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Detecting stable patterns

As discussed in Chapter 1 perhaps the most important property of a pattern
analysis algorithm is that it should identify statistically stable patterns. A
stable relation is one that reflects some property of the source generating the
data, and is therefore not a chance feature of the particular dataset. Proving
that a given pattern is indeed significant is the concern of ‘learning theory’,
a body of principles and methods that estimate the reliability of pattern
functions under appropriate assumptions about the way in which the data
was generated. The most common assumption is that the individual train-
ing examples are generated independently according to a fixed distribution,
being the same distribution under which the expected value of the pattern
function is small. Statistical analysis of the problem can therefore make use
of the law of large numbers through the ‘concentration’ of certain random
variables.

Concentration would be all that we need if we were only to consider one
pattern function. Pattern analysis algorithms typically search for pattern
functions over whole classes of functions, by choosing the function that best
fits the particular training sample. We must therefore be able to prove
stability not of a pre-defined pattern, but of one deliberately chosen for its
fit to the data.

Clearly the more pattern functions at our disposal, the more likely that
this choice could be a spurious pattern. The critical factor that controls
how much our choice may have compromised the stability of the resulting
pattern is the ‘capacity’ of the function class. The capacity will be related to
tunable parameters of the algorithms for pattern analysis, hence making it
possible to directly control the risk of overfitting the data. This will lead to
close parallels with regularisation theory, so that we will control the capacity
by using different forms of ‘regularisation’.
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86 Detecting stable patterns

4.1 Concentration inequalities

In Chapter 1 we introduced the idea of a statistically stable pattern function
f as a non-negative function whose expected value on an example drawn
randomly according to the data distribution D is small

Ex∼Df(x) ≈ 0.

Since we only have access to a finite sample of data, we will only be able to
make assertions about this expected value subject to certain assumptions.
It is in the nature of a theoretical model that it is built on a set of precepts
that are assumed to hold for the phenomenon being modelled. Our basic
assumptions are summarised in the following definition of our data model.

Definition 4.1 The model we adopt will make the assumption that the
distribution D that provides the quality measure of the pattern is the same
distribution that generated the examples in the finite sample used for train-
ing purposes. Furthermore, the model assumes that the individual training
examples are independently and identically distributed (i.i.d.). We will de-
note the probability of an event A under distribution D by PD(A). The
model makes no assumptions about whether the examples include a label,
are elements of R

n, though some mild restrictions are placed on the gener-
ating distribution, albeit with no practical significance.

We gave a definition of what was required of a pattern analysis algorithm
in Definition 1.7, but for completeness we repeat it here with some embel-
lishments.

Definition 4.2 A pattern analysis algorithm takes as input a finite set S of �
data items generated i.i.d. according to a fixed (but unknown) distribution D
and a confidence parameter δ ∈ (0, 1). Its output is either an indication that
no patterns were detectable, or a pattern function f that with probability
1 − δ satisfies

EDf(x) ≈ 0.

The value of the expectation is known as the generalisation error of the
pattern function f .

In any finite dataset, even if it comprises random numbers, it is always
possible to find relations if we are prepared to create sufficiently complicated
functions.
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Example 4.3 Consider a set of � people each with a credit card and mobile
phone; we can find a degree � − 1 polynomial g(t) that given a person’s
telephone number t computes that person’s credit card number c = g(t),
making |c− g(t)| look like a promising pattern function as far as the sample
is concerned. This follows from the fact that a degree �− 1 polynomial can
interpolate � points. However, what is important in pattern analysis is to
find relations that can be used to make predictions on unseen data, in other
words relations, that capture some properties of the source generating the
data. It is clear that g(·) will not provide a method of computing credit
card numbers for people outside the initial set.

The aim of this chapter is to develop tools that enable us to distinguish be-
tween relations that are the effect of chance and those that are ‘meaningful’.
Intuitively, we would expect a statistically stable relation to be present in
different randomly generated subsets of the dataset, in this way confirming
that the relation is not just the property of the particular dataset.

Example 4.4 The relation found between card and phone numbers in
Example 4.3 would almost certainly change if we were to generate a second
dataset. If on the other hand we consider the function that returns 0 if the
average height of the women in the group is less than the average height
of the men and 1 otherwise, we would expect different subsets to usually
return the same value of 0.

Another way to ensure that we have detected a significant relation is to
check whether a similar relation could be learned from scrambled data: if
we randomly reassign the height of all individuals in the sets of Example
4.4, will we still find a relation between height and gender? In this case
the probability that this relation exists would be a half since there is equal
chance of different heights being assigned to women as to men. We will refer
to the process of randomly reassigning labels as randomisation of a labelled
dataset. It is also sometimes referred to as permutation testing . We will see
that checking for patterns in a randomised set can provide a lodestone for
measuring the stability of a pattern function.

Randomisation should not be confused with the concept of a random
variable. A random variable is any real-valued quantity whose value depends
on some random generating process, while a random vector is such a vector-
valued quantity. The starting point for the analysis presented in this chapter
is the assumption that the data have been generated by a random process.
Very little is assumed about this generating process, which can be thought
of as the distribution governing the natural occurrence of the data. The
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only restricting assumption about the data generation is that individual
examples are generated independently of one another. It is this property of
the randomly-generated dataset that will ensure the stability of a significant
pattern function in the original dataset, while the randomisation of the labels
has the effect of deliberately removing any stable patterns.

Concentration of one random variable The first question we will con-
sider is that of the stability of a fixed function of a finite dataset. In other
words how different will the value of this same function be on another dataset
generated by the same source? The key property that we will require of the
relevant quantity or random variable is known as concentration. A random
variable that is concentrated is very likely to assume values close to its ex-
pectation since values become exponentially unlikely away from the mean.
For a concentrated quantity we will therefore be confident that it will assume
very similar values on new datasets generated from the same source. This
is the case, for example, for the function ‘average height of the female indi-
viduals’ used above. There are many results that assert the concentration
of a random variable provided it exhibits certain properties. These results
are often referred to as concentration inqualities. Here we present one of the
best-known theorems that is usually attributed to McDiarmid.

Theorem 4.5 (McDiarmid) Let X1, . . . , Xn be independent random vari-
ables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn, x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then for all ε > 0,

P {f (X1, . . . , Xn) − Ef (X1, . . . , Xn) ≥ ε} ≤ exp
( −2ε2∑n

i=1 c
2
i

)

The proof of this theorem is given in Appendix A.1.
Another well-used inequality that bounds the deviation from the mean for

the special case of sums of random variables is Hoeffding’s inequality. We
quote it here as a simple special case of McDiarmid’s inequality when

f(X1, . . . , Xn) =
n∑

i=1

Xi.

Theorem 4.6 (Hoeffding’s inequality) If X1, . . . , Xn are independent
random variables satisfying Xi ∈ [ai, bi], and if we define the random variable



4.1 Concentration inequalities 89

Sn =
∑n

i=1 Xi, then it follows that

P{|Sn − E[Sn]| ≥ ε} ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.

Estimating univariate means As an example consider the average of a
set of � independent instances r1, r2, . . . , r� of a random variable R given
by a probability distribution P on the interval [a, b]. Taking Xi = ri/� it
follows, in the notation of Hoeffding’s Inequality, that

S� =
1
�

�∑
i=1

ri = Ê[R],

where Ê[R] denotes the sample average of the random variable R. Further-
more

E[Sn] = E

[
1
�

�∑
i=1

ri

]
=

1
�

�∑
i=1

E [ri] = E[R],

so that an application of Hoeffding’s Inequality gives

P{|Ê[R] − E[R]| ≥ ε} ≤ 2 exp
(
− 2�ε2

(b− a)2

)
,

indicating an exponential decay of probability with the difference between
observed sample average and the true average. Notice that the probability
also decays exponentially with the size of the sample. If we consider Example
4.4, this bound shows that for moderately sized randomly chosen groups of
women and men, the average height of the women will, with high probability,
indeed be smaller than the average height of the men, since it is known that
the true average heights do indeed differ significantly.

Estimating the centre of mass The example of the average of a random
variable raises the question of how reliably we can estimate the average of
a random vector φ(x), where φ is a mapping from the input space X into
a feature space F corresponding to a kernel κ (·, ·). This is equivalent to
asking how close the centre of mass of the projections of a training sample

S = {x1,x2, . . . ,x�}

will be to the true expectation

Ex[φ(x)] =
∫
X
φ(x)dP (x).
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We denote the centre of mass of the training sample by

φS =
1
�

�∑
i=1

φ(xi).

We introduce the following real-valued function of the sample S as our mea-
sure of the accuracy of the estimate

g(S) = ‖φS − Ex[φ(x)]‖ .

We can apply McDiarmid’s theorem to the random variable g(S) by bound-
ing the change in this quantity when xi is replaced by x̂i to give Ŝ

|g(S) − g(Ŝ)| = |‖φS − Ex[φ(x)]‖ − ‖φS′ − Ex[φ(x)]‖|

≤ ‖φS − φS′‖ =
1
�

∥∥φ(xi) − φ(x′
i)
∥∥ ≤ 2R

�
,

where R = supx∈X ‖φ(x)‖. Hence, applying McDiarmid’s theorem with
ci = 2R/�, we obtain

P {g(S) − ES [g(S)] ≥ ε} ≤ exp
(
−2�ε2

4R2

)
. (4.1)

We are now at the equivalent point after the application of Hoeffding’s
inequality in the one-dimensional case. But in higher dimensions we no
longer have a simple expression for ES [g(S)]. We need therefore to consider
the more involved argument. We present a derivation bounding ES [g(S)]
that will be useful for the general theory we develop below. The derivation
is not intended to be optimal as a bound for ES [g(S)]. An explanation of
the individual steps is given below

ES [g(S)] = ES [‖φS − Ex[φ(x)]‖] = ES

[∥∥φS − ES̃ [φS̃ ]
∥∥]

= ES

[∥∥ES̃ [φS − φS̃ ]
∥∥] ≤ ESS̃

[∥∥φS − φS̃

∥∥]
= EσSS̃

[
1
�

∥∥∥∥∥
�∑

i=1

σi (φ(xi) − φ(x̃i))

∥∥∥∥∥
]

= EσSS̃

[
1
�

∥∥∥∥∥
�∑

i=1

σiφ(xi) −
�∑

i=1

σiφ(x̃i)

∥∥∥∥∥
]

(4.2)

≤ 2ESσ

[
1
�

∥∥∥∥∥
�∑

i=1

σiφ(xi)

∥∥∥∥∥
]

(4.3)

=
2
�
ESσ




〈

�∑
i=1

σiφ(xi),
�∑

j=1

σjφ(xj)

〉


1/2
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≤ 2
�


ESσ


 �∑
i,j=1

σiσjκ(xi,xj)






1/2

=
2
�

(
ES

[
�∑

i=1

κ(xi,xi)

])1/2

(4.4)

≤ 2R√
�
. (4.5)

It is worth examining the stages in this derivation in some detail as they
will form the template for the main learning analysis we will give below.

• The second equality introduces a second random sample S̃ of the same
size drawn according to the same distribution. Hence the expectation of
its centre of mass is indeed the true expectation of the random vector.

• The expectation over S̃ can now be moved outwards in two stages, the
second of which follows from an application of the triangle inequality.

• The next equality makes use of the independence of the generation of the
individual examples to introduce random exchanges of the corresponding
points in the two samples. The random variables σ = {σ1, . . . , σ�} as-
sume values −1 and +1 independently with equal probability 0.5, hence
either leave the effect of the examples xi and x̃i as it was or effectively
interchange them. Since the points are generated independently such a
swap gives an equally likely configuration, and averaging over all possible
swaps leaves the overall expectation unchanged.

• The next steps split the sum and again make use of the triangle inequality
together with the fact that the generation of S and S̃ is identical.

• The movement of the square root function through the expectation follows
from Jensen’s inquality and the concavity of the square root.

• The disappearance of the mixed terms σiσjκ(xi,xj) for i �= j follows
from the fact that the four possible combinations of −1 and +1 have
equal probability with two of the four having the opposite sign and hence
cancelling out.

Hence, setting the right-hand side of inequality (4.1) equal to δ, solving
for ε, and combining with inequality (4.4) shows that with probability at
least 1 − δ over the choice of a random sample of � points, we have

g(S) ≤ R√
�

(
2 +

√
2 ln

1
δ

)
. (4.6)
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This shows that with high probability our sample does indeed give a good
estimate of E[φ(x)] in a way that does not depend on the dimension of the
feature space. This example shows how concentration inequalities provide
mechanisms for bounding the deviation of quantities of interest from their
expected value, in the case considered this was the function g that measures
the distance between the true mean of the random vector and its sample
estimate. Figures 4.1 and 4.2 show two random samples drawn from a 2-
dimensional Gaussian distribution centred at the origin. The sample means
are shown with diamonds.
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Fig. 4.1. The empirical centre of mass based on a random sample
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Fig. 4.2. The empirical centre of mass based on a second random sample.

Rademacher variables As mentioned above, the derivation of inequalities
(4.2) to (4.4) will form a blueprint for the more general analysis described
below. In particular the introduction of the random {−1,+1} variables
σi will play a key role. Such random numbers are known as Rademacher
variables. They allow us to move from an expression involving two samples
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in equation (4.2) to twice an expression involving one sample modified by
the Rademacher variables in formula (4.3).

The result motivates the use of samples as reliable estimators of the true
quantities considered. For example, we have shown that the centre of mass
of the training sample is indeed a good estimator for the true mean. In the
next chapter we will use this result to motivate a simple novelty-detection
algorithm that checks if a new datapoint is further from the true mean
than the furthest training point. The chances of this happening for data
generated from the same distribution can be shown to be small, hence when
such points are found there is a high probability that they are outliers.

4.2 Capacity and regularisation: rademacher theory

In the previous section we considered what were effectively fixed pattern
functions, either chosen beforehand or else a fixed function of the data. The
more usual pattern analysis scenario is, however, more complex, since the
relation is chosen from a set of possible candidates taken from a function
class. The dangers inherent in this situation were illustrated in the example
involving phone numbers and credit cards. If we allow ourselves to choose
from a large set of possibilities, we may find something that ‘looks good’ on
the dataset at hand but does not reflect a property of the underlying process
generating the data. The distance between the value of a certain function
in two different random subsets does not only depend therefore on its being
concentrated, but also on the richness of the class from which it was chosen.
We will illustrate this point with another example.

Example 4.7 [Birthday paradox] Given a random set of N people, what is
the probability that two of them have the same birthday? This probability
depends of course on N and is surprisingly high even for small values of N .
Assuming that the people have equal chance of being born on all days, the
probability that a pair have the same birthday is 1 minus the probability
that all N have different birthdays

P (same birthday) = 1 −
N∏
i=1

365 − i + 1
365

= 1 −
N∏
i=1

(
1 − i− 1

365

)

≥ 1 −
N∏
i=1

exp
(
− i− 1

365

)
= 1 − exp

(
−

N∑
i=1

(i− 1)
365

)

= 1 − exp
(
−N(N − 1)

730

)
.
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It is well-known that this increases surprisingly quickly. For example taking
N = 28 gives a probability greater than 0.645 that there are two people in
the group that share a birthday. If on the other hand we consider a pre-fixed
day, the probability that two people in the group have their birthday on that
day is

P (same birthday on a fixed day) =
N∑
i=2

(
N

i

)(
1

365

)i(364
365

)N−i

.

If we evaluate this expression for N = 28 we obtain 0.002 7. The difference
between the two probabilities follows from the fact that in the one case we
fix the day after choosing the set of people, while in the second case it is
chosen beforehand. In the first case we have much more freedom, and hence
it is more likely that we will find a pair of people fitting our hypothesis. We
will expect to find a pair of people with the same birthday in a set of 28
people with more than even chance, so that no conclusions could be drawn
from this observation about a relation between the group and that day. For
a pre-fixed day the probability of two or more having a birthday on the
same day would be less than 0.3%, a very unusual event. As a consequence,
in the second case we would be justified in concluding that there is some
connection between the chosen date and the way the group was selected, or
in other words that we have detected a significant pattern.

Our observation shows that if we check for one property there is unlikely
to be a spurious match, but if we allow a large number of properties such as
the 365 different days there is a far higher chance of observing a match. In
such cases we must be careful before drawing any conclusions.

Uniform convergence and capacity What we require if we are to use a
finite sample to make inferences involving a whole class of functions is that
the difference between the sample and true performance should be small
for every function in the class. This property will be referred to as uniform
convergence over a class of functions. It implies that the concentration holds
not just for one function but for all of the functions at the same time.

If a set is so rich that it always contains an element that fits any given
random dataset, then the patterns found may not be significant and it is
unlikely that the chosen function will fit a new dataset even if drawn from
the same distribution. The example given in the previous section of finding
a polynomial that maps phone numbers to credit card numbers is a case in
point. The capability of a function class to fit different data is known as its
capacity . Clearly the higher the capacity of the class the greater the risk of
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overfitting the particular training data and identifying a spurious pattern.
The critical question is how one should measure the capacity of a function
class. For the polynomial example the obvious choice is the degree of the
polynomial, and keeping the degree smaller than the number of training ex-
amples would lessen the risk described above of finding a spurious relation
between phone and credit card numbers. Learning theory has developed a
number of more general measures that can be used for classes other than
polynomials, one of the best known being the Vapnik–Chervonenkis dimen-
sion.

The approach we adopt here has already been hinted at in the previous
section and rests on the intuition that we can measure the capacity of a
class by its ability to fit random data. The definition makes use of the
Rademacher variables introduced in the previous section and the measure is
therefore known as the Rademacher complexity.

Definition 4.8 [Rademacher complexity] For a sample S = {x1, . . . ,x�}
generated by a distribution D on a set X and a real-valued function class F
with domain X, the empirical Rademacher complexity of F is the random
variable

R̂�(F) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
∣∣∣∣∣x1, . . . ,x�

]
,

where σ = {σ1, . . . , σ�} are independent uniform {±1}-valued (Rademacher)
random variables. The Rademacher complexity of F is

R�(F) = ES

[
R̂�(F)

]
= ESσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
]
.

The sup inside the expectation measures the best correlation that can be
found between a function of the class and the random labels. It is important
to stress that pattern detection is a probabilistic process, and there is there-
fore always the possibility of detecting a pattern in noise. The Rademacher
complexity uses precisely the ability of the class to fit noise as its measure of
capacity. Hence controlling this measure of capacity will intuitively guard
against the identification of spurious patterns. We now give a result that
formulates this insight as a precise bound on the error of pattern functions
in terms of their empirical fit and the Rademacher complexity of the class.

Note that we denote the input space with Z in the theorem, so that in
the case of supervised learning we would have Z = X × Y . We use ED for
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the expectation with respect to the underlying distribution, while Ê denotes
the empirical expectation measured on a particular sample.

Theorem 4.9 Fix δ ∈ (0, 1) and let F be a class of functions mapping from
Z to [0, 1]. Let (zi)�i=1 be drawn independently according to a probability
distribution D. Then with probability at least 1 − δ over random draws of
samples of size �, every f ∈ F satisfies

ED [f(z)] ≤ Ê [f(z)] + R�(F) +

√
ln(2/δ)

2�

≤ Ê [f(z)] + R̂�(F) + 3

√
ln(2/δ)

2�
.

Proof For a fixed f ∈ F we have

ED [f(z)] ≤ Ê [f(z)] + sup
h∈F

(
EDh− Êh

)
.

We now apply McDiarmid’s inequality bound to the second term on the
right-hand side in terms of its expected value. Since the function takes
values in the range [0, 1], replacing one example can change the value of the
expression by at most 1/�. Subsituting this value of ci into McDiarmid’s
inequality, setting the right-hand side to be δ/2, and solving for ε, we obtain
that with probability greater than 1 − δ/2

sup
h∈F

(
EDh− Êh

)
≤ ES

[
sup
h∈F

(
EDh− Êh

)]
+

√
ln(2/δ)

2�
.

giving

ED [f(z)] ≤ Ê [f(z)] + ES

[
sup
h∈F

(
EDh− Êh

)]
+

√
ln(2/δ)

2�
.

We must now bound the middle term of the right-hand side. This is where we
follow the technique applied in the previous section to bound the deviation
of the mean of a random vector

ES

[
sup
h∈F

(
EDh− Êh

)]
= ES

[
sup
h∈F

ES̃

[
1
�

�∑
i=1

h(z̃i) −
1
�

�∑
i=1

h(zi)

∣∣∣∣∣S
]]

≤ ESES̃

[
sup
h∈F

1
�

�∑
i=1

(h(z̃i) − h(zi))

]

= EσSS̃

[
sup
h∈F

1
�

�∑
i=1

σi (h(z̃i) − h(zi))

]
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≤ 2ESσ

[
sup
h∈F

∣∣∣∣∣1�
�∑

i=1

σih(zi)

∣∣∣∣∣
]

= R� (F) .

Finally, with probability greater than 1−δ/2, we can bound the Rademacher
complexity in terms of its empirical value by a further application of McDi-
armid’s theorem for which ci = 2/�. The complete results follows.

The only additional point to note about the proof is its use of the fact
that the sup of an expectation is less than or equal to the expectation of the
sup in order to obtain the second line from the first. This follows from the
triangle inequality for the �∞ norm.

The theorem shows that modulo the small additional square root factor
the difference between the empirical and true value of the functions or in
our case with high probability the difference between the true and empirical
error of the pattern function is bounded by the Rademacher complexity of
the pattern function class. Indeed we do not even need to consider the full
Rademacher complexity, but can instead use its empirical value on the given
training set. In our applications of the theorem we will invariably make use
of this empirical version of the bound.

In the next section we will complete our analysis of stability by computing
the (empirical) Rademacher complexities of the kernel-based linear classes
that are the chosen function classes for the majority of the methods pre-
sented in this book. We will also give an example of applying the theorem
for a particular pattern analysis task.

4.3 Pattern stability for kernel-based classes

Clearly the results of the previous section can only be applied if we are able to
bound the Rademacher complexities of the corresponding classes of pattern
functions. As described in Chapter 1, it is frequently useful to decompose
the pattern functions into an underlying class of functions whose outputs
are fed into a so-called loss function. For example, for binary classification
the function class F may be a set of real-valued functions that we convert
to a binary value by thresholding at 0. Hence a function g ∈ F is converted
to a binary output by applying the sign function to obtain a classification
function h

h (x) = sgn (g (x)) ∈ {±1} .
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We can therefore express the pattern function using the discrete loss function
L given by

L (x, y) =
1
2
|h (x) − y| =

{
0, if h (x) = y;
1, otherwise.

Equivalently we can apply the Heaviside function, H(·) that returns 1 if its
argument is greater than 0 and zero otherwise as follows

L (x, y) = H(−yg(x)).

Hence, the pattern function is H ◦ f , where f (x, y) = −yg(x). We use the
notation ∧F to also denote the class

∧F = {(x, y) �→ −yg(x) : g ∈ F} .

Using this loss implies that

ED [H(−yg(x))] = ED [H(f(x, y))] = PD (y �= h(x)) .

This means we should consider the Rademacher complexity of the class

H ◦ ∧F =
{
H ◦ f : f ∈ ∧F

}
.

Since we will bound the complexity of such classes by assuming the loss
function satisfies a Lipschitz condition, it is useful to introduce an auxiliary
loss function A that has a better Lipschitz constant and satisfies

H(f(x, y)) ≤ A(f(x, y)), (4.7)

where the meaning of the Lipschitz condition is given in the following defini-
tion. A function A satisfying equation (4.7) will be known as a dominating
cost function.

Definition 4.10 A loss function A : R → [0, 1] is Lipschitz with constant
L if it satisfies∣∣A(a) −A(a′)

∣∣ ≤ L
∣∣a− a′

∣∣ for all a, a′ ∈ R.

We use the notation (·)+ for the function

(x)+ =
{
x, if x ≥ 0;
0, otherwise.
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The binary classification case described above is an example where such a
function is needed, since the true loss is not a Lipschitz function at all. By
taking A to be the hinge loss given by

A(f(x, y)) = (1 + f(x, y))+ = (1 − yg(x))+ ,

we get a Lipschitz constant of 1 with A dominating H.
Since our underlying class will usually be linear functions in a kernel-

defined feature space, we first turn our attention to bounding the Rademacher
complexity of these functions. Given a training set S the class of functions
that we will primarily be considering are linear functions with bounded norm{

x →
�∑

i=1

αiκ(xi,x):α′Kα ≤ B2

}
⊆ {x → 〈w,φ (x)〉 : ‖w‖ ≤ B} = FB,

where φ is the feature mapping corresponding to the kernel κ and K is
the kernel matrix on the sample S. Note that although the choice of func-
tions appears to depend on S, the definition of FB does not depend on the
particular training set.

Remark 4.11 [The weight vector norm] Notice that for this class of func-
tions, f(x) = 〈w,φ (x)〉 =

〈∑�
i=1 αiφ (xi) ,φ (x)

〉
=

∑�
i=1 αiκ(xi,x), we

have made use of the derivation

‖w‖2 = 〈w,w〉 =

〈
�∑

i=1

αiφ (xi) ,
�∑

j=1

αjφ (xj)

〉

=
�∑

i,j=1

αiαj 〈φ (xi) ,φ (xj)〉 =
�∑

i,j=1

αiαjκ (xi,xj)

= α′Kα,

in order to show that FB is a superset of our class. We will further investigate
the insights that can be made into the structure of the feature space using
only information gleaned from the kernel matrix in the next chapter.

The proof of the following theorem again uses part of the proof given in
the first section showing the concentration of the mean of a random vector.
Here we use the techniques of the last few lines of that proof.

Theorem 4.12 If κ : X × X → R is a kernel, and S = {x1, . . . ,x�} is a
sample of points from X, then the empirical Rademacher complexity of the
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class FB satisfies

R̂�(FB) ≤ 2B
�

√√√√ �∑
i=1

κ(xi,xi) =
2B
�

√
tr (K)

Proof The result follows from the following derivation

R̂�(FB) = Eσ

[
sup
f∈FB

∣∣∣∣∣2�
�∑

i=1

σif (xi)

∣∣∣∣∣
]

= Eσ

[
sup

‖w‖≤B

∣∣∣∣∣
〈

w,
2
�

�∑
i=1

σiφ (xi)

〉∣∣∣∣∣
]

≤ 2B
�

Eσ

[∥∥∥∥∥
�∑

i=1

σiφ(xi)

∥∥∥∥∥
]

=
2B
�

Eσ




〈

�∑
i=1

σiφ(xi),
�∑

j=1

σjφ(xj)

〉


1/2



≤ 2B
�


Eσ


 �∑
i,j=1

σiσjκ(xi,xj)






1/2

=
2B
�

(
�∑

i=1

κ(xi,xi)

)1/2

.

Note that in the proof the second line follows from the first by the linearity
of the inner product, while to get the third we use the Cauchy–Schwarz
inequality. The last three lines mimic the proof of the first section except
that the sample is in this case fixed.

Remark 4.13 [Regularisation strategy] When we perform some kernel-
based pattern analysis we typically compute a dual representation α of
the weight vector. We can compute the corresponding norm B as α′Kα

where K is the kernel matrix, and hence estimate the complexity of the
corresponding function class. By controlling the size of α′Kα, we therefore
control the capacity of the function class and hence improve the statistical
stability of the pattern, a method known as regularisation.
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Properties of Rademacher complexity The final ingredient that will
be required to apply the technique are the properties of the Rademacher
complexity that allow it to be bounded in terms of properties of the loss
function. The following theorem summarises some of the useful properties
of the empirical Rademacher complexity, though the bounds also hold for
the full complexity as well. We need one further definition.

Definition 4.14 Let F be a subset of a vector space. By conv (F ) we
denote the set of convex combinations of elements of F .

Theorem 4.15 Let F ,F1, . . . ,Fn and G be classes of real functions. Then:

(i) If F ⊆ G, then R̂�(F) ≤ R̂�(G);
(ii) R̂�(F) = R̂�(convF);
(iii) For every c ∈ R, R̂�(cF) = |c|R̂�(F);
(iv) If A : R → R is Lipschitz with constant L and satisfies A(0) = 0,

then R̂� (A ◦ F) ≤ 2LR̂�(F);

(v) For any function h, R̂�(F + h) ≤ R̂�(F) + 2
√

Ê [h2] /�;
(vi) For any 1 ≤ q < ∞, let LF ,h,q = {|f − h|q| f ∈ F}. If ‖f − h‖∞ ≤ 1

for every f ∈ F , then R̂�(LF ,h,q) ≤ 2q
(
R̂�(F) + 2

√
Ê [h2] /�

)
;

(vii) R̂�(
∑n

i=1 Fi) ≤
∑n

i=1 R̂�(Fi).

Though in many cases the results are surprising, with the exception of (iv)
their proofs are all relatively straightforward applications of the definition
of empirical Rademacher complexity. For example, the derivation of part
(v) is as follows

R̂�(F + h) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σi (f (xi) + h(xi))

∣∣∣∣∣
]

≤ Eσ

[
2
�

sup
f∈F

∣∣∣∣∣
�∑

i=1

σif (xi)

∣∣∣∣∣
]

+ Eσ

[
2
�

∣∣∣∣∣
�∑

i=1

σih(xi)

∣∣∣∣∣
]

≤ R̂�(F) +
2
�


Eσ


 �∑
i,j=1

σih(xi)σjh(xj)






1/2

= R̂�(F) +
2
�

(
�∑

i=1

h(xi)2
)1/2

= R̂�(F) +
2
�

(
�Ê

[
h2
])1/2

.
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The proof of (iv) is discussed in Section 4.6.

Margin bound We are now in a position to give an example of an applica-
tion of the bound. We will take the case of pattern analysis of a classification
function. The results obtained here will be used in Chapter 7 where we de-
scribe algorithms that optimise the bounds we derive here based involving
either the margin or the slack variables.

We need one definition before we can state the theorem. When using the
Heaviside function to convert a real-valued function to a binary classification,
the margin is the amount by which the real value is on the correct side of
the threshold as formalised in the next definition.

Definition 4.16 For a function g : X → R, we define its margin on
an example (x, y) to be yg(x). The functional margin of a training set
S = {(x1, y1), . . . , (x�, y�)}, is defined to be

m(S, g) = min
1≤i≤�

yig(xi).

Given a function g and a desired margin γ we denote by ξi = ξ ((xi, yi), γ, g)
the amount by which the function g fails to achieve margin γ for the example
(xi, yi). This is also known as the example’s slack variable

ξi = (γ − yig(xi))+ ,

where (x)+ = x if x ≥ 0 and 0 otherwise.

Theorem 4.17 Fix γ > 0 and let F be the class of functions mapping from
Z = X × Y to R given by f (x, y) = −yg(x), where g is a linear function in
a kernel-defined feature space with norm at most 1. Let

S = {(x1, y1), . . . , (x�, y�)}

be drawn independently according to a probability distribution D and fix δ ∈
(0, 1). Then with probability at least 1 − δ over samples of size � we have

PD (y �= sgn (g(x))) = ED [H(−yg(x))]

≤ 1
�γ

�∑
i=1

ξi +
4
�γ

√
tr(K) + 3

√
ln(2/δ)

2�
,

where K is the kernel matrix for the training set and ξi = ξ ((xi, yi), γ, g).
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Proof Consider the loss function A : R → [0, 1], given by

A(a) =




1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

By Theorem 4.9 and since the loss function A−1 dominates H−1, we have
that

ED [H(f(x, y)) − 1] ≤ ED [A(f(x, y)) − 1]

≤ Ê [A(f(x, y)) − 1] + R̂�((A− 1) ◦ F) + 3

√
ln(2/δ)

2�
.

But the function A(−yig(xi)) ≤ ξi/γ, for i = 1, . . . , �, and so

ED [H(f(x, y))] ≤ 1
�γ

�∑
i=1

ξi + R̂�((A− 1) ◦ F) + 3

√
ln(2/δ)

2�
.

Since (A− 1) (0) = 0, we can apply part (iv) of Theorem 4.15 with L = 1/γ
to give R̂�((A− 1) ◦ F) ≤ 2R̂�(F)/γ. It remains to bound the empirical
Rademacher complexity of the class F

R̂�(F) = Eσ

[
sup
f∈F

∣∣∣∣∣2�
�∑

i=1

σif (xi, yi)

∣∣∣∣∣
]

= Eσ

[
sup
f∈F1

∣∣∣∣∣2�
�∑

i=1

σiyig (xi)

∣∣∣∣∣
]

= Eσ

[
sup
f∈F1

∣∣∣∣∣2�
�∑

i=1

σig (xi)

∣∣∣∣∣
]

= R̂�(F1)

=
2
�

√
tr (K),

where we have used the fact that g ∈ F1 that is that the norm of the weight
vector is bounded by 1, and that multiplying σi by a fixed yi does not alter
the expectation. This together with Theorem 4.12 gives the result.

If the function g has margin γ, or in other words if it satisfies m(S, g) ≥ γ,
then the first term in the bound is zero since all the slack variables are zero
in this case.

Remark 4.18 [Comparison with other bounds] This theorem mimics the
well-known margin based bound on generalisation (see Section 4.6 for de-
tails), but has several advantages. Firstly, it does not involve additional
log(�) factors in the second term and the constants are very tight. Further-
more it handles the case of slack variables without recourse to additional
constructions. It also does not restrict the data to lie in a ball of some
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predefined radius, but rather uses the trace of the matrix in its place as
an empirical estimate or effective radius. Of course if it is known that the
support of the distribution is in a ball of radius R about the origin, then we
have

4
�γ

√
tr(K) ≤ 4

�γ

√
�R2 = 4

√
R2

�γ2
.

Despite these advantages it suffers from requiring a square root factor of the
ratio of the effective dimension and the training set size. For the classifica-
tion case this can be avoided, but for more general pattern analysis tasks it
is not clear that this can always be achieved. We do, however, feel that the
approach succeeds in our aim of providing a unified and transparent frame-
work for assessing stability across a wide range of different pattern analysis
tasks.

As we consider different algorithms in later chapters we will indicate the
factors that will affect the corresponding bound that guarantees their sta-
bility. Essentially this will involve specifying the relevant loss functions and
estimating the corresponding Rademacher complexities.

4.4 A pragmatic approach

There exist many different methods for modelling learning algorithms and
quantifying the reliability of their results. All involve some form of capacity
control, in order to prevent the algorithm from fitting ‘irrelevant’ aspects of
the data. The concepts outlined in this chapter have been chosen for their
intuitive interpretability that can motivate the spirit of all the algorithms
discussed in this book. However we will not seek to derive statistical bounds
on the generalization of every algorithm, preferring the pragmatic strategy of
using the theory to identify which parameters should be kept under control
in order to control the algorithm’s capacity. For detailed discussions of
statistical bounds covering many of the algorithms, we refer the reader to
the last section of this and the following chapters, which contain pointers to
the relevant literature.

The relations we will deal with will be quite diverse ranging from corre-
lations to classifications, from clusterings to rankings. For each of them,
different performance measures can be appropriate, and different cost func-
tions should be optimised in order to achieve best performance. In some
cases we will see that we can estimate capacity by actually doing the ran-
domisation ourselves, rather than relying on a priori bounds such as those
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given above. Such attempts to directly estimate the empirical Rademacher
complexity are likely to lead to much better indications of the generalisation
as they can take into account the structure of the data, rather than slightly
uninformative measures such as the trace of the kernel matrix.

Our strategy will be to use cost functions that are ‘concentrated’, so that
any individual pattern that has a good performance on the training sample
will with high probability achieve a good performance on new data from
the same distribution. For this same stability to apply across a class of
pattern functions will depend on the size of the training set and the degree
of control that is applied to the capacity of the class from which the pattern
is chosen. In practice this trade-off between flexibility and generalisation
will be achieved by controlling the parameters indicated by the theory. This
will often lead to regularization techniques that penalise complex relations
by controlling the norm of the linear functions that define them.

We will make no effort to eliminate every tunable component from our
algorithms, as the current state-of-the-art in learning theory often does not
give accurate enough estimates for this to be a reliable approach. We will
rather emphasise the role of any parameters that can be tuned in the al-
gorithms, leaving it for the practitioner to decide how best to set these
parameters with the data at his or her disposal.

4.5 Summary

• The problem of determining the stability of patterns can be cast in a
statistical framework.

• The stability of a fixed pattern in a finite sample can be reliably verified
if it is statistically concentrated, something detectable using McDiarmid’s
inequality.

• When considering classes of pattern functions, the issue of the capacity of
the class becomes crucial in ensuring that concentration applies simulta-
neously for all functions.

• The Rademacher complexity measures the capacity of a class. It assesses
the ‘richness’ of the class by its ability to fit random noise. The differ-
ence between empirical and true estimation over the pattern class can be
bounded in terms of its Rademacher complexity.

• Regularisation is a method of controlling capacity and hence ensuring that
detected patterns are stable.

• There are natural methods for measuring and controlling the capacity of
linear function classes in kernel-defined feature spaces.
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4.6 Further reading and advanced topics

The modelling of learning algorithms with methods of empirical processes
was pioneered by Vladimir Vapnik and Alexei Chervonenkis (VC) [142], [143]
in the 1970s, and greatly extended in more recent years by a large number
of other researchers. Their work emphasised the necessity to control the
capacity of a class of functions, in order to avoid overfitting, and devised a
measure of capacity known as VC dimension [140].

Their analysis does not, however, extend to generalisation bounds involv-
ing the margin or slack variables. The first papers to develop these bounds
were [122] and [8]. The paper [122] developed the so-called luckiness frame-
work for analysing generalisation based on fortuitous observations during
training such as the size of the margin. The analysis of generalisation in
terms of the slack variables in the soft margin support vector machine is
given in [123]. A description of generalisation analysis for support vector
machines based on these ideas is also contained in Chapter 4 of the book [32].
In this chapter we have, however, followed a somewhat different approach,
still within a related general framework.

The original VC framework was specialised for the problem of classifica-
tion, and later extended to cover regression problems and novelty-detection.
Its extension to general classes of patterns in data is difficult. It is also
well-known that traditional VC arguments provide rather loose bounds on
the risk of overfitting. A number of new methodologies have been proposed
in recent years to overcome some of these problems, mostly based on the
notion of concentration inequalities [18], [17], and the use of Rademacher
complexity: [78], [9], [80], [10], [78]. At an intuitive level we can think of
Rademacher complexity as being an empirical estimate of the VC dimen-
sion. Despite the transparency of the results we have described, we have
omitted a proof of part (iv) of Theorem 4.15. This is somewhat non-trivial
and we refer the interested reader to [83] who in turn refer to [83]. The full
proof of the result requires a further theorem proved by X. Fernique.

The analysis we presented in this chapter aims at covering all the types of
patterns we are interested in, and therefore needs to be very general. What
has remained unchanged during this evolution from VC to Rademacher-
type of arguments, is the use of the notion of uniform convergence of the
empirical means of a set of random variables to their expectations, although
the methods for proving uniform convergence have become simpler and more
refined. The rate of such uniform convergence is however still dictated by
some measure of richness of such set.

The use of Rademacher Complexity for this purpose is due to [78]. Our
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discussion of Rademacher complexity for kernel function classes is based on
the paper by Bartlett and Mendelson [10] and on the lectures given by Peter
Bartlett at UC Berkeley in 2001. The discussion of concentration inequalities
is based on Boucheron, Lugosi and Massart [17] and on the seminar notes
of Gabor Lugosi.

More recently tighter bounds on generalisation of SVMs has been obtained
using a theoretical linking of Bayesian and statistical learning [82]. Finally,
notions of regularizations date back to [136], and certainly have been fully
exploited by Wahba in similar contexts [152].

The books [38] and [4] also provide excellent coverage of theoretical foun-
dations of inference and learning.

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net




