
5

Elementary algorithms in feature space

In this chapter we show how to evaluate a number of properties of a data set
in a kernel-defined feature space. The quantities we consider are of interest
in their own right in data analysis, but they will also form building blocks
towards the design of complex pattern analysis systems. Furthermore, the
computational methods we develop will play an important role in subsequent
chapters.

The quantities include the distance between two points, the centre of mass,
the projections of data onto particular directions, the rank, the variance and
covariance of projections of a set of data points, all measured in the feature
space. We will go on to consider the distance between the centres of mass
of two sets of data.

Through the development of these methods we will arrive at a number
of algorithmic solutions for certain problems. We give Matlab code for nor-
malising the data, centering the data in feature space, and standardising the
different coordinates. Finally, we develop two pattern analysis algorithms,
the first is a novelty-detection algorithm that comes with a theoretical guar-
antee on performance, while the second is a first kernelised version of the
Fisher discriminant algorithm. This important pattern analysis algorithm
is somewhat similar to the ridge regression algorithm already previewed in
Chapter 2, but tackles classification and takes account of more subtle struc-
ture of the data.

111

112 Elementary algorithms in feature space

5.1 Means and distances

Given a finite subset S = {x1, . . . ,x�} of an input space X, a kernel κ(x, z)
and a feature map φ into a feature space F satisfying

κ(x, z) = 〈φ(x),φ(z)〉,

let φ(S) = {φ(x1), . . . ,φ(x�)} be the image of S under the map φ. Hence
φ(S) is a subset of the inner product space F . In this chapter we continue
our investigation of the information that can be obtained about φ(S) using
only the inner product information contained in the kernel matrix K of
kernel evaluations between all pairs of elements of S

Kij = κ(xi,xj), i, j = 1, . . . , �.

Working in a kernel-defined feature space means that we are not able to
explicitly represent points. For example the image of an input point x is
φ(x), but we do not have access to the components of this vector, only
to the evaluation of inner products between this point and the images of
other points. Despite this handicap there is a surprising amount of useful
information that can be gleaned about φ(S).

Norm of feature vectors The simplest example already seen in Chapter
4 is the evaluation of the norm of φ(x) that is given by

‖φ(x)‖2 =
√

‖φ(x)‖2 =
√

〈φ(x),φ(x)〉 =
√
κ(x,x).

Algorithm 5.1 [Normalisation] Using this observation we can now imple-
ment the normalisation transformation mentioned in Chapters 2 and 3 given
by

φ̂ (x) =
φ(x)

‖φ(x)‖ .

For two data points the transformed kernel κ̂ is given by

κ̂(x, z) =
〈
φ̂ (x) , φ̂ (z)

〉
=
〈

φ(x)
‖φ(x)‖ ,

φ(z)
‖φ(z)‖

〉
=

〈φ(x),φ(z)〉
‖φ(x)‖‖φ(z)‖ (5.1)

=
κ(x, z)√

κ(x,x)κ(z, z)
.

The corresponding transformation of the kernel matrix can be implemented
by the operations given in Code Fragment 5.1.

5.1 Means and distances 113

% original kernel matrix stored in variable K
% output uses the same variable K
% D is a diagonal matrix storing the inverse of the norms
D = diag(1./sqrt(diag(K)));
K = D * K * D;

Code Fragment 5.1. Matlab code normalising a kernel matrix.

We can also evaluate the norms of linear combinations of images in the
feature space. For example we have

∥∥∥∥∥
�∑

i=1

αiφ(xi)

∥∥∥∥∥
2

=

〈
�∑

i=1

αiφ(xi),
�∑

j=1

αjφ(xj)

〉

=
�∑

i=1

αi

�∑
j=1

αj 〈φ(xi),φ(xj)〉

=
�∑

i,j=1

αiαjκ(xi,xj).

Distance between feature vectors A special case of the norm is the
length of the line joining two images φ(x) and φ(z), which can be computed
as

‖φ(x) − φ(z)‖2 = 〈φ(x) − φ(z),φ(x) − φ(z)〉
= 〈φ(x),φ(x)〉 − 2 〈φ(x),φ(z)〉 + 〈φ(z),φ(z)〉
= κ(x,x) − 2κ(x, z) + κ(z, z).

Norm and distance from the centre of mass As a more complex and
useful example consider the centre of mass of the set φ(S). This is the vector

φS =
1
�

�∑
i=1

φ(xi).

As with all points in the feature space we will not have an explicit vector
representation of this point. However, in this case there may also not exist
a point in X whose image under φ is φS . In other words, we are now
considering points that potentially lie outside φ(X), that is the image of the
input space X under the feature map φ.

Despite this apparent inaccessibility of the point φS , we can compute its

114 Elementary algorithms in feature space

norm using only evaluations of the kernel on the inputs

‖φS‖2
2 = 〈φS ,φS〉 =

〈
1
�

�∑
i=1

φ(xi),
1
�

�∑
j=1

φ(xj)

〉

=
1
�2

�∑
i,j=1

〈φ(xi),φ(xj)〉 =
1
�2

�∑
i,j=1

κ(xi,xj).

Hence, the square of the norm of the centre of mass is equal to the average
of the entries in the kernel matrix. Incidentally this implies that this sum
is greater than or equal to zero, with equality if the centre of mass is at the
origin of the coordinate system. Similarly, we can compute the distance of
the image of a point x from the centre of mass φS

‖φ(x) − φS‖2 = 〈φ(x),φ(x)〉 + 〈φS ,φS〉 − 2〈φ(x),φS〉

= κ(x,x) +
1
�2

�∑
i,j=1

κ(xi,xj) −
2
�

�∑
i=1

κ(x,xi). (5.2)

Expected distance from the centre of mass Following the same ap-
proach it is also possible to express the expected squared distance of a point
in a set from its mean

1
�

�∑
s=1

‖φ(xs) − φS‖2 =
1
�

�∑
s=1

κ(xs,xs) +
1
�2

�∑
i,j=1

κ(xi,xj)

− 2
�2

�∑
i,s=1

κ(xs,xi) (5.3)

=
1
�

�∑
s=1

κ(xs,xs) −
1
�2

�∑
i,j=1

κ(xi,xj). (5.4)

Hence, the average squared distance of points to their centre of mass is the
average of the diagonal entries of the kernel matrix minus the average of all
the entries.

Properties of the centre of mass If we translate the origin of the feature
space, the norms of the training points alter, but the left-hand side of equa-
tion (5.4) does not change. If the centre of mass is at the origin, then, as we
observed above, the entries in the matrix will sum to zero. Hence, moving
the origin to the centre of mass minimises the first term on the right-hand
side of equation (5.4), corresponding to the sum of the squared norms of the

5.1 Means and distances 115

points. This also implies the following proposition that will prove useful in
Chapter 8.

Proposition 5.2 The centre of mass φS of a set of points φ (S) solves the
following optimisation problem

min
µ

1
�

�∑
s=1

‖φ(xs) − µ‖2 .

Proof Consider moving the origin to the point µ. The quantity to be
optimised corresponds to the first term on the right-hand side of equation
(5.4). Since the left-hand side does not depend on µ, the quantity will be
minimised by minimising the second term on the right-hand side, something
that is achieved by taking µ = φS . The result follows.

Centering data Since the first term on the right-hand side of equation
(5.4) is the trace of the matrix divided by its size, moving the origin to
the centre of mass also minimises the average eigenvalue. As announced
in Chapter 3 we can perform this operation implicitly by transforming the
kernel matrix. This follows from the fact that the new feature map is given
by

φ̂(x) = φ(x) − φS = φ(x) − 1
�

�∑
i=1

φ(xi).

Hence, the kernel for the transformed space is

κ̂(x, z) =
〈
φ̂(x), φ̂(z)

〉
=

〈
φ(x) − 1

�

�∑
i=1

φ(xi),φ(z) − 1
�

�∑
i=1

φ(xi)

〉

= κ(x, z) − 1
�

�∑
i=1

κ(x,xi) −
1
�

�∑
i=1

κ(z,xi) +
1
�2

�∑
i,j=1

κ(xi,xj).

Expressed as an operation on the kernel matrix this can be written as

K̂ = K − 1
�
jj′K − 1

�
Kjj′ +

1
�2
(
j′Kj

)
jj′,

where j is the all 1s vector. We have the following algorithm.

Algorithm 5.3 [Centering data] We can centre the data in the feature space
with the short sequence of operations given in Code Fragment 5.2.

116 Elementary algorithms in feature space

% original kernel matrix stored in variable K
% output uses the same variable K
% K is of dimension ell x ell
% D is a row vector storing the column averages of K
% E is the average of all the entries of K
ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
J = ones(ell,1) * D;
K = K - J - J’ + E * ones(ell, ell);

Code Fragment 5.2. Matlab code for centering a kernel matrix.

The stability of centering The example of centering raises the question
of how reliably we can estimate the centre of mass from a training sample or
in other words how close our sample centre will be to the true expectation

Ex[φ(x)] =
∫
X
φ(x)dP (x).

Our analysis in Chapter 4 bounded the expected value of the quantity

g(S) = ‖φS − Ex[φ(x)]‖ .

There it was shown that with probability at least 1 − δ over the choice of a
random sample of � points, we have

g(S) ≤
√

2R2

�

(
√

2 +

√
ln

1
δ

)
, (5.5)

assuring us that with high probability our sample does indeed give a good
estimate of Ex[φ(x)] in a way that does not depend on the dimension of the
feature space, where the support of the distribution is contained in a ball of
radius R around the origin.

5.1.1 A simple algorithm for novelty-detection

Centering suggests a simple novelty-detection algorithm. If we consider the
training set as a sample of points providing an estimate of the distances
d1, . . . , d� from the point Ex[φ(x)], where

di = ‖φ(xi) − Ex[φ(x)]‖ ,

we can bound the probability that a new random point x�+1 satisfies

d�+1 = ‖φ(x�+1) − Ex[φ(x)]‖ > max
1≤i≤�

di,

5.1 Means and distances 117

with

P

{
‖φ(x�+1) − Ex[φ(x)]‖ > max

1≤i≤�
di

}
= P

{
max

1≤i≤�+1
di = d�+1 �= max

1≤i≤�
di

}

≤ 1
� + 1

,

by the symmetry of the i.i.d. assumption. Though we cannot compute the
distance to the point Ex[φ(x)], we can, by equation (5.2), compute

‖φ(x) − φS‖ =

√√√√κ(x,x) +
1
�2

�∑
i,j=1

κ(xi,xj) −
2
�

�∑
i=1

κ(x,xi). (5.6)

Then we can with probability 1−δ estimate ‖φ(x�+1) − Ex[φ(x)]‖ using the
triangle inequality and (5.5)

d�+1 = ‖φ(x�+1) − Ex[φ(x)]‖
quad ≥ ‖φ(x�+1) − φS‖ − ‖φS − Ex[φ(x)]‖

≥ ‖φ(x�+1) − φS‖ −
√

2R2

�

(
√

2 +

√
ln

1
δ

)
.

Similarly, we have that for i = 1, . . . , �,

di = ‖φ(xi) − Ex[φ(x)]‖ ≤ ‖φ(xi) − φS‖ + ‖φS − Ex[φ(x)]‖ .

We now use the inequalities to provide a bound on the probability that a test
point lies outside a ball centred on the empirical centre of mass. Effectively
we choose its radius to ensure that with high probability it contains the ball
of radius max1≤i≤� di with centre Ex[φ(x)]. With probability 1− δ we have
that

P

{
‖φ(x�+1) − φS‖ > max

1≤i≤�
‖φ(xi) − φS‖ + 2

√
2R2

�

(
√

2 +

√
ln

1
δ

)}

≤ P

{
max

1≤i≤�+1
di = d�+1 �= max

1≤i≤�
di

}
≤ 1

� + 1
. (5.7)

Using H(x) to denote the Heaviside function we have in the notation of
Chapter 1 a pattern analysis algorithm that returns the pattern function

f(x)

= H
(
‖φ(x) − φS‖ − max

1≤i≤�
‖φ(xi) − φS‖ − 2

√
2R2

�

(
√

2 +

√
ln

1
δ

))
,

118 Elementary algorithms in feature space

since by inequality (5.7) with probability 1 − δ the expectation is bounded
by

Ex[f(x)] ≤ 1/(� + 1).

Hence, we can reject as anomalous data items satisfying f (x) = 1, and
reject authentic examples with probability at most 1/(�+1). This gives rise
to the following novelty-detection algorithm.

Algorithm 5.4 [Simple novelty detection] An implementation of the simple
novelty-detection algorithm is given in Code Fragment 5.3.

% K kernel matrix of training points
% inner products between ell training and t test points
% stored in matrix Ktest of dimension (ell + 1) x t
% last entry in each column is inner product with itself
% confidence parameter
delta = 0.01
% first compute distances of data to centre of mass
% D is a row vector storing the column averages of K
% E is the average of all the entries of K
ell = size(K,1);
D = sum(K) / ell;
E = sum(D) / ell;
traindist2 = diag(K) - 2 * D’ + E * ones(ell, 1);
maxdist = sqrt(max(traindist2));
% compute the estimation error of empirical centre of mass
esterr = sqrt(2*max(diag(K))/ell)*(sqrt(2) + sqrt(log(1/delta)));
% compute resulting threshold
threshold = maxdist + 2 * esterr;
threshold = threshold * threshold;
% now compute distances of test data
t = size(Ktest,2);
Dtest = sum(Ktest(1:ell,:)) / ell;
testdist2 = Ktest(ell+1,:) - 2 * Dtest + E * ones(1, t);
% indices of novel test points are now
novelindices = find (testdist2 > threshold)

Code Fragment 5.3. Matlab code for simple novelty detection algorithm.

The pattern function is unusual in that it is not always a thresholded linear
function in the kernel-defined feature space, though by equation (5.2) if the
feature space is normalised the function can be represented in the standard
form. The algorithm considers a sphere containing the data centred on the
centre of mass of the data sample. Figure 5.1 illustrates the spheres for data
generated according to a spherical two-dimensional Gaussian distribution.

5.1 Means and distances 119

Fig. 5.1. Novelty detection spheres centred on the empirical centre of mass.

In Chapter 7 we will consider letting the centre of the hypersphere shift
in order to reduce its radius. This approach results in a state-of-the-art
method for novelty-detection.

Stability of novelty-detection The following proposition assesses the sta-
bility of the basic novelty-detection Algorithm 5.4.

Proposition 5.5 Suppose that we wish to perform novelty-detection based
on a training sample

S = {x1, . . . ,x�} ,

using the feature space implicitly defined by the kernel κ(x, z); let f(x) be
given by

f(x)

= H
(
‖φ(x) − φS‖ − max

1≤i≤�
‖φ(xi) − φS‖ − 2

√
2R2

�

(
√

2 +

√
ln

1
δ

))

where ‖φ(x) − φS‖ can be computed using equation (5.6). Then the func-
tion f(x) is equivalent to identifying novel points that are further from the
centre of mass in the feature space than any of the training points. Hence,
with probability 1 − δ over the random draw of the training set, any points

120 Elementary algorithms in feature space

drawn according to the same distribution will have f(x) = 1 with probability
less than 1/(� + 1).

5.1.2 A simple algorithm for classification

If we consider now the case of binary classification, we can divide the training
set S into two sets S+ and S− containing the positive and negative examples
respectively. One could now use the above methodology to compute the
distance d+(x) =

∥∥φ(x) − φS+

∥∥ of a test point x from the centre of mass
φS+ of S+ and the distance d−(x) =

∥∥φ(x) − φS−

∥∥ from the centre of mass
of the negative examples. A simple classification rule would be to assign x
to the class corresponding to the smaller distance

h(x) =
{

+1, if d−(x) > d+(x);
−1, otherwise.

We can express the function h(x) in terms of the sign function

h(x) = sgn
(∥∥φ(x) − φ̄S−

∥∥2 −
∥∥φ(x) − φ̄S+

∥∥2
)

= sgn

−κ(x,x) − 1

�2+

�+∑
i,j=1

κ(xi,xj) +
2
�+

�+∑
i=1

κ(x,xi)

+κ(x,x) +
1
�2−

�++�−∑
i,j=�++1

κ(xi,xj) −
2
�−

�++�−∑
i=�++1

κ(x,xi)

= sgn

 1
�+

�+∑
i=1

κ(x,xi) −
1
�−

�∑
i=�++1

κ(x,xi) − b

 ,

where we have assumed that the positive examples are indexed from 1 to
�+ and the negative examples from �+ + 1 to �+ + �− = � and where b is a
constant being half of the difference between the average entry of the posi-
tive examples kernel matrix and the average entry of the negative examples
kernel matrix. This gives the following algorithm.

5.1 Means and distances 121

Algorithm 5.6 [Parzen based classifier] The simple Parzen based classifier
algorithm is as follows:

input Data S = {(x1, y1) , . . . , (x�, y�)}.
process α+

i = �−1
+ if yi = +1, 0 otherwise.

2 α−
i = �−1

− if yi = −1, 0 otherwise.
3 b = 0.5

(
α+′Kα+ −α−′Kα−)

4 α = α+ −α−;

5 h (x) = sgn
(∑�

i=1 αiκ (xi,x) − b
)

output Function h, dual variables α and offset b.

If the origin of the feature space is equidistant from the two centres of
mass, the offset b will be zero since the average entry of the kernel matrix
is equal to the square of the norm of the centre of mass.

Note that h(x) is a thresholded linear function in the feature space with
weight vector given by

w =
1
�+

�+∑
i=1

φ(xi) −
1
�−

�∑
i=�++1

φ(xi).

This function is the difference in likelihood of the Parzen window density
estimator for positive and negative examples. The name derives from view-
ing the kernel κ(·, ·) as a Parzen window that can be used to estimate the
input densities for the positive and negative empirical distributions. This is
natural when for example considering the Gaussian kernel.

Remark 5.7 [On stability analysis] We will not present a stability bound for
this classifier, though one could apply the novelty-detection argument for the
case where a new example was outside the novelty-detection pattern function
derived for its class. In this case we could assert with high confidence that
it belonged to the other class.

Consideration of the distances to the centre of mass of a dataset has led to
some simple algorithms for both novelty-detection and classification. They
are, however, constrained by not being able to take into account information
about the spread of the data. In Section 5.3 we will investigate how the
variance of the data can also be estimated using only information contained
in the kernel matrix. First, however, we turn our attention to projections.

122 Elementary algorithms in feature space

5.2 Computing projections: Gram–Schmidt, QR and Cholesky

The basic classification function of the previous section had the form of a
thresholded linear function

h(x) = sgn (〈w,φ(x)〉) ,

where the weight vector w had the form

w =
1
�+

�+∑
i=1

φ(xi) −
1
�−

�∑
i=�++1

φ(xi).

Hence, the computation only requires knowledge of the inner product be-
tween two feature space vectors.

The projection Pw (φ(x)) of a vector φ(x) onto the vector w is given as

Pw (φ(x)) =
〈w,φ(x)〉
‖w‖2 w.

This example illustrates a general principle that also enables us to compute
projections of vectors in the feature space. For example given a general
vector

w =
�∑

i=1

αiφ(xi),

we can compute the norm of the projection Pw (φ(x)) of the image of a
point x onto the vector w as

‖Pw (φ(x))‖ =
〈w,φ(x)〉

‖w‖ =
∑�

i=1 αiκ (xi,x)√∑�
i,j=1 αiαjκ (xi,xj)

.

Using Pythagoras’s theorem allows us to compute the distance of the point
from its projection as

‖Pw (φ(x)) − φ(x)‖2 = ‖φ(x)‖2 − ‖Pw (φ(x))‖2

= κ (x,x) −

(∑�
i=1 αiκ (xi,x)

)2

∑�
i,j=1 αiαjκ (xi,xj)

.

If we have a set of orthonormal vectors w1, . . . ,wk with corresponding
dual representations given by α1, . . . ,αk, we can compute the orthogo-
nal projection PV (φ(x)) of a point φ(x) into the subspace V spanned by

5.2 Computing projections: Gram–Schmidt, QR and Cholesky 123

w1, . . . ,wk as

PV (φ(x)) =

(
�∑

i=1

αj
iκ (xi,x)

)k

j=1

,

where we have used the vectors w1, . . . ,wk as a basis for V .

Definition 5.8 A projection is a mapping P satisfying

P (φ(x)) = P 2 (φ(x)) and 〈P (φ(x)) ,φ(x) − P (φ(x))〉 = 0,

with its dimension dim (P) given by the dimension of the image of P . The
orthogonal projection to P is given by

P⊥ (φ(x)) = φ(x) − P (φ(x))

and projects the data onto the orthogonal complement of the image of P ,
so that dim (P) + dim

(
P⊥) = N , the dimension of the feature space.

Remark 5.9 [Orthogonal projections] It is not hard to see that the orthog-
onal projection is indeed a projection, since

P⊥
(
P⊥ (φ(x))

)
= P⊥ (φ(x)) − P

(
P⊥ (φ(x))

)
= P⊥ (φ(x)) ,

while 〈
P⊥ (φ(x)) ,φ(x) − P⊥ (φ(x))

〉
=
〈
P⊥ (φ(x)) ,φ(x) − (φ(x) − P (φ(x)))

〉
= 〈(φ(x) − P (φ(x))) , P (φ(x))〉 = 0.

Projections and deflations The projection Pw (φ(x)) of φ(x) onto w
introduced above are onto a 1-dimensional subspace defined by the vector
w. If we assume that w is normalised, Pw (φ(x)) can also be expressed as

Pw (φ(x)) = ww′φ(x).

Hence, its orthogonal projection P⊥
w (φ(x)) can be expressed as

P⊥
w (φ(x)) =

(
I − ww′)φ(x).

If we have a data matrix X with rows φ(xi), i = 1, . . . , �, then deflating the
matrix X′X with respect to one of its eigenvectors w is equivalent to pro-
jecting the data using P⊥

w . This follows from the observation that projecting

124 Elementary algorithms in feature space

the data creates the new data matrix

X̃ = X
(
I − ww′)′ = X

(
I − ww′) , (5.8)

so that

X̃′X̃ =
(
I − ww′)X′X

(
I − ww′)

= X′X − ww′X′X − X′Xww′ + ww′X′Xww′

= X′X − λww′ − λww′ + λww′ww′

= X′X − λww′,

where λ is the eigenvalue corresponding to w.
The actual spread of the data may not be spherical as is implicitly as-

sumed in the novelty detector derived in the previous section. We may
indeed observe that the data lies in a subspace of the feature space of lower
dimensionality.

We now consider how to find an orthonormal basis for such a subspace.
More generally we seek a subspace that fits the data in the sense that the
distances between data items and their projections into the subspace are
small. Again we would like to compute the projections of points into sub-
spaces of the feature space implicitly using only information provided by the
kernel.

Gram–Schmidt orthonormalisation We begin by considering a well-
known method of deriving an orthonormal basis known as the Gram–Schmidt
procedure. Given a sequence of linearly independent vectors the method
creates the basis by orthogonalising each vector to all of the earlier vectors.
Hence, if we are given the vectors

φ (x1) ,φ (x2) , . . . ,φ (x�) ,

the first basis vector is chosen to be

q1 =
φ (x1)
‖φ (x1)‖

.

The ith vector is then obtained by subtracting from φ (xi) multiples of
q1, . . . ,qi−1 in order to ensure it becomes orthogonal to each of them

φ (xi) −→ φ (xi) −
i−1∑
j=1

〈qj ,φ (xi)〉qj =
(
I − Qi−1Q′

i−1

)
φ (xi) ,

where Qi is the matrix whose i columns are the first i vectors q1, . . . ,qi. The
matrix (I − QiQ′

i) is a projection matrix onto the orthogonal complement

5.2 Computing projections: Gram–Schmidt, QR and Cholesky 125

of the space spanned by the first i vectors q1, . . . ,qi. Finally, if we let

νi =
∥∥(I − Qi−1Q′

i−1

)
φ (xi)

∥∥ ,

the next basis vector is obtained by normalising the projection

qi = ν−1
i

(
I − Qi−1Q′

i−1

)
φ (xi) .

It follows that

φ (xi) = Qi−1Q′
i−1φ (xi) + νiqi = Qi

(
Q′

i−1φ (xi)
νi

)

= Q

Q′

i−1φ (xi)
νi
0�−i

 = Qri,

where Q = Q� is the matrix containing all the vectors qi as columns. This
implies that the matrix X containing the data vectors as rows can be de-
composed as

X′ = QR,

where R is an upper triangular matrix with ith column

ri =

Q′

i−1φ (xi)
νi
0�−i

 .

We can also view ri as the respresentation of xi in the basis

{q1, . . . ,q�} .

QR-decomposition This is the well-known QR-decomposition of the ma-
trix X′ into the product of an orthonormal matrix Q and upper triangular
matrix R with positive diagonal entries.

We now consider the application of this technique in a kernel-defined
feature space. Consider the matrix X whose rows are the projections of a
dataset

S = {x1, . . . ,x�}

into a feature space defined by a kernel κ with corresponding feature map-
ping φ. Applying the Gram–Schmidt method in the feature space would
lead to the decomposition

X′ = QR,

126 Elementary algorithms in feature space

defined above. This gives the following decomposition of the kernel matrix

K = XX′ = R′Q′QR = R′R.

Definition 5.10 This is the Cholesky decomposition of a positive semi-
definite matrix into the product of a lower triangular and upper triangular
matrix that are transposes of each other.

Since the Cholesky decomposition is unique, performing a Cholesky de-
composition of the kernel matrix is equivalent to performing Gram–Schmidt
orthonormalisation in the feature space and hence we can view Cholesky
decomposition as the dual implementation of the Gram–Schmidt orthonor-
malisation.

Cholesky implementation The computation of the (j, i)th entry in the
matrix R corresponds to evaluating the inner product between the ith vector
φ (xi) with the jth basis vector qj , for i > j. Since we can decompose φ (xi)
into a component lying in the subspace spanned by the basis vectors up to
the jth for which we have already computed the inner products and the
perpendicular complement, this inner product is given by

νj 〈qj ,φ (xi)〉 = 〈φ (xj) ,φ (xi)〉 −
j−1∑
t=1

〈qt,φ (xj)〉 〈qt,φ (xi)〉 ,

which corresponds to the Cholesky computation performed for j = 1, . . . , �

Rji = ν−1
j

(
Kji −

j−1∑
t=1

RtjRti

)
, i = j + 1, . . . , �,

where νj is obtained by keeping track of the residual norm squared di of the
vectors in the orthogonal complement. This is done by initialising with the
diagonal of the kernel matrix

di = Kii

and updating with

di ← di − R2
ji

as the ith entry is computed. The value of νj is then the residual norm of
the next vector; that is

νj =
√

dj .

5.2 Computing projections: Gram–Schmidt, QR and Cholesky 127

Note that the new representation of the data as the columns of the matrix
R gives rise to exactly the same kernel matrix. Hence, we have found a new
projection function

φ̂ : xi
−→ ri

which gives rise to the same kernel matrix on the set S; that is

κ (xi,xj) = κ̂ (xi,xj) =
〈
φ̂ (xi) , φ̂ (xj)

〉
, for all i, j = 1, . . . , �.

This new projection maps data into the coordinate system determined by
the orthonormal basis q1, . . . ,q�. Hence, to compute φ̂ and thus κ̂ for new
examples, we must evaluate the projections onto these basis vectors in the
feature space. This can be done by effectively computing an additional
column denoted by r of an extension of the matrix R from an additional
column of K denoted by k

rj = ν−1
j

(
kj −

j−1∑
t=1

Rtjrt

)
, j = 1, . . . , �.

We started this section by asking how we might find a basis for the data
when it lies in a subspace, or close to a subspace, of the feature space. If the
data are not linearly independent the corresponding residual norm dj will
be equal to 0 when we come to process an example that lies in the subspace
spanned by the earlier examples. This will occur if and only if the data lies
in a subspace of dimension j−1, which is equivalent to saying that the rank
of the matrix X is j − 1. But this is equivalent to deriving

K = R′R

with R a (j − 1) × � matrix, or in other words to K having rank j − 1. We
have shown the following result.

Proposition 5.11 The rank of the dataset S is equal to that of the kernel
matrix K and by symmetry that of the matrix X′X.

We can therefore compute the rank of the data in the feature space by
computing the rank of the kernel matrix that only involves the inner prod-
ucts between the training points. Of course in high-dimensional feature
spaces we may expect the rank to be equal to the number of data points.
If we use the Gaussian kernel this will always be the case if the points are
distinct.

Clearly the size of dj indicates how independent the next example is from

128 Elementary algorithms in feature space

the examples processed so far. If we wish to capture the most important
dimensions of the data points it is therefore natural to vary the order that
the examples are processed in the Cholesky decomposition by always choos-
ing the point with largest residual norm, while those with small residuals
are eventually ignored altogether. This leads to a reordering of the order
in which the examples are processed. The reordering is computed by the
statement

[a, I(j + 1)] = max(d);

in the Matlab code below with the array I storing the permutation.
This approach corresponds to pivoting in Cholesky decomposition, while

failing to include all the examples is referred to as an incomplete Cholesky
decomposition. The corresponding approach in the feature space is known
as partial Gram–Schmidt orthonormalisation.

Algorithm 5.12 [Cholesky decomposition or dual Gram–Schmidt] Matlab
code for the incomplete Cholesky decomposition, equivalent to the dual
partial Gram–Schmidt orthonormalisation is given in Code Fragment 5.4.

Notice that the index array I stores the indices of the vectors in the order
in which they are chosen, while the parameter η allows for the possibility
that the data is only approximately contained in a subspace. The residual
norms will all be smaller than this value, while the dimension of the feature
space obtained is given by T . If η is set small enough then T will be equal
to the rank of the data in the feature space. Hence, we can determine the
rank of the data in the feature space using Code Fragment 5.4.

The partial Gram–Schmidt procedure can be viewed as a method of re-
ducing the size of the residuals by a greedy strategy of picking the largest at
each iteration. This naturally raises the question of whether smaller residu-
als could result if the subspace was chosen globally to minimise the residuals.
The solution to this problem will be given by choosing the eigensubspace
that will be shown to minimise the sum-squared residuals. The next section
begins to examine this approach to assessing the spread of the data in the fea-
ture space, though final answers to these questions will be given in Chapter
6.

5.3 Measuring the spread of the data

The mean estimates where the data is centred, while the variance measures
the extent to which the data is spread. We can compare two zero-mean uni-

5.3 Measuring the spread of the data 129

% original kernel matrix stored in variable K
% of size ell x ell.
% new features stored in matrix R of size T x ell
% eta gives threshold residual cutoff
j = 0;
R = zeros(ell,ell);
d = diag(K);
[a,I(j+1)] = max(d);
while a > eta
j = j + 1;
nu(j) = sqrt(a);
for i = 1:ell
R(j,i) = (K(I(j),i) - R(:,i)’*R(:,I(j)))/nu(j);
d(i) = d(i) - R(j,i)^2;

end
[a,I(j+1)] = max(d);

end
T = j;
R = R(1:T,:);
% for new example with vector of inner products
% k of size ell x 1 to compute new features r
r = zeros(T, 1);
for j=1:T
r(j) = (k(I(j)) - r’*R(:,I(j)))/nu(j);

end

Code Fragment 5.4. Matlab code for performing incomplete Cholesky decomposi-
tion or dual partial Gram–Schmidt orthogonalisation.

variate random variables using a measure known as the covariance defined
to be the expectation of their product

cov (x, y) = Exy[xy].

Frequently, raw feature components from different sensors are difficult to
compare because the units of measurement are different. It is possible to
compensate for this by standardising the features into unitless quantities.
The standardisation x̂ of a feature x is

x̂ =
x− µx

σx
,

where µx and σx are the mean and standard deviation of the random variable
x. The measure x̂ is known as the standard score. The covariance

Ex̂ŷ[x̂ŷ]

130 Elementary algorithms in feature space

of two such scores gives a measure of correlation

ρxy = corr (x, y) = Exy

[
(x− µx)

(
y − µy

)
σxσy

]

between two random variables. A standardised score x̂ has the property
that µx̂ = 0, σx̂ = 1. Hence, the correlation can be seen as the cosine of the
angle between the standardised scores. The value ρxy is also known as the
Pearson correlation coefficient. Note that for two random vectors x and y

the following three conditions are equivalent:

ρxy = 1;

x̂ = ŷ;

y = b + wx for some b and for some w > 0.

Similarly ρxy = −1 if and only if x̂ = −ŷ and the same holds with a
negative w. This means that by comparing their standardised scores we can
measure for linear correlations between two (univariate) random variables.
In general we have

ρxy =
{

0; if the two variables are linearly uncorrelated,
±1; if there is an exact linear relation between them.

More generally ∣∣ρxy∣∣ ≈ 1 if and only if y ≈ b + wx,

and we talk about positive and negative linear correlations depending on
the sign of ρxy. Hence, we can view

∣∣ρxy∣∣ as an indicator for the presence of
a pattern function of the form g (x, y) = y − b− wx.

The above observations suggest the following preprocessing might be help-
ful if we are seeking linear models.

Algorithm 5.13 [Standardising data] When building a linear model it is
natural to standardise the features in order to make linear relations more
apparent. Code Fragment 5.5 gives Matlab code to standardise input fea-
tures by estimating the mean and standard deviation over a training set.

Variance of projections The above standardisation treats each coordi-
nate independently. We will now consider measures that can take into ac-
count the interaction between different features. As discussed above if we
are working with a kernel-induced feature space, we cannot access the coor-
dinates of the points φ(S). Despite this we can learn about the spread in the

5.3 Measuring the spread of the data 131

% original data stored in ell x N matrix X
% output uses the same variable X
% M is a row vector storing the column averages
% SD stores the column standard deviations
ell = size(X,1);
M = sum(X) / ell;
M2 = sum(X.^2)/ell;
SD = sqrt(M2 - M.^2);
X = (X - ones(ell,1)*M)./(ones(ell,1)*SD);

Code Fragment 5.5. Matlab code for standardising data.

feature space. Consider the �×N matrix X whose rows are the projections
of the training points into the N -dimensional feature space

X =
[
φ(x1) φ(x2) . . . φ(x�)

]′ .
Note that the feature vectors themselves are column vectors. If we assume
that the data has zero mean or has already been centred then the covariance
matrix C has entries

Cst =
1
�

�∑
i=1

φ(xi)sφ(xi)t, s, t = 1, . . . , N .

Observe that

�Cst=
�∑

i=1

φ(xi)sφ(xi)t =

(
�∑

i=1

φ(xi)φ(xi)′
)

st

=
(
X′X

)
st

.

If we consider a unit vector v ∈R
N then the expected value of the norm of

the projection ‖Pv (φ(x))‖ = v′φ(x)/ (v′v) = v′φ(x) of the training points
onto the space spanned by v is

µv = Ê [‖Pv (φ(x))‖] = Ê
[
v′φ(x)

]
= v′

Ê [φ(x)] = 0,

where we have again used the fact that the data is centred. Hence, if we
wish to compute the variance of the norms of the projections onto v we have

σ2
v = Ê

[
(‖Pv (φ(x))‖ − µv)2

]
= Ê

[
‖Pv (φ(x))‖2

]
=

1
�

�∑
i=1

‖Pv (φ(xi))‖2

but we have

1
�

�∑
i=1

‖Pv (φ(x))‖2 =
1
�

�∑
i=1

v′φ(xi)φ(xi)′v = Ê
[
v′φ(xi)φ(xi)′v

]
(5.9)

=
1
�
v′X′Xv.

132 Elementary algorithms in feature space

So the covariance matrix contains the information needed to compute the
variance of the data along any projection direction. If the data has not
been centred we must subtract the square of the mean projection since the
variance is given by

σ2
v = Ê

[
(‖Pv (φ(x))‖ − µv)2

]
= Ê

[
‖Pv (φ(x))‖2

]
− µ2

v

=
1
�
v′X′Xv −

(
1
�
v′X′j

)2

,

where j is the all 1s vector.

Variance of projections in a feature space It is natural to ask if we
can compute the variance of the projections onto a fixed direction v in
the feature space using only inner product information. Clearly, we must
choose the direction v so that we can express it as a linear combination of
the projections of the training points

v =
�∑

i=1

αiφ(xi) = X′α.

For this v we can now compute the variance as

σ2
v =

1
�
v′X′Xv −

(
1
�
v′X′j

)2

=
1
�
α′XX′XX′α−

(
1
�
α′XX′j

)2

=
1
�
α′ (XX′)2 α− 1

�2

(
α′XX′j

)2

=
1
�
α′K2

α− 1
�2
(
α′Kj

)2 ,

again computable from the kernel matrix.
Being able to compute the variance of projections in the feature space sug-

gests implementing a classical method for choosing a linear classifier known
as the Fisher discriminant. Using the techniques we have developed we will
be able to implement this algorithm in the space defined by the kernel.

5.4 Fisher discriminant analysis I

The Fisher discriminant is a classification function

f (x) = sgn (〈w,φ (x)〉 + b) ,

5.4 Fisher discriminant analysis I 133

where the weight vector w is chosen to maximise the quotient

J(w) =
(µ+

w − µ−
w)2(

σ+
w

)2 +
(
σ−

w

)2 , (5.10)

where µ+
w is the mean of the projection of the positive examples onto the

direction w, µ−
w the mean for the negative examples, and σ+

w, σ−
w the cor-

responding standard deviations. Figure 5.2 illustrates the projection onto a
particular direction w that gives good separation of the means with small
variances of the positive and negative examples. The Fisher discriminant
maximises the ratio between these quantities. The motivation for this choice

Fig. 5.2. The projection of points on to a direction w with positive and negative
examples grouped separately.

is that the direction chosen maximises the separation of the means scaled
according to the variances in that direction. Since we are dealing with
kernel-defined feature spaces, it makes sense to introduce a regularisation
on the norm of the weight vector w as motivated by Theorem 4.12. Hence,
we consider the following optimisation.

Computation 5.14 [Regularised Fisher discriminant] The regularised Fisher
discriminant chooses w to solve the following optimisation problem

max
w

J(w) =
(µ+

w − µ−
w)2(

σ+
w

)2 +
(
σ−

w

)2 + λ ‖w‖2
(5.11)

134 Elementary algorithms in feature space

First observe that the quotient is invariant under rescalings of the vector
w so that we can constrain the denominator to have a fixed value C. Using
a Lagrange multiplier ν we obtain the solution vector as

w� = argmax
w

((
Ê
[
yw′φ(x)

])2
− ν

(
1
�+

w′X′I+I+Xw −
(

1
�+

w′X′j+

)2

+
1
�−

w′X′I−I−Xw −
(

1
�−

w′X′j−

)2

+ λw′w − C

))
,

where we have used a simplification of the numerator and the results of the
previous section for the denominator. It is now a relatively straightforward
derivation to obtain

w� = argmax
w

((
1
�
y′Xw

)2

− ν

(
1
�+

w′X′I+Xw −
(

1
�+

w′X′j+

)2

+
1
�−

w′X′I−Xw −
(

1
�−

w′X′j−

)2

+ λw′w − C

))

= argmax
w

((
1
�
y′Xw

)2

− ν

(
λw′w − C

+
�

2�+�−
w′X′

(
2�−

�
I++

2�−

��+
j+j′+−

2�+

�
I− +

2�+

��−
j−j′−

)
Xw

))
,

where we have used y to denote the vector of {−1,+1} labels, I+ (resp. I−)
to indicate the identity matrix with 1s only in the columns corresponding
to positive (resp. negative) examples and j+ (resp. j−) to denote the vector
with 1s in the entries corresponding to positive (resp. negative) examples
and otherwise 0s. Letting

B = D − C+ − C− (5.12)

where D is a diagonal matrix with entries

Dii =
{

2�−/� if yi = +1
2�+/� if yi = −1,

(5.13)

and C+ and C− are given by

C+
ij =

{
2�−/ (��+) if yi = +1 = yj
0 otherwise

(5.14)

and

C−
ij =

{
2�+/ (��−) if yi = −1 = yj
0 otherwise,

(5.15)

5.4 Fisher discriminant analysis I 135

we can write

w� = argmax
w

((
1
�
y′Xw

)2

− ν

(
λw′w − C +

�

2�+�−
w′X′BXw

))
.

(5.16)
Varying C will only cause the solution to be rescaled since any rescaling of
the weight vector will not affect the ratio of the numerator to the quantity
constrained. If we now consider the optimisation

w� = argmax
w

(
y′Xw − ν ′

(
λw′w − C +

�

2�+�−
w′X′BXw

))
, (5.17)

it is clear that the solutions of problems (5.16) and (5.17) will be identical up
to reversing the direction of w�, since once the denominator is constrained
to have value C the weight vector w that maximises (5.17) will maximise
(5.16). This holds since the maxima of y′Xw and (y′Xw)2 coincide with a
possible change of sign of w. Hence, with an appropriate re-definition of ν,
λ and C

w�=argmax
w

(
y′Xw − ν

2
w′X′BXw + C − λν

2
w′w

)
.

Taking derivatives with respect to w we obtain

0 = X′y − νX′BXw − λνw,

so that λνw = X′ (y − νBXw) ,

Dual expression This implies that we can express w in the dual form as a
linear combination of the training examples w = X′α, where α is given by

α =
1
λν

(y − νBXw) . (5.18)

Substituting for w in equation (5.18) we obtain

λνα = y − νBXX′α = y − νBKα.

giving

(νBK + λνI)α = y.

Since the classification function is invariant to rescalings of the weight vector,
we can rescale α by ν to obtain

(BK + λI)α = y.

Notice the similarity with the ridge regression solution considered in Chapter
2, but here the real-valued outputs are replaced by the binary labels and

136 Elementary algorithms in feature space

the additional matrix B is included, though for balanced datasets this will
be close to I. In general the solution is given by

α = (BK + λI)−1 y,

so that the corresponding classification function is

h(x) = sgn

(
�∑

i=1

αiκ(x,xi) − b

)
= sgn

(
k′ (BK + λI)−1 y − b

)
, (5.19)

where k is the vector with entries κ(x,xi), i = 1, . . . , � and b is an appropriate
offset. The value of b is chosen so that w′µ+ − b = b − w′µ−, that is so
that the decision boundary bisects the line joining the two centres of mass.
Taking the weight vector w = X′α, we have

b = 0.5α′X
(

1
�+

X′j+ +
1
�−

X′j−

)
= 0.5α′XX′t = 0.5α′Kt, (5.20)

where t is the vector with entries

ti =
{

1/�+ if yi = +1
1/�− if yi = −1.

(5.21)

We summarise in the following computation.

Computation 5.15 [Regularised kernel Fisher discriminant] The regu-
larised kernel Fisher discriminant chooses the dual variables α as follows

α = (BK + λI)−1 y,

where K is the kernel matrix, B is given by (5.12)-(5.15), and the resulting
classification function is given by (5.19) and the threshold b by (5.20) and
(5.21).

Finally, we give a more explicit description of the dual algorithm.

Algorithm 5.16 [Dual Fisher discriminant] Matlab code for the dual Fisher
discriminant algorithm is given in Code Fragment 5.6.

Proposition 5.17 Consider the classification training set

S = {(x1, y1), . . . , (x�, y�)} ,

with a feature space implicitly defined by the kernel κ(x, z). Let

f(x) = y′(BK + λI)−1k − b,

5.5 Summary 137

% K is the kernel matrix of ell training points
% lambda the regularisation parameter
% y the labels
% The inner products between the training and t test points
% are stored in the matrix Ktest of dimension ell x t
% the true test labels are stored in ytruetest
ell = size(K,1);
ellplus = (sum(y) + ell)/2;
yplus = 0.5*(y + 1);
ellminus = ell - ellplus;
yminus = yplus - y;
t = size(Ktest,2);
rescale = ones(ell,1)+y*((ellminus-ellplus)/ell);
plusfactor = 2*ellminus/(ell*ellplus);
minusfactor = 2*ellplus/(ell*ellminus);
B = diag(rescale) - (plusfactor * yplus) * yplus’

- (minusfactor * yminus) * yminus’;
alpha = (B*K + lambda*eye(ell,ell))\y;
b = 0.25*(alpha’*K*rescale)/(ellplus*ellminus);
ytest = sign(Ktest’*alpha - b);
error = sum(abs(ytruetest - ytest))/(2*t)

Code Fragment 5.6. Kernel Fisher discriminant algorithm

where K is the �×� matrix with entries Kij = κ(xi,xj), k is the vector with
entries ki = κ(xi,x), B is defined by equations (5.12)–(5.15) and b is defined
by equations (5.20)–(5.21). Then the function f(x) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel κ(x, z) that
solves the Fisher discriminant problem (5.10) regularised by the parameter
λ.

Remark 5.18 [Statistical properties] In this example of the kernel Fisher
discriminant we did not obtain an explicit performance guarantee. If we
observe that the function obtained has a non-zero margin γ we could apply
Theorem 4.17 but this in itself does not motivate the particular choice of
optimisation criterion. Theorem 4.12 as indicated above can motivate the
regularisation of the norm of the weight vector, but a direct optimisation of
the bound will lead to the more advanced algorithms considered in Chapter
7.

5.5 Summary

• Many properties of the data in the embedding space can be calculated
using only information obtained through kernel evaluations. These include

138 Elementary algorithms in feature space

distances between points, distances of points from the centre of mass,
dimensionality of the subspace spanned by the data, and so on.

• Many transformations of the data in the embedding space can be re-
alised through operations on the kernel matrix. For example, translating
a dataset so that its centre of mass coincides with the origin corresponds
to a set of operations on the kernel matrix; normalisation of the data
produces a mapping to vectors of norm 1, and so on.

• Certain transformations of the kernel matrix correspond to performing
projections in the kernel-defined feature space. Deflation corresponds to
one such projection onto the orthogonal complement of a 1-dimensional
subspace. Using these insights it is shown that incomplete Cholesky
decomposition of the kernel matrix is a dual implementation of partial
Gram–Schmidt orthonormalisation in the feature space.

• Three simple pattern analysis algorithms, one for novelty-detection and
the other two for classification, have been described using the basic geo-
metric relations derived in this chapter.

• The Fisher discriminant can be viewed as optimising a measure of the
separation of the projections of the data onto a 1-dimensional subspace.

5.6 Further reading and advanced topics

In this chapter we have shown how to evaluate a number of properties of a
set of points in a kernel defined feature space, typically the image of a generic
dataset through the embedding map φ. This discussion is important both as
a demonstration of techniques and methods that will be used in the following
three chapters, and because the properties discussed can be directly used to
analyse data, albeit in simple ways. In this sense, they are some of the first
pattern analysis algorithms we have presented.

It is perhaps surprising how much information about a dataset can be
obtained simply from its kernel matrix. The idea of using Mercer kernels
as inner products in an embedding space in order to implement a learning
algorithm dates back to Aizermann, Braverman and Rozonoer [1], who con-
sidered a dual implementation of the perceptron algorithm. However, its
introduction to mainstream machine learning literature had to wait until
1992 with the first paper on support vector machines [16]. For some time
after that paper, kernels were only used in combination with the maximal
margin algorithm, while the idea that other types of algorithms could be
implemented in this way began to emerge. The possibility of using kernels
in any algorithm that can be formulated in terms of inner products was first
mentioned in the context of kernel PCA (discussed in Chapter 6) [119], [20].

5.6 Further reading and advanced topics 139

The centre of mass, the distance, the expected squared distance from
the centre are all straight-forward applications of the kernel concept, and
appear to have been introduced independently by several authors since the
early days of research in this field. The connection between Parzen windows
and the centres of mass of the two classes was pointed out by Schölkopf
and is discussed in the book [118]. Also the normalisation procedure is
well-known, while the centering procedure was first published in the paper
[119]. Kernel Gram–Schmidt was introduced in [31] and can also be seen
as an approximation of kernel PCA. The equivalent method of incomplete
Cholesky decomposition was presented by [7]. See [49] for a discussion of
QR decomposition.

Note that in Chapter 6 many of these ideas will be re-examined, including
the kernel Fisher discriminant and kernel PCA, so more references can be
found in Section 6.9.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net.

