
7

Pattern analysis using convex optimisation

This chapter presents a number of algorithms for particular pattern analysis
tasks such as novelty-detection, classification and regression. We consider
criteria for choosing particular pattern functions, in many cases derived
from stability analysis of the corresponding tasks they aim to solve. The
optimisation of the derived criteria can be cast in the framework of convex
optimization, either as linear or convex quadratic programs. This ensures
that as with the algorithms of the last chapter the methods developed here
do not suffer from the problem of local minima. They include such celebrated
methods as support vector machines for both classification and regression.

We start, however, by describing how to find the smallest hypersphere
containing the training data in the embedding space, together with the use
and analysis of this algorithm for detecting anomalous or novel data. The
techniques introduced for this problem are easily adapted to the task of
finding the maximal margin hyperplane or support vector solution that sep-
arates two sets of points again possibly allowing some fraction of points to
be exceptions. This in turn leads to algorithms for the case of regression.

An important feature of many of these systems is that, while enforcing
the learning biases suggested by the stability analysis, they also produce
‘sparse’ dual representations of the hypothesis, resulting in efficient algo-
rithms for both training and test point evaluation. This is a result of the
Karush–Kuhn–Tucker conditions, which play a crucial role in the practical
implementation and analysis of these algorithms.

195

196 Pattern analysis using convex optimisation

7.1 The smallest enclosing hypersphere

In Chapter 1 novelty-detection was cited as one of the pattern analysis
algorithms that we aimed to develop in the course of this book. A novelty-
detection algorithm uses a training set to learn the support of the distribu-
tion of the ‘normal’ examples. Future test examples are then filtered by the
resulting pattern function to identify any abnormal examples that appear
not to have been generated from the same training distribution.

In Chapter 5 we developed a simple novelty-detection algorithm in a gen-
eral kernel-defined feature space by estimating when new data is outside the
hypersphere around the centre of mass of the distribution with radius large
enough to contain all the training data. In this section we will further inves-
tigate the use of feature space hyperspheres as novelty detectors, where it is
understood that new examples that lie outside the hypersphere are treated
as ‘abnormal’ or ‘novel’.

Clearly the smaller the hypersphere the more finely tuned the novelty-
detection that it realises. Hence, our aim will be to define smaller hyper-
spheres for which we can still guarantee that with high probability they
contain most of the support of the training distribution. There are two re-
spects in which the novelty-detection hypersphere considered in Chapter 5
may be larger than is necessary. Firstly, the centre of the hypersphere was
fixed at the centre of mass, or an estimate thereof, based on the training
data. By allowing its centre to move it may be possible to find a smaller
hypersphere that still contains all the training data. The second concern is
that just one unlucky training example may force a much larger radius than
should really be needed, implying that the solution is not robust. Ideally we
would therefore like to find the smallest hypersphere that contains all but
some small proportion of extreme training data.

Given a set of data embedded in a space, the problem of finding the
smallest hypersphere containing a specified non-trivial fraction of the data
is unfortunately NP-hard. Hence, there are no known algorithms to solve
this problem exactly. It can, however, be solved exactly for the case when
the hypersphere is required to include all of the data. We will therefore
first tackle this problem. The solution is of interest in its own right, but
the techniques developed will also indicate a route towards an approximate
solution for the other case. Furthermore, the approach adopted for novelty-
detection points the way towards a solution of the classification problem
that we tackle in Section 7.2.

7.1 The smallest enclosing hypersphere 197

7.1.1 The smallest hypersphere containing a set of points

Let us assume that we are given a training set S = {x1, . . . ,x�} with an
associated embedding φ into a Euclidean feature space F with associated
kernel κ satisfying

κ (x, z) = 〈φ (x) ,φ (z)〉 .

The centre of the smallest hypersphere containing S is the point c that
minimises the distance r from the furthest datapoint, or more precisely

c∗ = argmin
c

max
1≤i≤�

‖φ (xi) − c‖ ,

with R the value of the expression at the optimum. We have derived the
following computation.

Computation 7.1 [Smallest enclosing hypersphere] Given a set of points

S = {x1, . . . ,x�}
the hypersphere (c,r) that solves the optimisation problem

minc,r r2

subject to ‖φ (xi) − c‖2 = (φ (xi) − c)′(φ (xi) − c) ≤ r2

i = 1, . . . , �,
(7.1)

is the hypersphere containing S with smallest radius r.

We can solve constrained optimisation problems of this type by defining
a Lagrangian involving one Lagrange multiplier αi ≥ 0 for each constraint

L(c, r,α) = r2 +
�∑

i=1

αi

[
‖φ (xi) − c‖2 − r2

]
.

We then solve by setting the derivatives with respect to c and r equal to
zero

∂L(c, r,α)
∂c

= 2
�∑

i=1

αi(φ (xi) − c) = 0, and

∂L(c, r,α)
∂r

= 2r

(
1 −

�∑
i=1

αi

)
= 0,

giving the following equations
�∑

i=1

αi = 1 and as a consequence c =
�∑

i=1

αiφ (xi) .

198 Pattern analysis using convex optimisation

The second equality implies that the centre of the smallest hypersphere
containing the datapoints always lies in their span. This shows that the
centre can be expressed in the dual representation. Furthermore, the first
equality implies that the centre lies in the convex hull of the training set.
Inserting these relations into the Lagrangian we obtain

L(c, r,α) = r2 +
�∑

i=1

αi

[
‖φ (xi) − c‖2 − r2

]

=
�∑

i=1

αi 〈φ (xi) − c,φ (xi) − c〉

=
�∑

i=1

αi


κ (xi,xi) +

�∑
k,j=1

αjαkκ (xj ,xk) − 2
�∑

j=1

αjκ (xi,xj)




=
�∑

i=1

αiκ (xi,xi) +
�∑

k,j=1

αkαjκ (xj ,xk) − 2
�∑

i,j=1

αiαjκ (xi,xj)

=
�∑

i=1

αiκ (xi,xi) −
�∑

i,j=1

αiαjκ (xj ,xk) ,

where we have used the relation
∑�

i=1 αi = 1 to obtain line 2 and to take
the middle expression out of the brackets after line 3. The Lagrangian has
now been expressed wholly in terms of the Lagrange parameters, something
referred to as the dual Lagrangian. The solution is obtained by maximising
the resulting expression. We have therefore shown the following algorithm,
where we use H to denote the Heaviside function H (x) = 1, if x ≥ 0 and 0
otherwise.

Algorithm 7.2 [Smallest hypersphere enclosing data] The smallest hyper-
sphere in a feature space defined by a kernel κ enclosing a dataset S is
computed given in Code Fragment 7.1.

We have certainly achieved our goal of decreasing the size of the hyper-
sphere since now we have located the hypersphere of minimal volume that
contains the training data.

Remark 7.3 [On sparseness] The solution obtained here has an additional
important property that results from a theorem of optimization known as
the Kuhn-Tucker Theorem. This theorem states that the Lagrange param-
eters can be non-zero only if the corresponding inequality constraint is an

7.1 The smallest enclosing hypersphere 199

Input training set S = {x1, . . . ,x�}

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and αi ≥ 0, i = 1, . . . , �.

4 r∗ =
√
W (α∗)

5 D =
∑�

i,j=1 α
∗
iα

∗
jκ (xi,xj) − r∗2

6 f(x) = H
[
κ (x,x) − 2

∑�
i=1 α

∗
i κ (xi,x) + D

]
7 c∗ =

∑�
i=1 α

∗
iφ (xi)

Output centre of sphere c∗ and/or function f testing for inclusion

Code Fragment 7.1. Pseudocode for computing the minimal hypersphere.

equality at the solution. These so-called Karush–Kuhn–Tucker (KKT) com-
plementarity conditions are satisfied by the optimal solutions α∗, (c∗, r∗)

α∗
i

[
‖φ (xi) − c∗‖2 − r∗2

]
= 0, i = 1, . . . , �.

This implies that only the training examples xi that lie on the surface of
the optimal hypersphere have their corresponding α∗

i non-zero. For the
remaining examples, the corresponding parameter satisfies α∗

i = 0. Hence,
in the expression for the centre only the points on the surface are involved.
It is for this reason that they are sometimes referred to as support vectors.

We will denote the set of indices of the support vectors with sv. Using
this notation the pattern function becomes

f(x) = H
[
κ (x,x) − 2

∑
i∈sv

α∗
iκ (x,xi) + D

]
,

hence involving the evaluation of only # sv inner products rather than � as
was required for the hypersphere of Chapter 5.

Remark 7.4 [On convexity] In Chapter 3 we showed that for a kernel
function the matrix with entries (κ(xi,xj))

�
i,j=1 is positive semi-definite for

all training sets, the so-called finitely positive semi-definite property. This
in turn means that the optimisation problem of Algorithm 7.2 is always
convex. Hence, the property required for a kernel function to define a feature
space also ensures that the minimal hypersphere optimisation problem has
a unique solution that can be found efficiently. This rules out the problem
of encountering local minima.

200 Pattern analysis using convex optimisation

Note that the function f output by Algorithm 7.2 outputs 1, if the new
point lies outside the chosen sphere and so is considered novel, and 0 other-
wise. The next section considers bounds on the probability that the novelty
detector identifies a point as novel that has been generated by the orig-
inal distribution, a situation that constitutes an erroneous output. Such
examples will be false positives in the sense that they will be normal data
identified by the algorithm as novel.

Data arising from novel conditions will be generated by a different distri-
bution and hence we have no way of guaranteeing what output f will give.
In this sense we have no way of bounding the negative positive rate. The
intuition behind the approach is that the smaller the sphere used to define
f , the more likely that novel data will fall outside and hence be detected
as novel. Hence, in the subsequent development we will examine ways of
shrinking the sphere, while still retaining control of the false positive rate.

7.1.2 Stability of novelty-detection

In the previous section we developed an algorithm for computing the smallest
hypersphere enclosing a training sample and for testing whether a new point
was contained in that hypersphere. It was suggested that the method could
be used as a novelty-detection algorithm where points lying outside the
hypersphere would be considered abnormal. But is there any guarantee
that points from the same distribution will lie in the hypersphere? Even in
the hypersphere based on the centre of gravity of the distribution we had to
effectively leave some slack in its radius to allow for the inaccuracy in our
estimation of their centre. But if we are to allow some slack in the radius of
the minimal hypersphere, how much should it be?

In this section we will derive a stability analysis based on the techniques
developed in Chapter 4 that will answer this question and give a novelty-
detection algorithm with associated stability guarantees on its performance.

Theorem 7.5 Fix γ > 0 and δ ∈ (0, 1). Let (c, r) be the centre and ra-
dius of a hypersphere in a feature space determined by a kernel κ from a
training sample S = {x1, . . . ,x�} drawn randomly according to a probability
distribution D. Let g (x) be the function defined by

g (x) =




0, if ‖c − φ(x)‖ ≤ r;(
‖c − φ(x)‖2 − r2

)
/γ, if r2 ≤ ‖c − φ(x)‖2 ≤ r2 + γ;

1, otherwise.

7.1 The smallest enclosing hypersphere 201

Then with probability at least 1 − δ over samples of size � we have

ED [g(x)] ≤ 1
�

�∑
i=1

g (xi) +
6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
,

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof Consider the loss function A : R → [0, 1], given by

A(a) =




0, if R2a < r2 − ‖c‖2;(
R2a + ‖c‖2 − r2

)
/γ, if r2 − ‖c‖2 ≤ R2a ≤ r2 − ‖c‖2 + γ;

1, otherwise.

Hence, we can write g (x) = A (f (x)), where

f (x) = ‖c − φ(x)‖2 /R2 − ‖c‖2 /R2 = ‖φ(x)‖2 /R2 − 2 〈c,φ(x)〉 /R2.

Hence, by Theorem 4.9 we have that

ED [g(x)] ≤ Ê [g(x)] + R̂�

(
A ◦

(
F + ‖φ(x)‖2 /R2

))
+ 3

√
ln(2/δ)

2�
, (7.2)

where F is the class of linear functions with norm bounded by 1 with respect
to the kernel

κ̂
(
xi,xj

)
= 4κ

(
xi,xj

)
/R2 = 〈2φ(xi)/R, 2φ(xj)/R〉 .

Since A (0) = 0, we can apply part 4 of Theorem 4.15 with L = R2/γ to
give

R̂�

(
A ◦

(
F + ‖φ(x)‖2 /R2

))
≤ 2R2R̂�

(
F + ‖φ(x)‖2 /R2

)
/γ.

By part 5 of Theorem 4.15, we have

R̂�(F + ‖φ(x)‖2 /R2) ≤ R̂�(F) + 2
√

Ê

[
‖φ(x)‖4 /R4

]
/�

≤ R̂�(F) +
2√
�
,

while by Theorem 4.12 we have

R̂�(F) =
2
�

√√√√ �∑
i=1

κ̂(xi,xi) =
4
R�

√√√√ �∑
i=1

κ(xi,xi) =
4√
�
.

Putting the pieces into (7.2) gives the result.

202 Pattern analysis using convex optimisation

Consider applying Theorem 7.5 to the minimal hypersphere (c∗, r∗) con-
taining the training data. The first term vanishes since

1
�

�∑
i=1

g (xi) = 0.

If a test point x lies outside the hypersphere of radius r =
√

r∗2 + γ with
centre c∗ it will satisfy g (xi) = 1. Hence with probability greater than 1− δ

we can bound the probability p of such points by

6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
,

since their contribution to ED [g(x)] is p, implying that p ≤ ED [g(x)]. Since(
r∗ +

√
γ
)2 = r∗2 +2r∗

√
γ + γ ≥ r∗2 + γ we also have that, with probability

greater than 1 − δ, points from the training distribution will lie outside a
hypersphere of radius r∗ +

√
γ centred at c∗ with probability less than

6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
.

Hence, by choosing a radius slightly larger than r∗ we can ensure that test
data lying outside the hypersphere can be considered ‘novel’.

Remark 7.6 [Size of the hypersphere] The results of this section formalise
the intuition that small radius implies high sensitivity to novelties. If for
a given kernel the radius is small we can hope for good novelty-detection.
The next section will consider ways in which the radius of the ball can be
reduced still further, while still retaining control of the sensitivity of the
detector.

7.1.3 Hyperspheres containing most of the points

We have seen in the last section how enlarging the radius of the smallest
hypersphere containing the data ensures that we can guarantee with high
probability that it contains the support of most of the distribution. This still
leaves unresolved the sensitivity of the solution to the position of just one
point, something that undermines the reliability of the parameters, resulting
in a pattern analysis system that is not robust.

Theorem 7.5 also suggests a solution to this problem. Since the bound
also applies to hyperspheres that fail to contain some of the training data,

7.1 The smallest enclosing hypersphere 203

we can consider smaller hyperspheres provided we control the size of the
term

1
�

�∑
i=1

g (xi) ≤
1
γ

�∑
i=1

(
‖c − φ(xi)‖2 − r2

)
+

. (7.3)

In this way we can consider hyperspheres that balance the loss incurred by
missing a small number of points with the reduction in radius that results.
These can potentially give rise to more sensitive novelty detectors.

In order to implement this strategy we introduce a notion of slack variable
ξi = ξi (c, r,xi) defined as

ξi =
(
‖c − φ(xi)‖2 − r2

)
+

,

which is zero for points inside the hypersphere and measures the degree to
which the distance squared from the centre exceeds r2 for points outside.
Let ξ denote the vector with entries ξi, i = 1, . . . , �. Using the upper bound
of inequality (7.3), we now translate the bound of Theorem 7.5 into the
objective of the optimisation problem (7.1) with a parameter C to control the
trade-off between minimising the radius and controlling the slack variables.

Computation 7.7 [Soft minimal hypersphere] The sphere that optimises a
trade off between equation (7.3) and the radius of the sphere is given as the
solution of

minc,r,ξ r2 + C ‖ξ‖1

subject to ‖φ(xi) − c‖2 = (φ(xi) − c)′(φ(xi) − c) ≤ r2 + ξi
ξi ≥ 0, i = 1, . . . , �.

(7.4)

We will refer to this approach as the soft minimal hypersphere.

An example of such a sphere obtained using a linear kernel is shown in
Figure 7.1. Note how the centre of the sphere marked by a × obtained by
the algorithm is now very close to the centre of the Gaussian distribution
generating the data marked by a diamond.

Again introducing Lagrange multipliers we arrive at the Lagrangian

L(c, r,α, ξ) = r2 + C
�∑

i=1

ξi +
�∑

i=1

αi

[
‖φ(xi) − c‖2 − r2 − ξi

]
−

�∑
i=1

βiξi.

Differentiating with respect to the primal variables gives

∂L(c, r,α, ξ)
∂c

= 2
�∑

i=1

αi(φ(xi) − c)= 0;

204 Pattern analysis using convex optimisation

Fig. 7.1. The sphere found by Computation 7.7 using a linear kernel.

∂L(c, r,α, ξ)
∂r

= 2r

(
1 −

�∑
i=1

αi

)
= 0;

∂L(c, r,α, ξ)
∂ξi

= C − αi − βi = 0.

The final equation implies that αi ≤ C since βi = C−αi ≥ 0. Substituting,
we obtain

L(c, r,α, ξ) = r2 + C
�∑

i=1

ξi +
�∑

i=1

αi

[
‖φ(xi) − c‖2 − r2 − ξi

]
−

�∑
i=1

βiξi

=
�∑

i=1

αi 〈φ(xi) − c,φ(xi) − c〉

=
�∑

i=1

αiκ (xi,xi) −
�∑

i,j=1

αiαjκ (xi,xj) ,

which is the dual Lagrangian.
Hence, we obtain the following algorithm.

Algorithm 7.8 [Soft hypersphere minimisation] The hypersphere that op-
timises the soft bound of Computation 7.7 is computed in Code Fragment
7.2.

7.1 The smallest enclosing hypersphere 205

Input training set S = {x1, . . . ,x�}, δ > 0, γ > 0, C > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and 0 ≤ αi ≤ C, i = 1, . . . , �.

4 choose i such that 0 < α∗
i < C

5 r∗ =
√
κ (xi,xi) − 2

∑�
j=1 α

∗
jκ (xj ,xi) +

∑�
i,j=1 α

∗
iα

∗
jκ (xi,xj)

6 D =
∑�

i,j=1 α
∗
iα

∗
jκ (xi,xj) − (r∗)2 − γ

7 f(·) = H
[
κ (·, ·) − 2

∑�
i=1 α

∗
i κ (xi, ·) + D

]
8 ‖ξ∗‖1 =

(
W (α∗) − (r∗)2

)
/C

9 c∗ =
∑�

i=1 α
∗
iφ (xi)

Output centre of sphere c∗ and/or function f testing for containment
sum of slacks ‖ξ∗‖1, the radius r∗

Code Fragment 7.2. Pseudocode for soft hypersphere minimisation.

The function f again outputs 1 to indicate as novel new data falling
outside the sphere. The size of the sphere has been reduced, hence increasing
the chances that data generated by a different distribution will be identified
as novel. The next theorem shows that this increase in sensitivity has not
compromised the false positive rate, that is the probability of data generated
according to the same distribution being incorrectly labelled as novel.

Theorem 7.9 Fix δ > 0 and γ > 0. Consider a training sample S =
{x1, . . . ,x�} drawn according to a distribution D and let c∗, f and ‖ξ∗‖1

be the output of Algorithm 7.8. Then the vector c∗ is the centre of the soft
minimal hypersphere that minimises the objective r2 +C ‖ξ‖1 for the image
φ(S) of the set S in the feature space F defined by the kernel κ (xi,xj) =
〈φ (xi) ,φ (xj)〉. Furthermore, r∗ is the radius of the hypersphere, while the
sum of the slack variables is ‖ξ∗‖1. The function f outputs 1 on test points
x ∈ X drawn according to the distribution D with probability at most

1
γ�

‖ξ∗‖1 +
6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
, (7.5)

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof The first part of the theorem follows from the previous derivations.

206 Pattern analysis using convex optimisation

The expression for the radius r∗ follows from two applications of the Karush–
Kuhn–Tucker conditions using the fact that 0 < α∗

i < C. Firstly, since
β∗
i = C − α∗

i
= 0, we have that ξ∗i = 0, while α∗
i
= 0 implies

0 = ‖xi − c∗‖2 − (r∗)2 − ξ∗i = ‖xi − c∗‖2 − (r∗)2 .

The expression for ‖ξ∗‖1 follows from the fact that

W (α∗) = (r∗)2 + C ‖ξ∗‖1 ,

while (7.5) follows from Theorem 7.5 and the fact that

1
�

�∑
i=1

g (xi) ≤
1
γ�

‖ξ∗‖1 ,

while

PD (f (x) = 1) ≤ ED [g(x)] ,

where g(x) is the function from Theorem 7.5 with c = c∗ and r = r∗.

The algorithm is designed to optimise the bound on the probability of
new points lying outside the hypersphere. Despite this there may be any
number of training points excluded. We are also not guaranteed to obtain
the smallest hypersphere that excludes the given number of points.

ν-Formulation There is an alternative way of parametrising the problem
that allows us to exert some control over the fraction of points that are
excluded from the hypersphere. Note that in Theorem 7.9 the parameter C
must be chose larger than 1/�, since otherwise the constraint

�∑
i=1

αi = 1

cannot be satisfied.

Computation 7.10 [ν-soft minimal hypersphere] If we consider setting the
parameter C = 1/ (ν�), as C varies between 1/� and ∞ in Theorem 7.9, the
same solutions are obtained as the parameter ν varies between 0 and 1 in
the optimisation problem

minc,r,ξ
1
� ‖ξ‖1 + νr2

subject to ‖φ (xi) − c‖2 = (φ(xi) − c)′(φ(xi) − c) ≤ r2 + ξi
ξi ≥ 0, i = 1, . . . , �.

(7.6)

The solutions clearly correspond since this is just a rescaling of the objective.
This approach will be referred to as the ν-soft minimal hypersphere.

7.1 The smallest enclosing hypersphere 207

An example of novelty-detection using a radial basis function kernel is
given in Figure 7.2. Note how the area of the region has again reduced
though since the distribution is a circular Gaussian the performance has
probably not improved.

Fig. 7.2. Novelty detection in a kernel defined feature space.

The analysis for the soft hypersphere is identical to the ν-soft minimal
hypersphere with an appropriate redefinition of the parameters. Using this
fact we obtain the following algorithm.

Algorithm 7.11 [ν-soft minimal hypersphere] The hypersphere that opti-
mises the ν-soft bound is computed in Code Fragment 7.3.

As with the previous novelty-detection algorithms, the function f indi-
cates as novel points for which its output is 1. The next theorem is again
concerned with bounding the false positive rate, but also indicates the role
of the parameter ν.

208 Pattern analysis using convex optimisation

Input training set S = {x1, . . . ,x�}, δ > 0, γ > 0, 0 < ν < 1

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αiκ (xi,xi) −

∑�
i,j=1 αiαjκ (xi,xj)

subject to
∑�

i=1 αi = 1 and 0 ≤ αi ≤ 1/ (ν�) , i = 1, . . . , �.

4 choose i such that 0 < α∗
i < 1/ (ν�)

5 r∗ =
√
κ (xi,xi) − 2

∑�
j=1 α

∗
jκ (xj ,xi) +

∑�
i,j=1 α

∗
iα

∗
jκ (xi,xj)

6 D =
∑�

i,j=1 α
∗
iα

∗
jκ (xi,xj) − (r∗)2 − γ

7 f(·) = H
[
κ (·, ·) − 2

∑�
i=1 α

∗
i κ (xi, ·) + D

]
8 ‖ξ∗‖1 = ν�

(
W (α∗) − (r∗)2

)
9 c∗ =

∑�
i=1 α

∗
iφ (xi)

Output centre of sphere c∗ and/or function f testing for containment
sum of slacks ‖ξ∗‖1, the radius r∗

Code Fragment 7.3. Pseudocode for the soft hypersphere.

Theorem 7.12 Fix δ > 0 and γ > 0. Consider a training sample S =
{x1, . . . ,x�} drawn according to a distribution D and let c∗, f and ‖ξ∗‖1

be the output of Algorithm 7.11. Then the vector c∗ is the centre of the
soft minimal hypersphere that minimises the objective r2 + ‖ξ‖1 / (ν�) for
the image φ(S) of the set S in the feature space F defined by the kernel
κ (xi,xj) = 〈φ (xi) ,φ (xj)〉. Furthermore, r∗ is the radius of the hyper-
sphere, while the sum of the slack variables is ‖ξ∗‖1 and there are at most
ν� training points outside the hypersphere centred at c∗ with radius r∗, while
at least ν� of the training points do not lie in the interior of the hyper-
sphere. The function f outputs 1 on test points x ∈ X drawn according to
the distribution D with probability at most

1
γ�

‖ξ∗‖1 +
6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
,

where R is the radius of a ball in feature space centred at the origin contain-
ing the support of the distribution.

Proof Apart from the observations about the number of training points
lying inside and outside the hypersphere the result follows directly from an
application of Theorem 7.9 using the fact that the objective can be scaled
by ν to give νr∗2 + �−1 ‖ξ∗‖1. For a point xi lying outside the hypersphere

7.1 The smallest enclosing hypersphere 209

we have ξ∗i > 0 implying that β∗
i = 0, so that α∗

i = 1/ (ν�). Since

�∑
i=1

α∗
i = 1,

there can be at most ν� such points. Furthermore this equation together
with the upper bound on α∗

i implies that at least ν� training points do not
lie in the interior of the hypersphere, since for points inside the hypersphere
α∗
i = 0.

Remark 7.13 [Varying γ] Theorem 7.12 applies for a fixed value of γ. In
practice we would like to choose γ based on the performance of the algorithm.
This can be achieved by applying the theorem for a set of k values of γ with
the value of δ set to δ/k. This ensures that with probability 1−δ the bound
holds for all k choices of γ. Hence, we can apply the most useful value for the
given situation at the cost of a slight weakening of the bound. The penalty
is an additional ln(k)

� under the square root in the probability bound. We
omit this derivation as it is rather technical without giving any additional
insight. We will, however, assume that we can choose γ in response to the
training data in the corollary below.

Theorem 7.12 shows how ν places a lower bound on the fraction of points
that fail to be in the interior of the hypersphere and an equal upper bound
on those lying strictly outside the hypersphere. Hence, modulo the points
lying on the surface of the hypersphere, ν determines the fraction of points
not enclosed in the hypersphere. This gives a more intuitive parametrisation
of the problem than that given by the parameter C in Theorem 7.9. This
is further demonstrated by the following appealing corollary relating the
choice of ν to the false positive error rate.

Corollary 7.14 If we wish to fix the probability bound of Theorem 7.12 to
be

p + 3

√
ln(2/δ)

2�
=

1
γ�

‖ξ∗‖1 +
6R2

γ
√
�

+ 3

√
ln(2/δ)

2�
(7.7)

for some 0 < p < 1, and can choose γ accordingly, we will minimise the
volume of the corresponding test hypersphere obtained by choosing ν = p.

Proof Using the freedom to choose γ, it follows from equation (7.7) that

γ =
1
p

(
1
�
‖ξ∗‖1 +

6R2

√
�

)

210 Pattern analysis using convex optimisation

so that the radius squared of the test hypersphere is

r∗2 + γ = r∗2 +
1
p

(
1
�
‖ξ∗‖1 +

6R2

√
�

)

= r∗2 +
1
p�

‖ξ∗‖1 +
6R2

p
√
�
,

implying that p times the volume is

pr∗2 +
1
�
‖ξ∗‖1 +

6R2

√
�

,

which is equivalent to the objective of Computation 7.10 if ν = p.

Remark 7.15 [Combining with PCA] During this section we have restricted
our consideration to hyperspheres. If the data lies in a subspace of the
feature space the hypersphere will significantly overestimate the support of
the distribution in directions that are perpendicular to the subspace. In such
cases we could further reduce the volume of the estimation by performing
kernel PCA and applying Theorem 6.14 with δ set to δ/2 to rule out points
outside a thin slab around the k-dimensional subspace determined by the
first k principal axes. Combining this with Theorem 7.12 also with δ set to
δ/2 results in a region estimated by the intersection of the hypersphere with
the slab.

Remark 7.16 [Alternative approach] If the data is normalised it can be
viewed as lying on the surface of a hypersphere in the feature space. In this
case there is a correspondence between hyperspheres in the feature space and
hyperplanes, since the decision boundary determined by the intersection of
the two hyperspheres can equally well be described by the intersection of a
hyperplane with the unit hypersphere. The weight vector of the hyperplane
is that of the centre of the hypersphere containing the data. This follows
immediately from the form of the test function if we assume that κ (x,x) = 1,
since

f(x) = H
[
κ (x,x) − 2

�∑
i=1

α∗
iκ (xi,x) + D

]

= H
[
−2

�∑
i=1

α∗
iκ (xi,x) + D + 1

]
.

This suggests that an alternative strategy could be to search for a hyperplane
that maximally separates the data from the origin with an appropriately

7.2 Support vector machines for classification 211

adjusted threshold. For normalised data this will result in exactly the same
solution, but for data that is not normalised it will result in the slightly
different optimisation problem. The approach taken for classification in the
next section parallels this idea.

7.2 Support vector machines for classification

In this section we turn our attention to the problem of classification. For
novelty-detection we have seen how the stability analysis of Theorem 7.5
guides Computation 7.7 for the soft minimal hypersphere. Such an approach
gives a principled way of choosing a pattern function for a particular pattern
analysis task. We have already obtained a stability bound for classification in
Theorem 4.17 of Chapter 4. This gives a bound on the test misclassification
error or generalisation error of a linear function g(x) with norm 1 in a kernel-
defined feature space of

PD (y
= g(x)) ≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
, (7.8)

where K is the kernel matrix for the training set and ξi = ξ ((xi, yi), γ, g) =
(γ − yig(xi))+. We now use this bound to guide the choice of linear function
returned by the learning algorithm. As with the (soft) minimal hyperspheres
this leads to a quadratic optimisation problem though with some slight ad-
ditional complications. Despite these we will follow a similar route to that
outlined above starting with separating hyperplanes and moving to soft so-
lutions and eventually to ν-soft solutions.

Remark 7.17 [Choosing γ and the threshold] Again as with the bound for
the stability of novelty-detection, strictly speaking the bound of (7.8) only
applies if we have chosen γ a priori, while in practice we will choose γ after
running the learning algorithm. A similar strategy to that described above
involving the application of Theorem 4.17 for a range of values of γ ensures
that we can use the bound for approximately the observed value at the cost
of a small penalty under the square root. We will again omit these technical
details for the sake of readability and treat (7.8) as if it held for all choices
of γ. Similarly, the bound was proven for g(x) a simple linear function,
while below we will consider the additional freedom of choosing a threshold
without adapting the bound to take this into account.

212 Pattern analysis using convex optimisation

7.2.1 The maximal margin classifier

Let us assume initially that for a given training set

S = {(x1, y1), . . . , (x�, y�)} ,

there exists a norm 1 linear function

g(x) = 〈w,φ (xi)〉 + b

determined by a weight vector w and threshold b and that there exists γ > 0,
such that ξi = (γ − yig(xi))+ = 0 for 1 ≤ i ≤ �. This implies that the first
term on the right-hand side of (7.8) vanishes. In the terminology of Chapter
4 it implies that the margin m(S, g) of the training set S satisfies

m(S, g) = min
1≤i≤�

yig(xi) ≥ γ.

Informally, this implies that the two classes of data can be separated by a
hyperplane with a margin of γ as shown in Figure 7.3. We will call such

Fig. 7.3. Example of large margin hyperplane with support vectors circled.

a training set separable or more precisely linearly separable with margin γ.
More generally a classifier is called consistent if it correctly classifies all of
the training set.

7.2 Support vector machines for classification 213

Since the function w has norm 1 the expression 〈w,φ (xi)〉 measures the
length of the perpendicular projection of the point φ (xi) onto the ray de-
termined by w and so

yig(xi) = yi (〈w,φ (xi)〉 + b)

measures how far the point φ(xi) is from the boundary hyperplane, given
by

{x : g (x) = 0} ,

measuring positively in the direction of correct classification. For this reason
we refer to the functional margin of a linear function with norm 1 as the
geometric margin of the associated classifier. Hence m(S, g) ≥ γ implies
that S is correctly classified by g with a geometric margin of at least γ.

For such cases we consider optimising the bound of (7.8) over all functions
g for which such a γ exists. Clearly, the larger the value of γ the smaller the
bound. Hence, we optimise the bound by maximising the margin m(S, g).

Remark 7.18 [Robustness of the maximal margin] Although the stability
of the resulting hyperplane is guaranteed provided m(S, g) = γ is large, the
solution is not robust in the sense that a single additional training point
can reduce the value of γ very significantly potentially even rendering the
training set non-separable.

In view of the above criterion our task is to find the linear function that
maximises the geometric margin. This function is often referred to as the
maximal margin hyperplane or the hard margin support vector machine.

Computation 7.19 [Hard margin SVM] Hence, the choice of hyperplane
should be made to solve the following optimisation problem

maxw,b,γ γ

subject to yi (〈w,φ (xi)〉 + b) ≥ γ, i = 1, . . . , �,
and ‖w‖2 = 1.

(7.9)

Remark 7.20 [Canonical hyperplanes] The traditional way of formulat-
ing the optimisation problem makes use of the observation that rescaling
the weight vector and threshold does not change the classification function.
Hence we can fix the functional margin to be 1 and minimise the norm of
the weight vector. We have chosen to use the more direct method here as it

214 Pattern analysis using convex optimisation

follows more readily from the novelty detector of the previous section and
leads more directly to the ν-support vector machine discussed later.

For the purposes of conversion to the dual it is better to treat the op-
timisation as minimising −γ. As with the novelty-detection optimisation
we derive a Lagrangian in order to arrive at the dual optimisation problem.
Introducing Lagrange multipliers we obtain

L(w, b, γ,α, λ) = −γ −
�∑

i=1

αi [yi (〈w,φ (xi)〉 + b) − γ] + λ
(
‖w‖2 − 1

)
.

Differentiating with respect to the primal variables gives

∂L(w, b, γ,α, λ)
∂w

= −
�∑

i=1

αiyiφ(xi) + 2λw = 0,

∂L(w, b, γ,α, λ)
∂γ

= −1 +
�∑

i=1

αi = 0, and

∂L(w, b, γ,α, λ)
∂b

= −
�∑

i=1

αiyi = 0. (7.10)

Substituting we obtain

L(w, b, γ,α, λ) = −
�∑

i=1

αiyi 〈w,φ (xi)〉 + λ ‖w‖2 − λ

=
(
− 1

2λ
+

1
4λ

) �∑
i,j=1

αiyiαjyj 〈φ(xi),φ(xj)〉 − λ

= − 1
4λ

�∑
i,j=1

αiαjyiyjκ (xi,xj) − λ.

Finally, optimising the choice of λ gives

λ =
1
2


 �∑

i,j=1

αiαjyiyjκ (xi,xj)




1/2

,

resulting in

L(α) = −


 �∑

i,j=1

αiαjyiyjκ (xi,xj)




1/2

, (7.11)

7.2 Support vector machines for classification 215

which we call the dual Lagrangian. We have therefore derived the following
algorithm.

Algorithm 7.21 [Hard margin SVM] The hard margin support vector ma-
chine is implemented in Code Fragment 7.4.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
√
−W (α∗)

5 choose i such that 0 < α∗
i

6 b = yi (γ∗)2 −∑�
j=1 α

∗
jyjκ (xj ,xi)

7 f(·) = sgn
(∑�

j=1 α
∗
jyjκ (xj , ·) + b

)
;

8 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.4. Pseudocode for the hard margin SVM.

The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.21.

Theorem 7.22 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)} ,

is drawn according to a distribution D is linearly separable in the feature
space implicitly defined by the kernel κ and suppose Algorithm 7.21 outputs
w, α∗, γ∗ and the function f . Then the function f realises the hard margin
support vector machine in the feature space defined by κ with geometric
margin γ∗. Furthermore, with probability 1 − δ, the generalisation error of
the resulting classifier is bounded by

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the corresponding kernel matrix.

Proof The solution of the optimisation problem in Algorithm 7.21 clearly

216 Pattern analysis using convex optimisation

optimises (7.11) subject to the constraints of (7.10). Hence, the optimisation
of W (α) will result in the same solution vector α∗. It follows that

γ∗ = −L(w∗, b∗, γ∗,α∗, λ∗) =
√
−W (α∗).

The result follows from these observations and the fact that w is a simple
rescaling of the solution vector w∗ by twice the Lagrange multiplier λ∗.
Furthermore

2λ∗ =
2
2


 �∑

i,j=1

α∗
iα

∗
jyiyjκ (xi,xj)




1/2

=
√

−W (α∗).

If w is the solution given by Algorithm 7.21, it is a rescaled version of the
optimal solution w∗. Since the weight vector w has norm and geometric
margin equal to

√
−W (α∗), its functional margin is −W (α∗) = γ∗, while

the vectors with non-zero α∗
i have margin equal to the functional margin –

see Remark 7.23 – this gives the formula for b.

Remark 7.23 [On sparseness] The Karush–Kuhn–Tucker complementarity
conditions provide useful information about the structure of the solution.
The conditions state that the optimal solutions α∗, (w∗, b∗) must satisfy

α∗
i [yi (〈w∗,φ (xi)〉 + b∗) − γ∗] = 0, i = 1, . . . , �.

This implies that only for inputs xi for which the geometric margin is γ∗,
and that therefore lie closest to the hyperplane, are the corresponding α∗

i

non-zero. All the other parameters α∗
i are zero. This is a similar situation

to that encountered in the novelty-detection algorithm of Section 7.1. For
the same reason the inputs with non-zero α∗

i are called support vectors (see
Figure 7.3) and again we will denote the set of indices of the support vectors
with sv.

Remark 7.24 [On convexity] Note that the requirement that κ is a kernel
means that the optimisation problem of Algorithm 7.21 is convex since the
matrix G = (yiyjκ(xi,xj))

�
i,j=1 is also positive semi-definite, as the following

computation shows

β′Gβ =
�∑

i,j=1

βiβjyiyjκ(xi,xj) =

〈
�∑

i=1

βiyiφ(xi),
�∑

j=1

βjyjφ(xj)

〉

=

∥∥∥∥∥
�∑

i=1

βiyiφ(xi)

∥∥∥∥∥
2

≥ 0.

7.2 Support vector machines for classification 217

Hence, the property required of a kernel function to define a feature space
also ensures that the maximal margin optimisation problem has a unique
solution that can be found efficiently. This rules out the problem of local
minima often encountered in for example training neural networks.

Remark 7.25 [Duality gap] An important result from optimisation theory
states that throughout the feasible regions of the primal and dual problems
the primal objective is always bigger than the dual objective, when the
primal is a minimisation. This is also indicated by the fact that we are
minimising the primal and maximising the dual. Since the problems we are
considering satisfy the conditions of strong duality, there is no duality gap
at the optimal solution. We can therefore use any difference between the
primal and dual objectives as an indicator of convergence. We will call this
difference the duality gap. Let α̂ be the current value of the dual variables.
The possibly still negative margin can be calculated as

γ̂ =
minyi=1 (〈ŵ,φ (xi)〉) − maxyi=−1 (〈ŵ,φ (xi)〉)

2
,

where the current value of the weight vector is ŵ. Hence, the duality gap
can be computed as

−
√

−W (α̂) + γ̂.

Alternative formulation There is an alternative way of defining the max-
imal margin optimisation by constraining the functional margin to be 1 and
minimising the norm of the weight vector that achieves this. Since the
resulting classification is invariant to rescalings this delivers the same clas-
sifier. We can arrive at this formulation directly from the dual optimisation
problem (7.10) if we use a Lagrange multiplier to incorporate the constraint

�∑
i=1

αi = 1

into the optimisation. Again using the invariance to rescaling we can elect
to fix the corresponding Lagrange variable to a value of 2. This gives the
following algorithm.

Algorithm 7.26 [Alternative hard margin SVM] The alternative hard mar-
gin support vector machine is implemented in Code Fragment 7.5.

218 Pattern analysis using convex optimisation

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) =

∑�
i=1 αi − 1

2

∑�
i,j=1 αiαjyiyjκ (xi,xj)

subject to
∑�

i=1 yiαi = 0 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
(∑

i∈sv α
∗
i

)−1/2

5 choose i such that 0 < α∗
i

6 b = yi −
∑

j∈sv α
∗
jyjκ (xj ,xi)

7 f(·) = sgn
(∑

j∈sv α
∗
jyjκ (xj , ·) + b

)
;

8 w =
∑

j∈sv yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.5. Pseudocode for the alternative version of the hard SVM.

The following theorem characterises the output and analyses the stability
of Algorithm 7.26.

Theorem 7.27 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)} ,

is drawn according to a distribution D, is linearly separable in the feature
space implicitly defined by the kernel κ(xi,xj), and suppose Algorithm 7.26
outputs w, α∗, γ∗ and the function f . Then the function f realises the
hard margin support vector machine in the feature space defined by κ with
geometric margin γ∗. Furthermore, with probability 1− δ, the generalisation
error is bounded by

4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the corresponding kernel matrix.

Proof The generalisation follows from the equivalence of the two classifiers.
It therefore only remains to show that the expression for γ∗ correctly com-
putes the geometric margin. Since we know that the solution is just a scaling
of the solution of problem (7.10) we can seek the solution by optimising µ,
where

α = µα†

7.2 Support vector machines for classification 219

and α† is the solution to problem (7.10). Hence, µ is chosen to maximise

µ

�∑
i=1

α†
i −

µ2

2

�∑
i,j=1

yiyjα
†
iα

†
jκ(xi,xj) = µ− µ2

2

�∑
i,j=1

yiyjα
†
iα

†
jκ(xi,xj)

giving

µ∗ =


 �∑

i,j=1

yiyjα
†
iα

†
jκ(xi,xj)




−1

= −W (α†)−1 = (γ∗)−2 ,

implying

γ∗ = (µ∗)−1/2 =

(
µ∗

�∑
i=1

α†
i

)−1/2

=

(
�∑

i=1

α∗
i

)−1/2

,

as required.

An example using the Gaussian kernel is shown in Figure 7.4.

Fig. 7.4. Decision boundary and support vectors when using a gaussian kernel.

7.2.2 Soft margin classifiers

The maximal margin classifier is an important concept, but it can only be
used if the data are separable. For this reason it is not applicable in many

220 Pattern analysis using convex optimisation

real-world problems where the data are frequently noisy. If we are to ensure
linear separation in the feature space in such cases, we will need very complex
kernels that may result in overfitting. Since the hard margin support vector
machine always produces a consistent hypothesis, it is extremely sensitive
to noise in the training data. The dependence on a quantity like the margin
opens the system up to the danger of being very sensitive to a few points.
For real data this will result in a non-robust estimator.

This problem motivates the development of more robust versions that
can tolerate some noise and outliers in the training set without drastically
altering the resulting solution. The motivation of the maximal margin hy-
perplane was the bound given in (7.8) together with the assumption that the
first term vanishes. It is the second assumption that led to the requirement
that the data be linearly separable. Hence, if we relax this assumption and
just attempt to optimise the complete bound we will be able to tolerate some
misclassification of the training data. Exactly as with the novelty detector
we must optimise a combination of the margin and 1-norm of the vector ξ,
where ξi = ξ ((yi,xi), γ, g) = (γ − yig(xi))+. Introducing this vector into
the optimisation criterion results in an optimisation problem with what are
known as slack variables that allow the margin constraints to be violated.
For this reason we often refer to the vector ξ as the margin slack vector .

Computation 7.28 [1-norm soft margin SVM] The 1-norm soft margin
support vector machine is given by the computation

minw,b,γ,ξ −γ + C
∑�

i=1 ξi
subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi, ξi ≥ 0,

i = 1, . . . , �, and ‖w‖2 = 1.
(7.12)

The parameter C controls the trade-off between the margin and the size
of the slack variables. The optimisation problem (7.12) controls the 1-norm
of the margin slack vector. It is possible to replace the 1-norm with the
square of the 2-norm. The generalisation analysis for this case is almost
identical except for the use of the alternative squared loss function

A(a) =




1, if a < 0;
(1 − a/γ)2, if 0 ≤ a ≤ γ;
0, otherwise.

The resulting difference when compared to Theorem 4.17 is that the empir-
ical loss involves 1/γ2 rather than 1/γ and the Lipschitz constant is 2/γ in

7.2 Support vector machines for classification 221

place of 1/γ. Hence, the bound becomes

PD (y
= g(x)) ≤ 1
�γ2

�∑
i=1

ξ2
i +

8
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
. (7.13)

In the next section we look at optimising the 1-norm bound and, following
that, turn our attention to the case of the 2-norm of the slack variables.

1-Norm soft margin – the box constraint The corresponding Lagrangian
for the 1-norm soft margin optimisation problem is

L(w, b, γ, ξ,α,β, λ) = −γ + C

�∑
i=1

ξi −
�∑

i=1

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi]

−
�∑

i=1

βiξi + λ
(
‖w‖2 − 1

)

with αi ≥ 0 and βi ≥ 0. The corresponding dual is found by differentiating
with respect to w, ξ, γ and b, and imposing stationarity:

∂L(w, b, γ, ξ,α,β, λ)
∂w

= 2λw −
�∑

i=1

yiαiφ (xi) = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂ξi

= C−αi−βi = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂b

=
�∑

i=1

yiαi = 0,

∂L(w, b, γ, ξ,α,β, λ)
∂γ

= 1 −
�∑

i=1

αi = 0.

Resubstituting the relations obtained into the primal, we obtain the follow-
ing adaptation of the dual objective function

L(α, λ) = − 1
4λ

�∑
i,j=1

yiyjαiαjκ (xi,xj) − λ,

which, again optimising with respect to λ, gives

λ∗ =
1
2


 �∑

i,j=1

yiyjαiαjκ (xi,xj)




1/2

(7.14)

222 Pattern analysis using convex optimisation

resulting in

L(α) = −


 �∑

i,j=1

αiαjyiyjκ (xi,xj)




1/2

.

This is identical to that for the maximal margin, the only difference being
that the constraint C−αi−βi=0, together with βi ≥ 0 enforces αi ≤ C. The
KKT complementarity conditions are therefore

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi] = 0, i = 1, . . . , �,
ξi (αi − C) = 0, i = 1, . . . , �.

Notice that the KKT conditions imply that non-zero slack variables can
only occur when αi = C. The computation of b∗ and γ∗ from the optimal
solution α∗ can be made from two points xi and xj satisfying yi = −1,
yj = +1 and C > α∗

i , α
∗
j > 0. It follows from the KKT conditions that

yi(〈φ (xi) ,w∗〉 + b∗) − γ∗ = 0 = yj(〈φ (xj) ,w∗〉 + b∗) − γ∗

implying that

−〈φ (xi) ,w∗〉 − b∗ − γ∗ = 〈φ (xj) ,w∗〉 + b∗ − γ∗

or b∗ = −0.5 (〈φ (xi) ,w∗〉 + 〈φ (xj) ,w∗〉) (7.15)

while γ∗ = 〈φ (xj) ,w∗〉 + b∗. (7.16)

We therefore have the following algorithm.

Algorithm 7.29 [1-norm soft margin support vector machine] The 1-norm
soft margin support vector machine is implemented in Code Fragment 7.6.

The following theorem characterises the output and statistical stability of
Algorithm 7.29.

Theorem 7.30 Fix δ > 0 and C ∈ [1/�,∞). Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

is drawn according to a distribution D and suppose Algorithm 7.29 outputs
w, α∗, γ∗ and the function f . Then the function f realises the 1-norm soft
margin support vector machine in the feature space defined by κ. Further-
more, with probability 1 − δ, the generalisation error is bounded by

1
C�

−
√
−W (α∗)
C�γ∗

+
4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
,

7.2 Support vector machines for classification 223

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0, C ∈ [1/�,∞)

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi ≤ C, i = 1, . . . , �.

4 λ∗ = 1
2

(∑�
i,j=1 yiyjα

∗
iα

∗
jκ (xi,xj)

)1/2

5 choose i, j such that −C < α∗
i yi < 0 < α∗

jyj < C

6 b∗ = −λ∗(
∑�

k=1 α
∗
kykκ (xk,xi) +

∑�
k=1 α

∗
kykκ (xk,xj))

7 γ∗ = 2λ∗∑�
k=1 α

∗
kykκ (xk,xj) + b∗

8 f(·) = sgn
(∑�

j=1 α
∗
jyjκ (xj , ·) + b∗

)
;

9 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.6. Pseudocode for 1-norm soft margin SVM.

where K is the corresponding kernel matrix.

Proof Note that the rescaling of b∗ is required since the function f(x)
corresponds to the weight vector

w = 2λ∗w∗ =
�∑

i=1

yiα
∗
iφ (xi) .

All that remains to show is that the error bound can be derived from the
general formula

PD (y
= g(x)) ≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
.

We need to compute the sum of the slack variables. Note that at the opti-
mum we have

L(w∗, b∗, γ∗, ξ∗,α∗,β∗, λ∗) = −
√

−W (α∗) = −γ∗ + C
�∑

i=1

ξ∗i

and so
�∑

i=1

ξ∗i =
γ∗ −

√
−W (α∗)
C

.

224 Pattern analysis using convex optimisation

Substituting into the bound gives the result.

An example of the soft margin support vector solution using a Gaussian
kernel is shown in Figure 7.5. The support vectors with zero slack variables
are circled, though there are other support vectors that fall outside the
positive and negative region corresponding to their having non-zero slack
variables.

Fig. 7.5. Decision boundary for a soft margin support vector machine using a gauss-
ian kernel.

Surprisingly the algorithm is equivalent to the maximal margin hyper-
plane, with the additional constraint that all the αi are upper bounded by
C. This gives rise to the name box constraint that is frequently used to refer
to this formulation, since the vector α is constrained to lie inside the box
with side length C in the positive orthant. The trade-off parameter between
accuracy and regularisation directly controls the size of the αi. This makes
sense intuitively as the box constraints limit the influence of outliers, which
would otherwise have large Lagrange multipliers. The constraint also en-
sures that the feasible region is bounded and hence that the primal always
has a non-empty feasible region.

Remark 7.31 [Tuning the parameter C] In practice the parameter C is
varied through a wide range of values and the optimal performance assessed

7.2 Support vector machines for classification 225

using a separate validation set or a technique known as cross-validation
for verifying performance using only the training set. As the parameter
C runs through a range of values, the margin γ∗ varies smoothly through
a corresponding range. Hence, for a given problem, choosing a particular
value for C corresponds to choosing a value for γ∗, and then minimising
‖ξ‖1 for that size of margin.

As with novelty-detection, the parameter C has no intuitive meaning.
However, the same restrictions on the value of C, namely that C ≥ 1/�,
that applied for the novelty-detection optimisation apply here. Again this
suggests using

C = 1/ (ν�) ,

with ν ∈ (0, 1] as this leads to a similar control on the number of outliers
in a way made explicit in the following theorem. This form of the support
vector machine is known as the ν-support vector machine or new support
vector machine.

Algorithm 7.32 [ν-support vector machine] The ν-support vector machine
is implemented in Code Fragment 7.7.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0, ν ∈ (0, 1]

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyjκ (xi,xj)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi ≤ 1/ (ν�) , i = 1, . . . , �.

4 λ∗ = 1
2

(∑�
i,j=1 yiyjα

∗
iα

∗
jκ (xi,xj)

)1/2

5 choose i, j such that −1/ (ν�) < α∗
i yi < 0 < α∗

jyj < 1/ (ν�)
6 b∗ = −λ∗(

∑�
k=1 α

∗
kykκ (xk,xi) +

∑�
k=1 α

∗
kykκ (xk,xj))

7 γ∗ = 2λ∗∑�
k=1 α

∗
kykκ (xk,xj) + b∗

8 f(·) = sgn
(∑�

j=1 α
∗
jyjκ (xj , ·) + b∗

)
;

9 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.7. Pseudocode for the soft margin SVM.

226 Pattern analysis using convex optimisation

The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.32, while at the same time elucidating the role of
the parameter ν.

Theorem 7.33 Fix δ > 0 and ν ∈ (0, 1]. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

is drawn according to a distribution D and suppose Algorithm 7.32 outputs
w, α∗, γ∗ and the function f . Then the function f realises the ν-support
vector machine in the feature space defined by κ. Furthermore, with prob-
ability 1 − δ, the generalisation error of the resulting classifier is bounded
by

ν − ν
√

−W (α∗)
γ∗

+
4
�γ∗

√
tr(K) + 3

√
ln(2/δ)

2�
, (7.17)

where K is the corresponding kernel matrix. Furthermore, there are at most
ν� training points that fail to achieve a margin γ∗, while at least ν� of the
training points have margin at most γ∗.

Proof This is a direct restatement of Proposition 7.30 with C = 1/ (ν�). It
remains only to show the bounds on the number of training points failing
to achieve the margin γ∗ and having margin at most γ∗. The first bound
follows from the fact that points failing to achieve margin γ∗ have a non-zero
slack variable and hence αi = 1/ (ν�). Since

�∑
i=1

αi = 1,

it follows there can be at most ν� such points. Since αi ≤ 1/ (ν�) it similarly
follows that at least ν� points have non-zero αi implying that they have
margin at most γ∗.

Remark 7.34 [Tuning ν] The form of the generalisation error bound in
Proposition 7.33 gives a good intuition about the role of the parameter ν.
It corresponds to the noise level inherent in the data, a value that imposes
a lower bound on the generalisation error achievable by any learning algo-
rithm.

We can of course use the bound of (7.17) to guide the best choice of
the parameter ν, though strictly speaking we should apply the bound for a
range of values of ν, in order to work with the bound with non-fixed ν. This

7.2 Support vector machines for classification 227

would lead to an additional log(�)/� factor under the final square root, but
for simplicity we again omit these details.

Remark 7.35 [Duality gap] In the case of the 1-norm support vector ma-
chine the feasibility gap can again be computed since the ξi, γ, and b are
not specified when moving to the dual and so can be chosen to ensure that
the primary problem is feasible. If we choose them to minimise the primal
we can compute the difference between primal and dual objective functions.
This can be used to detect convergence to the optimal solution.

2-Norm soft margin – weighting the diagonal In order to minimise
the bound (7.13) we can again formulate an optimisation problem, this time
involving γ and the 2-norm of the margin slack vector

minw,b,γ,ξ −γ + C
∑�

i=1 ξ
2
i

subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi, ξi ≥ 0,
i = 1, . . . , �, and ‖w‖2 = 1.

(7.18)

Notice that if ξi < 0, then the first constraint will still hold if we set ξi = 0,
while this change will reduce the value of the objective function. Hence,
the optimal solution for the problem obtained by removing the positivity
constraint on ξi will coincide with the optimal solution of (7.18). Hence we
obtain the solution to (7.18) by solving the following computation.

Computation 7.36 [2-norm soft margin SVM] The 2-norm soft margin
support vector machine is given by the optimisation:

minw,b,γ,ξ −γ + C
∑�

i=1 ξ
2
i

subject to yi (〈w,φ (xi)〉 + b) ≥ γ − ξi,
i = 1, . . . , �, and ‖w‖2 = 1.

(7.19)

The Lagrangian for problem (7.19) of Computation 7.36 is

L(w, b, γ, ξ,α, λ) = −γ + C

�∑
i=1

ξ2
i −

�∑
i=1

αi [yi(〈φ (xi) ,w〉 + b) − γ + ξi]

+ λ
(
‖w‖2 − 1

)
with αi ≥ 0. The corresponding dual is found by differentiating with respect
to w, ξ, γ and b, imposing stationarity

228 Pattern analysis using convex optimisation

∂L(w, b, γ, ξ,α, λ)
∂w

= 2λw −
�∑

i=1

yiαiφ (xi) = 0,

∂L(w, b, γ, ξ,α, λ)
∂ξi

= 2Cξi−αi = 0,

∂L(w, b, γ, ξ,α, λ)
∂b

=
�∑

i=1

yiαi = 0,

∂L(w, b, γ, ξ,α, λ)
∂γ

= 1 −
�∑

i=1

αi = 0.

Resubstituting the relations obtained into the primal, we obtain the follow-
ing adaptation of the dual objective function

L(w, b, γ, ξ,α, λ) = − 1
4C

�∑
i=1

α2
i −

1
4λ

�∑
i,j=1

yiyjαiαjκ (xi,xj) − λ,

which, again optimising with respect to λ, gives

λ∗ =
1
2


 �∑

i,j=1

yiyjαiαjκ (xi,xj)




1/2

(7.20)

resulting in

L(α, λ) = − 1
4C

�∑
i=1

α2
i −


 �∑

i,j=1

αiαjyiyjκ (xi,xj)




1/2

.

We can see that adding the 2-norm regularisation of the slack variables in the
primal corresponds to regularising the dual with the 2-norm of the Lagrange
multipliers. As C is varied, the size of this 2-norm squared will vary from a
minimum of 1/� corresponding to a uniform allocation of

αi =
1
�

to a maximum of 0.5 when exactly one positive and one negative example
each get weight 0.5. Maximising the above objective over α for a particular
value C is equivalent to maximising

W (α) = −µ
�∑

i=1

α2
i −

�∑
i,j=1

αiαjyiyjκ (xi,xj)

7.2 Support vector machines for classification 229

= −
�∑

i,j=1

yiyjαiαj (κ (xi,xj) + µδij) ,

for some value of µ = µ (C), where δij is the Kronecker δ defined to be 1 if
i = j and 0 otherwise. But this is just the objective of Algorithm 7.21 with
the kernel κ (xi,xj) replaced by (κ (xi,xj) + µδij).

Hence, we have the following algorithm.

Algorithm 7.37 [2-norm soft margin SVM] The 2-norm soft margin sup-
port vector machine is implemented in Code Fragment 7.8.

Input training set S = {(x1, y1), . . . , (x�, y�)}, δ > 0

Process find α∗ as solution of the optimisation problem:
maximise W (α) = −∑�

i,j=1 αiαjyiyj (κ (xi,xj) + µδij)
subject to

∑�
i=1 yiαi = 0,

∑�
i=1 αi = 1 and 0 ≤ αi, i = 1, . . . , �.

4 γ∗ =
√
−W (α∗)

5 choose i such that 0 < α∗
i

6 b = yi (γ∗)2 −∑�
j=1 α

∗
jyj (κ (xi,xj) + µδij)

7 f(x) = sgn
(∑�

j=1 α
∗
jyjκ (xj ,x) + b

)
;

8 w =
∑�

j=1 yjα
∗
jφ(xj)

Output weight vector w, dual solution α∗, margin γ∗ and function f
implementing the decision rule represented by the hyperplane

Code Fragment 7.8. Pseudocode for the 2-norm SVM.

The following theorem characterises the output and analyses the statistical
stability of Algorithm 7.37.

Theorem 7.38 Fix δ > 0. Suppose that a training sample

S = {(x1, y1), . . . , (x�, y�)}

drawn according to a distribution D in the feature space implicitly defined by
the kernel κ and suppose Algorithm 7.37 outputs w, α∗, γ∗ and the function
f . Then the function f realises the hard margin support vector machine
in the feature space defined by (κ (xi,xj) + µδij) with geometric margin γ∗.
This is equivalent to minimising the expression −γ + C

∑�
i=1 ξ

2
i involving

the 2-norm of the slack variables for some value of C, hence realising the

230 Pattern analysis using convex optimisation

2-norm support vector machine. Furthermore, with probability 1 − δ, the
generalisation error of the resulting classifier is bounded by

min

(
µ ‖α∗‖2

�γ∗4
+

8
√

tr(K)
�γ∗

+ 3

√
ln(4/δ)

2�
,
4
√

tr(K) + �µ

�γ∗
+ 3

√
ln(4/δ)

2�

)
,

where K is the corresponding kernel matrix.

Proof The value of the slack variable ξ∗i can be computed by observing that
the contribution to the functional output of the µδij term is µα∗

i for the
unnormalised weight vector w whose norm is given by

‖w‖2 = −W (α∗) = γ∗2.

Hence, for the normalised weight vector its value is µα∗
i /γ

∗. Plugging this
into the bound (7.13) for the 2-norm case shows that the first term of the
minimum holds with probability 1−(δ/2). The second term of the minimum
holds with probability 1 − (δ/2) through an application of the hard margin
bound in the feature space defined by the kernel

(κ (xi,xj) + µδij) .

The 2-norm soft margin algorithm reduces to the hard margin case with
an extra constant added to the diagonal. In this sense it is reminiscent
of the ridge regression algorithm. Unlike ridge regression the 2-norm soft
margin algorithm does not lose the sparsity property that is so important for
practical applications. We now return to give a more detailed consideration
of ridge regression including a strategy for introducing sparsity.

7.3 Support vector machines for regression

We have already discussed the problem of learning a real-valued function
in both Chapters 2 and 6. The partial least squares algorithm described
in Section 6.7.1 can be used for learning functions whose output is in any
Euclidean space, so that the 1-dimensional output of a real-valued function
can be seen as a special case. The term regression is generally used to refer to
such real-valued learning. Chapter 2 used the ridge regression algorithm to
introduce the dual representation of a linear function. We were not, however,
in a position to discuss the stability of regression or extensions to the basic
algorithm at that stage. We therefore begin this section by redressing this
shortcoming of our earlier presentation. Following that we will give a fuller
description of ridge regression and other support vector regression methods.

7.3 Support vector machines for regression 231

7.3.1 Stability of regression

In order to assess the stability of ridge regression we must choose a pattern
function similar to that used for classification functions, namely a measure
of discrepancy between the generated output and the desired output. The
most common choice is to take the squared loss function between prediction
and true output

f (z) = f (x, y) = L (y, g (x)) = (y − g (x))2 .

The function g is here the output of the ridge regression algorithm with the
form

g (x) =
�∑

i=1

αiκ (xi,x) ,

where α is given by

α = (K + λI�)
−1y.

We can now apply Theorem 4.9 to this function to obtain the following
result.

Theorem 7.39 Fix B > 0 and δ ∈ (0, 1). Let FB be the class of linear
functions with norm at most B, mapping from a feature space defined by the
kernel κ over a space X. Let

S = {(x1, y1), . . . , (x�, y�)}

be drawn independently according to a probability distribution D on X × R,
the image of whose support in the feature space is contained in a ball of
radius R about the origin, while the support of the output value y lies in the
interval [−BR,BR]. Then with probability at least 1 − δ over the random
draw of S, we have, for all g ∈ FB

ED
[
(y − g (x))2

]
≤ 1

�

�∑
i=1

(yi − g (xi))
2 +

16RB

�

(
B
√

tr(K) + ‖y‖2

)

+ 12 (RB)2
√

ln(2/δ)
2�

,

where K is the kernel matrix of the training set S.

Proof We define the loss function class LF ,h,2 to be

LF ,h,2 =
{

(g − h)2
∣∣∣ g ∈ F

}
.

232 Pattern analysis using convex optimisation

We will apply Theorem 4.9 to the function (y − g (x))2 / (2RB)2 ∈ LF ,h,2

with F = FB/(2RB) = F1/(2R) and h (x, y) = y/ (2RB). Since this ensures
that in the support of the distribution the class is bounded in the interval
[0, 1], we have

ED
[
(y − g (x))2 / (2RB)2

]
≤ Ê

[
(y − g (x))2 / (2RB)2

]

+R̂�(LF ,h,2) + 3

√
ln(2/δ)

2�
.

Multiplying through by (2RB)2 gives

ED
[
(y − g (x))2

]
≤ Ê

[
(y − g (x))2

]
+ (2RB)2 R̂�(LF ,h,2)

+ 12 (RB)2
√

ln(2/δ)
2�

.

The first term on the right-hand side is simply the empirical squared loss.
By part (vi) of Proposition 4.15 we have

R̂�(LF ,h,2) ≤ 4

(
R̂�(F1/(2R)) + 2

√
Ê

[
y2/ (2RB)2

]
/�

)
.

This together with Theorem 4.12 gives the result.

7.3.2 Ridge regression

Theorem 7.39 shows that the expected value of the squared loss can be
bounded by its empirical value together with a term that involves the trace
of the kernel matrix and the 2-norm of the output values, but involving a
bound on the norm of the weight vector of the linear functions. It therefore
suggests that we can optimise the off-training set performance by solving
the computation:

Computation 7.40 [Ridge regression optimisation] The ridge regression
optimisation is achieved by solving

minw
∑�

i=1 ξ
2
i

subject to yi − 〈w,φ (xi)〉 = ξi,
i = 1, . . . , �, and ‖w‖ ≤ B.

(7.21)

7.3 Support vector machines for regression 233

Applying the Lagrange multiplier technique we obtain the Lagrangian

L(w, ξ,β, λ) =
�∑

i=1

ξ2
i +

�∑
i=1

βi [yi − 〈φ (xi) ,w〉 − ξi] + λ
(
‖w‖2 −B2

)
.

Again taking derivatives with respect to the primal variables gives

2λw =
�∑

i=1

βiφ (xi) and 2ξi = βi, i = 1, . . . , �.

Resubstituting into L we have

L(β, λ) = −1
4

�∑
i=1

β2
i +

�∑
i=1

βiyi −
1
4λ

�∑
i,j=1

βiβjκ (xi,xj) − λB2.

Letting αi = βi/ (2λ) be the dual coefficients of the solution weight vector
results in the optimisation

min
α

−λ

�∑
i=1

α2
i + 2

�∑
i=1

αiyi −
�∑

i,j=1

αiαjκ (xi,xj) .

Differentiating with respect to the parameters and setting the derivative
equal to zero leads to the following algorithm.

Algorithm 7.41 [Kernel ridge regression] The ridge regression algorithm
is implemented as follows:

Input training set S = {(x1, y1), . . . , (x�, y�)}, λ > 0
Process α∗= (K + λI�)

−1y
2 f(x) =

∑�
j=1 α

∗
jκ (xj ,x)

3 w =
∑�

j=1 α
∗
jφ(xj)

Output weight vector w, dual α∗ and/or function f

implementing ridge regression

The algorithm was already introduced in Chapter 2 (see (2.6)). Strictly
speaking we should have optimised over λ, but clearly different values of λ
correspond to different choices of B, hence varying λ is equivalent to varying
B.

The example of ridge regression shows how once again the form of the
bound on the stability of the pattern function leads to the optimisation prob-
lem that defines the solution of the learning task. Despite this well-founded
motivation, dual ridge regression like dual partial least squares suffers from

234 Pattern analysis using convex optimisation

the disadvantage that the solution vector α∗ is not sparse. Hence, to eval-
uate the learned function on a novel example we must evaluate the kernel
with each of the training examples. For large training sets this will make
the response time very slow.

The sparsity that arose in the case of novelty-detection and classification
had its roots in the inequalities used to define the optimisation criterion.
This follows because at the optimum those points for which the function
output places them in a region where the loss function has zero derivative
must have their Lagrange multipliers equal to zero. Clearly for the 2-norm
loss this is never the case.

We therefore now examine how the square loss function of ridge regres-
sion can be altered with a view to introducing sparsity into the solutions
obtained. This will then lead to the use of the optimisation techniques ap-
plied above for novelty-detection and classification but now used to solve
regression problems, hence developing the support vector regression (SVR)
algorithms.

7.3.3 ε-insensitive regression

In order to encourage sparseness, we need to define a loss function that
involves inequalities in its evalution. This can be achieved by ignoring errors
that are smaller than a certain threshold ε > 0. For this reason the band
around the true output is sometimes referred to as a tube. This type of loss
function is referred to as an ε-insensitive loss function. Using ε-insensitive
loss functions leads to the support vector regression algorithms.

Figure 7.6 shows an example of a one-dimensional regression function with
an ε-insensitive band. The variables ξ measure the cost of the errors on the
training points. These are zero for all points inside the band. Notice that
when ε = 0 we recover standard loss functions such as the squared loss used
in the previous section as the following definition makes clear.

Definition 7.42 The (linear) ε-insensitive loss function Lε(x, y, g) is de-
fined by

Lε(x, y, g) = |y − g(x)|ε = max (0, |y − g(x)| − ε) ,

where g is a real-valued function on a domain X, x ∈ X and y ∈ R. Similarly
the quadratic ε-insensitive loss is given by

Lε
2(x, y, g) = |y − g(x)|2ε .

7.3 Support vector machines for regression 235

Fig. 7.6. Regression using ε-insensitive loss.

Continuing the development that we began with ridge regression it is
most natural to consider taking the square of the ε-insensitive loss to give
the so-called quadratic ε-insensitive loss.

Quadratic ε-insensitive loss We can optimise the sum of the quadratic
ε-insensitive losses again subject to the constraint that the norm is bounded.
This can be cast as an optimisation problem by introducing separate slack
variables for the case where the output is too small and the output is too
large. Rather than have a separate constraint for the norm of the weight
vector we introduce the norm into the objective function together with a
parameter C to measure the trade-off between the norm and losses. This
leads to the following computation.

Computation 7.43 [Quadratic ε-insensitive SVR] The weight vector w
and threshold b for the quadratic ε-insensitive support vector regression are
chosen to optimise the following problem:

minw,b,ξ,ξ̂ ‖w‖2 + C
∑�

i=1(ξ
2
i + ξ̂

2

i),
subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi, i = 1, . . . , �,

yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i, i = 1, . . . , �.


 (7.22)

236 Pattern analysis using convex optimisation

We have not constrained the slack variables to be positive since negative
values will never arise at the optimal solution. We have further included an
offset parameter b that is not penalised. The dual problem can be derived
using the standard method and taking into account that ξiξ̂i = 0 and there-
fore that the same relation αiα̂i = 0 holds for the corresponding Lagrange
multipliers

maxα̂,α
∑�

i=1 yi(α̂i − αi) − ε
∑�

i=1(α̂i + αi)
−1

2

∑�
i,j=1(α̂i − αi)(α̂i − αj)

(
κ (xi,xj) + 1

C δij
)
,

subject to
∑�

i=1(α̂i − αi) = 0,
α̂i ≥ 0, αi ≥ 0, i = 1, . . . , �.

The corresponding KKT complementarity conditions are

αi (〈w,φ (xi)〉 + b− yi − ε− ξi) = 0, i = 1, . . . , �,

α̂i

(
yi − 〈w,φ (xi)〉 − b− ε− ξ̂i

)
= 0, i = 1, . . . , �,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , �,

Remark 7.44 [Alternative formulation] Note that by substituting β =
α̂ − α and using the relation αiα̂i = 0, it is possible to rewrite the dual
problem in a way that more closely resembles the classification case

maxβ
∑�

i=1 yiβi − ε
∑�

i=1 |βi| − 1
2

∑�
i,j=1 βiβj

(
κ (xi,xj) + 1

C δij
)
,

subject to
∑�

i=1 βi = 0.

Notice that if we set ε = 0 we recover ridge regression, but with an unpe-
nalised offset that gives rise to the constraint

�∑
i=1

βi = 0.

We will in fact use α in place of β when we use this form later.

Hence, we have the following result for a regression technique that will
typically result in a sparse solution vector α∗.

Algorithm 7.45 [2-norm support vector regression] The 2-norm support
vector regression algorithm is implemented in Code Fragment 7.9.

Though the move to the use of the ε-insensitive loss was motivated by the
desire to introduce sparsity into the solution, remarkably it can also improve
the generalisation error as measured by the expected value of the squared
error as is bourne out in practical experiments.

7.3 Support vector machines for regression 237

Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0

Process find α∗ as solution of the optimisation problem:

maxα W (α) =
�∑

i=1

yiαi − ε
�∑

i=1

|αi| − 1
2

�∑
i,j=1

αiαj

(
κ(xi,xj) + 1

C δij
)

subject to
∑�

i=1 αi = 0.

4 w =
∑�

j=1 α
∗
jφ(xj)

5 b∗ = −ε− (α∗
i /C) + yi −

∑�
j=1 α

∗
jκ(xj ,xi) for i with α∗

i > 0.
6 f(x) =

∑�
j=1 α

∗
jκ(xj ,x) + b∗,

Output weight vector w, dual α∗, b∗ and/or function f
implementing 2-norm support vector regression

Code Fragment 7.9. Pseudocode for 2-norm support vector regression.

The quadratic ε-insensitive loss follows naturally from the loss function
used in ridge regression. There is, however, an alternative that parallels the
use of the 1-norm of the slack variables in the support vector machine. This
makes use of the linear ε-insensitive loss.

Linear ε-insensitive loss A straightforward rewriting of the optimisation
problem (7.22) that minimises the linear loss is as follows:

Computation 7.46 [Linear ε-insensitive SVR] The weight vector w and
threshold b for the linear ε-insensitive support vector regression are chosen
to optimise the following problem:

minw,b,ξ,ξ̂
1
2 ‖w‖2 + C

∑�
i=1(ξi + ξ̂i),

subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi, i = 1, . . . , �,
yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i, i = 1, . . . , �,
ξi, ξ̂i ≥ 0, i = 1, . . . , �.




(7.23)

The corresponding dual problem can be derived using the now standard
techniques

max
∑�

i=1(α̂i − αi)yi − ε
∑�

i=1(α̂i + αi)
−1

2

∑�
i,j=1(α̂i − αi)(α̂j − αj)κ (xi,xj),

subject to 0 ≤ αi, α̂i ≤ C, i = 1, . . . , �,∑�
i=1(α̂i − αi) = 0, i = 1, . . . , �.

238 Pattern analysis using convex optimisation

The KKT complementarity conditions are

αi (〈w,φ (xi)〉 + b− yi − ε− ξi) = 0, i = 1, . . . , �,

α̂i

(
yi − 〈w,φ (xi)〉 − b− ε− ξ̂i

)
= 0, i = 1, . . . , �,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , �,
(αi − C) ξi = 0, (α̂i − C) ξ̂i = 0, i = 1, . . . , �.

Again as mentioned in Remark 7.44 substituting αi for α̂i − αi, and taking
into account that αiα̂i = 0, we obtain the following algorithm.

Algorithm 7.47 [1-norm support vector regression] The 1-norm support
vector regression algorithm is implemented in Code Fragment 7.10.

Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0

Process find α∗ as solution of the optimisation problem:
maxα W (α) =

∑�
i=1 yiαi − ε

∑�
i=1 |αi| − 1

2

∑�
i,j=1 αiαjκ(xi,xj)

subject to
∑�

i=1 αi = 0, −C ≤ αi ≤ C, i = 1, . . . , �.

4 w =
∑�

j=1 α
∗
jφ(xj)

5 b∗ = −ε + yi −
∑�

j=1 α
∗
jκ(xj ,xi) for i with 0 < α∗

i < C.
6 f(x) =

∑�
j=1 α

∗
jκ(xj ,x) + b∗,

Output weight vector w, dual α∗, b∗ and/or function f
implementing 1-norm support vector regression

Code Fragment 7.10. Pseudocode for 1-norm support vector regression.

Remark 7.48 [Support vectors] If we consider the band of ±ε around the
function output by the learning algorithm, the points that are not strictly
inside the tube are support vectors. Those not touching the tube will have
the absolute value of the corresponding αi equal to C.

Stability analysis of ε-insensitive regression The linear ε-insensitive
loss for support vector regression raises the question of what stability anal-
ysis is appropriate. When the output values are real there are a large range
of possibilities for loss functions all of which reduce to the discrete loss in
the case of classification. An example of such a loss function is the loss that
counts an error if the function output deviates from the true output by more

7.3 Support vector machines for regression 239

than an error bound γ

Hγ(x, y, g) =
{

0, if |y − g(x)| ≤ γ;
1, otherwise.

We can now apply a similar generalisation analysis to that developed for
classification by introducing a loss function

A(a) =




0, if a < ε,
(a− ε) / (γ − ε), if ε ≤ a ≤ γ,
1, otherwise.

Observe that Hγ(x, y, g) ≤ A(|y − g(x)|) ≤ |y − g(x)|ε, so that we can apply
Theorem 4.9 to A(|y − g(x)|) to give an upper bound on ED [Hγ(x, y, g)]
while the empirical error can be upper bounded by

�∑
i=1

|yi − g(xi)|ε =
�∑

i=1

(ξi + ξ̂i).

Putting the pieces together gives the following result.

Theorem 7.49 Fix B > 0 and δ ∈ (0, 1). Let FB be the class of linear
functions with norm at most B, mapping from a feature space defined by the
kernel κ over a space X. Let

S = {(x1, y1), . . . , (x�, y�)}

be drawn independently according to a probability distribution D on X × R.
Then with probability at least 1− δ over the random draw of S, we have for
all g ∈ FB

PD (|y − g(x)| > γ) = ED [Hγ(x, y, g)]

≤

∥∥∥ξ + ξ̂
∥∥∥

1

� (γ − ε)
+

4B
√

tr(K)
� (γ − ε)

+ 3

√
ln(2/δ)

2�
,

where K is the kernel matrix of the training set S.

The result shows that bounding a trade-off between the sum of the linear
slack variables and the norm of the weight vector will indeed lead to an
improved bound on the probability that the output error exceeds γ.

ν-support vector regression One of the attractive features of the 1-norm
support vector machine was the ability to reformulate the problem so that
the regularisation parameter specifies the fraction of support vectors in the
so-called ν-support vector machine. The same approach can be adopted here

240 Pattern analysis using convex optimisation

in what is known as ν-support vector regression. The reformulation involves
the automatic adaptation of the size ε of the tube.

Computation 7.50 [ν-support vector regression] The weight vector w and
threshold b for the ν-support vector regression are chosen to optimise the
following problem:

minw,b,ε,ξ,ξ̂
1
2 ‖w‖2 + C

(
νε + 1

�

∑�
i=1(ξi + ξ̂i)

)
,

subject to (〈w,φ (xi)〉 + b) − yi ≤ ε + ξi,
yi − (〈w,φ (xi)〉 + b) ≤ ε + ξ̂i,
ξi, ξ̂i ≥ 0, i = 1, . . . , �,




(7.24)

Applying the now usual analysis leads to the following algorithm.

Algorithm 7.51 [ν-support vector regression] The ν-support vector regres-
sion algorithm is implemented in Code Fragment 7.11.

Input training set S = {(x1, y1), . . . , (x�, y�)}, C > 0, 0 < ν < 1.

Process find α∗ as solution of the optimisation problem:
maxα W (α) =

∑�
i=1 yiαi − ε

∑�
i=1 |αi| − 1

2

∑�
i,j=1 αiαjκ(xi,xj)

subject to
∑�

i=1 αi = 0,
∑�

i=1 |αi| ≤ Cν, −C/� ≤ αi ≤ C/�, i = 1, . . . , �.

4 w =
∑�

j=1 α
∗
jφ(xj)

5 b∗ = −ε + yi −
∑�

j=1 α
∗
jκ(xj ,xi) for i with 0 < α∗

i < C/�.
6 f(x) =

∑�
j=1 α

∗
jκ(xj ,x) + b∗,

Output weight vector w, dual α∗, b∗ and/or function f
implementing ν-support vector regression

Code Fragment 7.11. Pseudocode for new SVR.

As with the ν-support vector machine the parameter ν controls the frac-
tion of errors in the sense that there are at most ν� training points that fall
outside the tube, while at least ν� of the training points are support vectors
and so lie either outside the tube or on its surface.

7.4 On-line classification and regression 241

7.4 On-line classification and regression

The algorithms we have described in this section have all taken a training
set S as input and processed all of the training examples at once. Such an
algorithm is known as a batch algorithm.

In many practical tasks training data must be processed one at a time
as it is received, so that learning is started as soon as the first example
is received. The learning follows the following protocol. As each example
is received the learner makes a prediction of the correct output. The true
output is then made available and the degree of mismatch or loss made in the
prediction is recorded. Finally, the learner can update his current pattern
function in response to the feedback received on the current example. If
updates are only made when non-zero loss is experience, the algorithm is
said to be conservative.

Learning that follows this protocol is known as on-line learning. The aim
of the learner is to adapt his pattern function as rapidly as possible. This is
reflected in the measures of performance adopted to analyse on-line learning.
Algorithms are judged according to their ability to control the accumulated
loss that they will suffer in processing a sequence of examples. This measure
takes into account the rate at which learning takes place.

We first consider a simple on-line algorithm for learning linear functions
in an on-line fashion.

The perceptron algorithm The algorithm learns a thresholded linear
function

h (x) = sgn 〈w,φ (x)〉

in a kernel-defined feature space in an on-line fashion making an update
whenever a misclassified example is processed. If the weight vector after t

updates is denoted by wt then the update rule for the (t + 1)st update when
an example (xi, yi) is misclassified is given by

wt+1 = wt + yiφ (xi) .

Hence, the corresponding dual update rule is simply

αi = αi + 1,

if we assume that the weight vector is expressed as

wt =
�∑

i=1

αiyiφ (xi) .

242 Pattern analysis using convex optimisation

This is summarised in the following algorithm.

Algorithm 7.52 [Kernel perceptron] The dual perceptron algorithm is im-
plemented in Code Fragment 7.12.

Input training sequence (x1, y1), . . . , (x�, y�), . . .
Process α = 0, i = 0, loss = 0
2 repeat
3 i = i + 1
4 if sgn

(∑�
j=1 αjyjκ(xj ,xi)

)

= yi

5 αi = αi + 1
6 loss = loss +1
7 until finished
8 f (x) =

∑�
j=1 αjyjκ(xj ,x)

Output dual variables α, loss and function f

Code Fragment 7.12. Pseudocode for the kernel perceptron algorithm.

We can apply the perceptron algorithm as a batch algorithm to a full
training set by running through the set repeating the updates until all of
the examples are correctly classified.

Assessing the performance of the perceptron algorithm The algo-
rithm does not appear to be aiming for few updates, but for the batch case
the well-known perceptron convergence theorem provides a bound on their
number in terms of the margin of the corresponding hard margin support
vector machine as stated in the theorem due to Novikoff.

Theorem 7.53 (Novikoff) If the training points

S = {(x1, y1) , . . . , (x�, y�)}
are contained in a ball of radius R about the origin, the hard margin support
vector machine weight vector w∗ with no bias has geometric margin γ and
we begin with the weight vector

w0 = 0 =
�∑

i=1

0φ (xi) ;

then the number of updates of the perceptron algorithm is bounded by

R2

γ2
.

7.4 On-line classification and regression 243

Proof The result follows from two sequences of inequalities. The first shows
that as the updates are made the norm of the resulting weight vector cannot
grow too fast, since if i is the index of the example used for the tth update,
we have

‖wt+1‖2 = 〈wt + yiφ (xi) ,wt + yiφ (xi)〉
= ‖wt‖2 + 2yi 〈wt,φ (xi)〉 + ‖φ (xi)‖2

≤ ‖wt‖2 + R2 ≤ (t + 1)R2,

since the fact we made the update implies the middle term cannot be pos-
itive. The other sequence of inequalities shows that the inner product be-
tween the sequence of weight vectors and the vector w∗ (assumed without
loss of generality to have norm 1) increases by a fixed amount each update

〈w∗,wt+1〉 = 〈w∗,wt〉 + yi 〈w∗,φ (xi)〉 ≥ 〈w∗,wt〉 + γ ≥ (t + 1) γ.

The two inequalities eventually become incompatible as they imply that

t2γ2 ≤ 〈w∗,wt〉2 ≤ ‖wt‖2 ≤ tR2.

Clearly, we must have

t ≤ R2

γ2
,

as required.

The bound on the number of updates indicates that each time we make
a mistake we are effectively offsetting the cost of that mistake with some
progress towards learning a function that correctly classifies the training set.
It is curious that the bound on the number of updates is reminiscient of the
bound on the generalisation of the hard margin support vector machine.

Despite the number of updates not being a bound on the generalisation
performance of the resulting classifier, we now show that it does imply such
a bound. Indeed the type of analysis we now present will also imply a bound
on the generalisation of the hard margin support vector machine in terms
of the number of support vectors.

Recall that for the various support vector machines for classification and
the ε-insensitive support vector machine for regression only a subset of the
Lagrange multipliers is non-zero. This property of the solutions is referred
to as sparseness. Furthermore, the support vectors contain all the informa-
tion necessary to reconstruct the hyperplane or regression function. Hence,
for classification even if all of the other points were removed the same max-
imal separating hyperplane would be found from the remaining subset of

244 Pattern analysis using convex optimisation

the support vectors. This shows that the maximal margin hyperplane is a
compression scheme in the sense that from the subset of support vectors we
can reconstruct the maximal margin hyperplane that correctly classifies the
whole training set.

For the perceptron algorithm the bound is in terms of the number of up-
dates made to the hypothesis during learning, that is the number bounded by
Novikoff’s theorem. This is because the same hypothesis would be generated
by performing the same sequence of updates while ignoring the examples on
which updates were not made. These examples can then be considered as
test examples since they were not involved in the generation of the hypothe-
sis. There are �k ways in which a sequence of k updates can be created from
a training set of size �, so we have a bound on the number of hypotheses
considered. Putting this together using a union bound on probability gives
the following proposition.

Theorem 7.54 Fix δ > 0. If the perceptron algorithm makes 1 ≤ k ≤ �/2
updates before converging to a hypothesis f (x) that correctly ranks a training
set

S = {(x1, y1), . . . , (x�, y�)}

drawn independently at random according to a distribution D, then with
probability at least 1− δ over the draw of the set S, the generalisation error
of f (x) is bounded by

PD (f (x)
= y) ≤ 1
�− k

(
k ln � + ln

�

2δ

)
. (7.25)

Proof We first fix 1 ≤ k ≤ �/2 and consider the possible hypotheses that can
be generated by sequences of k examples. The proof works by bounding the
probability that we choose a hypothesis for which the generalisation error is
worse than the bound. We use bold i to denote the sequence of indices on
which the updates are made and i0 to denote some a priori fixed sequence
of indices. With fi we denote the function obtained by updating on the
sequence i

P

{
S : ∃i s.t. PD (fi (x)
= y) >

1
�− k

(
k ln � + ln

�

2δ

)}

≤ �kP

{
S : PD (fi0 (x)
= y) >

1
�− k

(
k ln � + ln

�

2δ

)}

≤ �k
(

1 − 1
�− k

(
k ln � + ln

�

2δ

))�−k

7.4 On-line classification and regression 245

≤ �k exp
(
−�− k

�− k

(
k ln � + ln

�

2δ

))

≤ 2δ
�

.

Hence, the total probability of the bound failing over the different choices
of k is at most δ as required.

Combining this with the bound on the number of updates provided by
Novikoff’s theorem gives the following corollary.

Corollary 7.55 Fix δ > 0. Suppose the hard margin support vector machine
has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}

drawn independently at random according to a distribution D and contained
in a ball of radius R about the origin. Then with probability at least 1 − δ

over the draw of the set S, the generalisation error of the function f (x)
obtained by running the perceptron algorithm on S in batch mode is bounded
by

PD (f (x)
= y) ≤ 2
�

(
R2

γ2
ln � + ln

�

2δ

)
,

provided

R2

γ2
≤ �

2
.

There is a similar bound on the generalisation of the hard margin support
vector machine in terms of the number of support vectors. The proof tech-
nique mimics that of Theorem 7.54, the only difference being that the order
of the support vectors does not affect the function obtained. This gives the
following bound on the generalisation quoted without proof.

Theorem 7.56 Fix δ > 0. Suppose the hard margin support vector machine
has margin γ on the training set

S = {(x1, y1), . . . , (x�, y�)}

drawn independently at random according to a distribution D. Then with
probability at least 1 − δ over the draw of the set S, its generalisation error
is bounded by

1
�− d

(
d log

e�

d
+ log

�

δ

)
,

246 Pattern analysis using convex optimisation

where d = # sv is the number of support vectors.

The theorem shows that the smaller the number of support vectors the
better the generalisation that can be expected. If we were to use the bound
to guide the learning algorithm a very different approach would result. In-
deed we can view the perceptron algorithm as a greedy approach to optimis-
ing this bound, in the sense that it only makes updates and hence creates
non-zero αi when this is forced by a misclassification.

Curiously the generalisation bound for the perceptron algorithm is at
least as good as the margin bound obtained for the hard margin support
vector machine! In practice the support vector machine typically gives better
generalisation, indicating that the apparent contradiction arises as a result
of the tighter proof technique that can be used in this case.

Remark 7.57 [Expected generalisation error] A slightly tighter bound on
the expected generalisation error of the support vector machine in terms of
the same quantities can be obtained by a leave-one-out argument. Since,
when a non-support vector is omitted, it is correctly classified by the re-
maining subset of the training data the leave-one-out estimate of the gener-
alisation error is

sv
�

.

A cyclic permutation of the training set shows that the expected error of a
test point is bounded by this quantity. The use of an expected generalisation
bound gives no guarantee about its variance and hence its reliability. Indeed
leave-one-out bounds are known to suffer from this problem. Theorem 7.56
can be seen as showing that in the case of maximal margin classifiers a
slightly weaker bound does hold with high probability and hence that in
this case the variance cannot be too high.

Remark 7.58 [Effects of the margin] Note that in SVMs the margin has
two effects. Its maximisation ensures a better bound on the generalisation,
but at the same time it is the margin that is the origin of the sparseness of
the solution vector, as the inequality constraints generate the KKT comple-
mentarity conditions. As indicated above the maximal margin classifier does
not attempt to control the number of support vectors and yet in practice
there are frequently few non-zero αi. This sparseness of the solution can be
exploited by implementation techniques for dealing with large datasets.

7.4 On-line classification and regression 247

Kernel adatron There is an on-line update rule that models the hard mar-
gin support vector machine with fixed threshold 0. It is a simple adaptation
of the perceptron algorithm.

Algorithm 7.59 [Kernel adatron] The kernel adatron algorithm is imple-
mented in Code Fragment 7.13.

Input training set S = {(x1, y1), . . . , (x�, y�)}
Process α = 0, i = 0, loss = 0
2 repeat
3 for i = 1 : �
4 αi ← αi +

(
1 − yi

∑�
j=1 αjyjκ (xj ,xi)

)
5 if αi < 0 then αi ← 0.
6 end
7 until α unchanged
8 f (x) = sgn

(∑�
j=1 αjyjκ(xj ,x)

)
Output dual variables α, loss and function f

Code Fragment 7.13. Pseudocode for the kernel adatron algorithm.

For each αi this can be for one of two reasons. If the first update did not
change αi then

1 − yi

�∑
j=1

αjyjκ (xj ,xi) = 0

and so (xi, yi) has functional margin 1. If, on the other hand, the value of
αi remains 0 as a result of the second update, we have

1 − yi

�∑
j=1

αjyjκ (xj ,xi) < 0

implying (xi, yi) has functional margin greater than 1. It follows that at
convergence the solution satisfies the KKT complementarity conditions for
the alternative hard margin support vector machine of Algorithm 7.26 once
the condition

�∑
i=1

αiyi = 0

arising from a variable threshold has been removed. The algorithm can
be adapted to handle a version of the 1-norm soft margin support vector

248 Pattern analysis using convex optimisation

machine by introducing an upper bound on the value of αi, while a version
of the 2-norm support vector machine can be implemented by adding a
constant to the diagonal of the kernel matrix.

Remark 7.60 [SMO algorithm] If we want to allow a variable threshold the
updates must be made on a pair of examples, an approach that results in
the SMO algorithm. The rate of convergence of both of these algorithms is
strongly affected by the order in which the examples are chosen for updating.
Heuristic measures such as the degree of violation of the KKT conditions
can be used to ensure very effective convergence rates in practice.

On-line regression On-line learning algorithms are not restricted to clas-
sification problems. Indeed in the next chapter we will describe such an
algorithm for ranking that will be useful in the context of collaborative
filtering. The update rule for the kernel adatron algorithm also suggests
a general methodology for creating on-line versions of the optimisations we
have described. The objective function for the alternative hard margin SVM
is

W (α) =
�∑

i=1

αi −
1
2

�∑
i,j=1

αiαjyiyjκ (xi,xj) .

If we consider the gradient of this quantity with respect to an individual αi

we obtain

∂W (α)
∂αi

= 1 − yi

�∑
j=1

αjyjκ (xj ,xi)

making the first update of the kernel adatron algorithm equivalent to

αi ← αi +
∂W (α)
∂αi

making it a simple gradient ascent algorithm augmented with corrections to
ensure that the additional constraints are satisfied. If, for example, we apply
this same approach to the linear ε-insensitive loss version of the support
vector regression algorithm with fixed offset 0, we obtain the algorithm.

Algorithm 7.61 [On-line support vector regression] On-line support vector
regression is implemented in Code Fragment 7.14.

7.5 Summary 249

Input training set S = {(x1, y1), . . . , (x�, y�)}
Process α = 0, i = 0, loss = 0
2 repeat
3 for i = 1 : �
4 α̂i ← αi;
5 αi ← αi + yi − ε sgn (αi) −

∑�
j=1 αjκ (xj ,xi) ;

6 if α̂iαi < 0 then αi ← 0;
7 end
8 until α unchanged
9 f (x) =

∑�
j=1 αjκ(xj ,x)

Output dual variables α, loss and function f

where for αi = 0 , sgn (αi) is interpreted to be the number in [−1,+1] that gives
the update in line 5 the smallest absolute value.

Code Fragment 7.14. Pseudocode for the on-line support vector regression.

7.5 Summary

• The smallest hypersphere enclosing all points in the embedding space can
be found by solving a convex quadratic program. This suggests a simple
novelty-detection algorithm.

• The stability analysis suggests a better novelty detector may result from
a smaller hypersphere containing a fixed fraction of points that minimises
the sum of the distances to the external points. This can again be com-
puted by a convex quadratic program. Its characteristic function can be
written in terms of a kernel expansion, where only certain points have
non-zero coefficients. They are called support vectors and because of the
many zero coefficients the expansion is called ‘sparse’.

• If there is a maximal margin hyperplane separating two sets of points
in the embedding space, it can be found by solving a convex quadratic
program. This gives the hard margin support vector machine classification
algorithm.

• The stability analysis again suggests improved generalisation will fre-
quently result from allowing a certain (prefixed) fraction of points to
be ‘margin’ errors while minimising the sizes of those errors. This can
again be found by solving a convex quadratic program and gives the well-
known soft margin support vector machines. Also in this case, the kernel
expansion of the classification function can be sparse, as a result of the
Karush–Kuhn–Tucker conditions. The pre-image of this hyperplane in
the input space can be very complex, depending on the choice of ker-

250 Pattern analysis using convex optimisation

nel. Hence, these algorithms are able to optimise over highly nonlinear
function classes through an application of the kernel trick.

• A nonlinear regression function that realises a trade-off between loss and
smoothness can be found by solving a convex quadratic program. This
corresponds to a regularised linear function in the embedding space. Fix-
ing the regularization term to be the 2-norm of the linear function in the
embedding space, different choices of loss can be made. The quadratic
loss yields the nonlinear version of ridge regression introduced in Chapter
2. Both linear and quadratic ε-insensitive losses yield support vector ma-
chines for regression. Unlike ridge regression these again result in sparse
kernel expansions of the solutions.

• The absence of local minima from the above algorithms marks a major
departure from traditional systems such as neural networks, and jointly
with sparseness properties makes it possible to create very efficient imple-
mentations.

7.6 Further reading and advanced topics

The systematic use of optimisation in pattern recognition dates back at least
to Mangasarian’s pioneering efforts [93] and possibly earlier. Many different
authors have independently proposed algorithms for data classification or
other tasks based on the theory of Lagrange multipliers, and this approach
is now part of the standard toolbox in pattern analysis.

The problem of calculating the smallest sphere containing a set of data
was first posed in the hard-margin case by [115], [20] for the purpose of
calculating generalisation bounds that depend on the radius of the enclosing
sphere. It was subsequently addressed by Tax and Duin [134] in a soft
margin setting for the purpose of modeling the input distribution and hence
detecting novelties. This approach to novelty detection was cast in a ν-SVM
setting by Schölkopf et al. [117].

The problem of separating two sets of data with a maximal margin hy-
perplane has been independently addressed by a number of authors over a
long period of time. Large margin hyperplanes in the input space were, for
example, discussed by Duda and Hart [39], Cover [28], Smith [127], Vapnik
et al. [144], [141], and several statistical mechanics papers (for example [3]).
It is, however, the combination of this optimisation problem with kernels
that produced support vector machines, as we discuss briefly below. See
Chapter 6 of [32] for a more detailed reconstruction of the history of SVMs.

The key features of SVMs are the use of kernels, the absence of local
minima, the sparseness of the solution and the capacity control obtained by

7.6 Further reading and advanced topics 251

optimising the margin. Although many of these components were already
used in different ways within machine learning, it is their combination that
was first realised in the paper [16]. The use of slack variables for noise
tolerance, tracing back to [13] and further to [127], was introduced to the
SVM algorithm in 1995 in the paper of Cortes and Vapnik [27]. The ν-
support vector algorithm for classification and regression is described in
[120].

Extensive work has been done over more than a decade by a fast growing
community of theoreticians and practitioners, and it would be difficult to
document all the variations on this theme. In a way, this entire book is an
attempt to systematise this body of literature.

Among many connections, it is worth emphasising the connection between
SVM regression, ridge regression and regularisation networks. The concept
of regularisation was introduced by Tikhonov [136], and was introduced into
machine learning in the form of regularisation networks by Girosi et al. [48].
The relation between regularisation networks and support vector machines
has been explored by a number of authors [47], [154], [129], [43].

Finally for a background on convex optimisation and Kuhn–Tucker theory
see for example [92], and for a brief introduction see Chapter 5 of [32].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.

