embedding is unique up to orthonormal
transformations in R

k.

Proof The criterion to be minimised is

�∑
i,j=1

κ (xi,xj) ‖τ (xi) − τ (xj)‖2 =
k∑

s=1

�∑
i,j=1

κ (xi,xj) (τ s(xi) − τ s(xj))
2

= 2
k∑

s=1

τ ′
sL (K) τ s.

Taking into account the normalisation and orthogonality constraints gives
the solution as the eigenvectors of L (K) by the usual characterisation of
the Raleigh quotients. The uniqueness again follows from the invariance
under orthonormal transformations together with the need to restrict to the
subspace spanned by the first k eigenvectors.

The implementation of this visualisation technique is very straightforward.

Algorithm 8.33 [Data visualisation] Matlab code for the data visualisation
algorithm is given in Code Fragment 8.4.

% original kernel matrix stored in variable K
% tau gives the embedding in k dimensions
D = diag(sum(K));
L = D - K;
[V,Lambda] = eig(L);
Lambda = diag(Lambda);
I = find(abs(Lambda) > 0.00001)
objective = 2*sum(Lambda(I(1:k)))
Tau = V(:,I(1:k));
plot(Tau(:,1), Tau(:,2), ’x’)

Code Fragment 8.4. Matlab code to implementing low-dimensional visualisation.
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8.4 Summary

• The problem of learning a ranking function can be solved using kernel
methods.

• Stability analysis motivates the development of an optimisation criterion
that can be efficiently solved using convex quadratic programming.

• Practical considerations suggest an on-line version of the method. A sta-
bility analysis is derived for the application of a perceptron-style algorithm
suitable for collaborative filtering.

• The quality of a clustering of points can be measured by the expected
within cluster distances.

• Analysis of this measure shows that it has many attractive properties.
Unfortunately, minimising the criterion on the training sample is NP-
hard.

• Two kernel approaches to approximating the solution are presented. The
first is the dual version of the k-means algorithm. The second relies on
solving exactly a relaxed version of the problem in what is known as
spectral clustering.

• Data in the feature space can be visualised by finding low-dimensional
embeddings satisfying certain natural criteria.

8.5 Further reading and advanced topics

The problem of identifying clusters in a set of data has been a classic topic
of statistics and machine learning for many years. The book [40] gives a
general introduction to many of the main ideas, particularly to the vari-
ous cost functions that can be optimised, as well as presenting the many
convenient properties of the cost function described in this book, the ex-
pected square distance from cluster-centre. The classical k-means algorithm
greedily attempts to optimise this cost function.

On the other hand, the clustering approach based on spectral analysis
is relatively new, and still the object of current research. In the NIPS
conference 2001, for example, the following independent works appeared:
[34], [166], [101], [12]. Note also the article [72]. The statistical stability of
spectral clustering has been investigated in [124], [101].

The kernelisation of k-means is a folk algorithm within the kernel machines
community, being used as an example of kernel-based algorithms for some
time. The combination of spectral clustering with kernels is more recent.

Also the problem of learning to rank data has been addressed by several
authors in different research communities. For recent examples, see Herbrich
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et al. [54] and Crammer and Singer [30]. Our discussion in this chapter
mostly follows Crammer and Singer.

Visualising data has for a long time been a vital component of data mining,
as well as of graph theory, where visualising is also known as graph drawing.
Similar ideas were developed in multivariate statistics, with the problem of
multidimensional scaling [156]. The method presented in this chapter was
developed in the chemical literature, but it has natural equivalents in graph
drawing [103].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net




