
3

Properties of kernels

As we have seen in Chapter 2, the use of kernel functions provides a powerful
and principled way of detecting nonlinear relations using well-understood
linear algorithms in an appropriate feature space. The approach decouples
the design of the algorithm from the specification of the feature space. This
inherent modularity not only increases the flexibility of the approach, it also
makes both the learning algorithms and the kernel design more amenable
to formal analysis. Regardless of which pattern analysis algorithm is being
used, the theoretical properties of a given kernel remain the same. It is the
purpose of this chapter to introduce the properties that characterise kernel
functions.

We present the fundamental properties of kernels, thus formalising the
intuitive concepts introduced in Chapter 2. We provide a characterization
of kernel functions, derive their properties, and discuss methods for design-
ing them. We will also discuss the role of prior knowledge in kernel-based
learning machines, showing that a universal machine is not possible, and
that kernels must be chosen for the problem at hand with a view to captur-
ing our prior belief of the relatedness of different examples. We also give a
framework for quantifying the match between a kernel and a learning task.

Given a kernel and a training set, we can form the matrix known as the
kernel, or Gram matrix: the matrix containing the evaluation of the kernel
function on all pairs of data points. This matrix acts as an information
bottleneck, as all the information available to a kernel algorithm, be it about
the distribution, the model or the noise, must be extracted from that matrix.
It is therefore not surprising that the kernel matrix plays a central role in
the development of this chapter.

47

48 Properties of kernels

3.1 Inner products and positive semi-definite matrices

Chapter 2 showed how data can be embedded in a high-dimensional feature
space where linear pattern analysis can be performed giving rise to non-
linear pattern analysis in the input space. The use of kernels enables this
technique to be applied without paying the computational penalty implicit
in the number of dimensions, since it is possible to evaluate the inner prod-
uct between the images of two inputs in a feature space without explicitly
computing their coordinates.

These observations imply that we can apply pattern analysis algorithms
to the image of the training data in the feature space through indirect evalu-
ation of the inner products. As defined in Chapter 2, a function that returns
the inner product between the images of two inputs in some feature space
is known as a kernel function.

This section reviews the notion and properties of inner products that will
play a central role in this book. We will relate them to the positive semi-
definiteness of the Gram matrix and general properties of positive semi-
definite symmetric functions.

3.1.1 Hilbert spaces

First we recall what is meant by a linear function. Given a vector space X

over the reals, a function

f : X −→ R

is linear if f(αx) = αf(x) and f(x + z) = f(x) + f(z) for all x, z ∈ X and
α ∈ R.

Inner product space A vector space X over the reals R is an inner prod-
uct space if there exists a real-valued symmetric bilinear (linear in each
argument) map 〈·, ·〉, that satisfies

〈x,x〉 ≥ 0.

The bilinear map is known as the inner, dot or scalar product. Furthermore
we will say the inner product is strict if

〈x,x〉 = 0 if and only if x = 0.

Given a strict inner product space we can define a norm on the space X by

‖x‖2 =
√

〈x,x〉.

3.1 Inner products and positive semi-definite matrices 49

The associated metric or distance between two vectors x and z is defined as
d(x, z) = ‖x − z‖2. For the vector space R

n the standard inner product is
given by

〈x, z〉 =
n∑

i=1

xizi.

Furthermore, if the inner product is not strict, those points x for which
‖x‖ = 0 form a linear subspace since Proposition 3.5 below shows 〈x,y〉2 ≤
‖x‖2 ‖y‖2 = 0, and hence if also ‖z‖ = 0 we have for all a, b ∈ R

‖ax + bz‖2 = 〈ax + bz,ax + bz〉 = a2 ‖x‖2 + 2ab 〈x, z〉 + b2 ‖z‖2 = 0.

This means that we can always convert a non-strict inner product to a strict
one by taking the quotient space with respect to this subspace.

A vector space with a metric is known as a metric space, so that a strict
inner product space is also a metric space. A metric space has a derived
topology with a sub-basis given by the set of open balls.

An inner product space is sometimes referred to as a Hilbert space, though
most researchers require the additional properties of completeness and sep-
arability, as well as sometimes requiring that the dimension be infinite. We
give a formal definition.

Definition 3.1 A Hilbert Space F is an inner product space with the ad-
ditional properties that it is separable and complete. Completeness refers
to the property that every Cauchy sequence {hn}n≥1 of elements of F con-
verges to a element h ∈ F , where a Cauchy sequence is one satisfying the
property that

sup
m>n

‖hn − hm‖ → 0, as n → ∞.

A space F is separable if for any ε > 0 there is a finite set of elements
h1, . . . , hN of F such that for all h ∈ F

min
i

‖hi − h‖ < ε.

Example 3.2 Let X be the set of all countable sequences of real numbers
x = (x1, x2, . . . , xn, . . .), such that the sum

∞∑
i=1

x2
i < ∞,

50 Properties of kernels

with the inner product between two sequences x and y defined by

〈x,y〉 =
∞∑
i=1

xiyi.

This is the space known as L2.

The reason for the importance of the properties of completeness and sepa-
rability is that together they ensure that Hilbert spaces are either isomorphic
to R

n for some finite n or to the space L2 introduced in Example 3.2. For our
purposes we therefore require that the feature space be a complete, separa-
ble inner product space, as this will imply that it can be given a coordinate
system. Since we will be using the dual representation there will, however,
be no need to actually construct the feature vectors.

This fact may seem strange at first since we are learning a linear function
represented by a weight vector in this space. But as discussed in Chapter 2
the weight vector is a linear combination of the feature vectors of the training
points. Generally, all elements of a Hilbert space are also linear functions in
that space via the inner product. For a point z the corresponding function
fz is given by

fz(x) = 〈x, z〉.

Finding the weight vector is therefore equivalent to identifying an appropri-
ate element of the feature space.

We give two more examples of inner product spaces.

Example 3.3 Let X = R
n, x = (x1, . . . , xn)′, z = (z1, . . . , zn)′. Let λi be

fixed positive numbers, for i = 1, . . . , n. The following defines a valid inner
product on X

〈x, z〉 =
n∑

i=1

λixizi = x′Λz,

where Λ is the n× n diagonal matrix with entries Λii = λi.

Example 3.4 Let F = L2 (X) be the vector space of square integrable func-
tions on a compact subset X of R

n with the obvious definitions of addition
and scalar multiplication, that is

L2 (X) =
{
f :
∫
X
f (x)2 dx < ∞

}
.

3.1 Inner products and positive semi-definite matrices 51

For f , g ∈ X, define the inner product by

〈f, g〉 =
∫
X
f(x)g(x)dx.

Proposition 3.5 (Cauchy–Schwarz inequality) In an inner product
space

〈x, z〉2 ≤ ‖x‖2 ‖z‖2 .

and the equality sign holds in a strict inner product space if and only if x
and z are rescalings of the same vector.

Proof Consider an abitrary ε > 0 and the following norm

0 ≤ ‖(‖z‖ + ε)x ± z (‖x‖ + ε)‖2

= 〈(‖z‖ + ε)x ± z (‖x‖ + ε) , (‖z‖ + ε)x ± z (‖x‖ + ε)〉
= (‖z‖ + ε)2 ‖x‖2 + ‖z‖2 (‖x‖ + ε)2 ± 2 〈(‖z‖ + ε)x, z (‖x‖ + ε)〉
≤ 2 (‖z‖ + ε)2 (‖x‖ + ε)2 ± 2 (‖z‖ + ε) (‖x‖ + ε) 〈x, z〉 ,

implying that

∓〈x, z〉 ≤ (‖x‖ + ε) (‖z‖ + ε) .

Letting ε → 0 gives the first result. In a strict inner product space equality
implies

x ‖z‖ ± z ‖x‖ = 0,

making x and z rescalings as required.

Angles, distances and dimensionality The angle θ between two vectors
x and z of a strict inner product space is defined by

cos θ =
〈x, z〉
‖x‖ ‖z‖

If θ = 0 the cosine is 1 and 〈x, z〉 = ‖x‖ ‖z‖, and x and z are said to be
parallel. If θ = π

2 , the cosine is 0, 〈x, z〉 = 0 and the vectors are said to be
orthogonal.

A set S = {x1, . . . ,x�} of vectors from X is called orthonormal if
〈
xi,xj

〉
=

δij , where δij is the Kronecker delta satisfying δij = 1 if i = j, and 0 other-
wise. For an orthonormal set S, and a vector z ∈ X, the expression

�∑
i=1

〈xi, z〉xi

52 Properties of kernels

is said to be a Fourier series for z. If the Fourier series for z equals z for all
z, then the set S is also a basis. Since a Hilbert space is either equivalent to
R
n or to L2, it will always be possible to find an orthonormal basis, indeed

this basis can be used to define the isomorphism with either R
n or L2.

The rank of a general n × m matrix X is the dimension of the space
spanned by its columns also known as the column space. Hence, the rank
of X is the smallest r for which we can express

X = RS,

where R is an n×r matrix whose linearly independent columns form a basis
for the column space of X, while the columns of the r×m matrix S express
the columns of X in that basis. Note that we have

X′ = S′R′,

and since S′ is m× r, the rank of X′ is less than or equal to the rank of X.
By symmetry the two ranks are equal, implying that the dimension of the
space spanned by the rows of X is also equal to its rank.

An n×m matrix is full rank if its rank is equal to min (n,m).

3.1.2 Gram matrix

Given a set of vectors, S = {x1, . . . ,x�} the Gram matrix is defined as the
� × � matrix G whose entries are Gij = 〈xi,xj〉. If we are using a kernel
function κ to evaluate the inner products in a feature space with feature
map φ, the associated Gram matrix has entries

Gij = 〈φ (xi) ,φ (xj)〉 = κ (xi,xj) .

In this case the matrix is often referred to as the kernel matrix. We will use
a standard notation for displaying kernel matrices as:

K 1 2 · · · �

1 κ (x1,x1) κ (x1,x2) · · · κ (x1,x�)
2 κ (x2,x1) κ (x2,x2) · · · κ (x2,x�)
...

...
...

. . .
...

� κ (x�,x1) κ (x�,x2) · · · κ (x�,x�)

where the symbol K in the top left corner indicates that the table represents
a kernel matrix – see the Appendix B for a summary of notations.

In Chapter 2, the Gram matrix has already been shown to play an im-
portant role in the dual form of some learning algorithms. The matrix is

3.1 Inner products and positive semi-definite matrices 53

symmetric since Gij = Gji, that is G′ = G. Furthermore, it contains all
the information needed to compute the pairwise distances within the data
set as shown above. In the Gram matrix there is of course some information
that is lost when compared with the original set of vectors. For example
the matrix loses information about the orientation of the original data set
with respect to the origin, since the matrix of inner products is invariant
to rotations about the origin. More importantly the representation loses
information about any alignment between the points and the axes. This
again follows from the fact that the Gram matrix is rotationally invariant
in the sense that any rotation of the coordinate system will leave the matrix
of inner products unchanged.

If we consider the dual form of the ridge regression algorithm described in
Chapter 2, we will see that the only information received by the algorithm
about the training set comes from the Gram or kernel matrix and the as-
sociated output values. This observation will characterise all of the kernel
algorithms considered in this book. In other words all the information the
pattern analysis algorithms can glean about the training data and chosen
feature space is contained in the kernel matrix together with any labelling
information.

In this sense we can view the matrix as an information bottleneck that
must transmit enough information about the data for the algorithm to be
able to perform its task. This view also reinforces the view that the kernel
matrix is the central data type of all kernel-based algorithms. It is therefore
natural to study the properties of these matrices, how they are created,
how they can be adapted, and how well they are matched to the task being
addressed.

Singular matrices and eigenvalues A matrix A is singular if there is a
non-trivial linear combination of the columns of A that equals the vector 0.
If we put the coefficients xi of this combination into a (non-zero) vector x,
we have that

Ax = 0 = 0x.

If an n × n matrix A is non-singular the columns are linearly independent
and hence space a space of dimension ṅ. Hence, we can find vectors ui such
that

Aui = ei,

54 Properties of kernels

where ei is the ith unit vector. Forming a matrix U with ith column equal
to ui we have

AU = I

the identity matrix. Hence, U = A−1 is the multiplicative inverse of A.
Given a matrix A, the real number λ and the vector x are an eigenvalue

and corresponding eigenvector of A if

Ax = λx.

It follows from the observation above about singular matrices that 0 is an
eigenvalue of a matrix if and only if it is singular. Note that for an eigenvalue,
eigenvector pair x, λ, the quotient obeys

x′Ax
x′x

= λ
x′x
x′x

= λ. (3.1)

The quotient of equation (3.1) is known as the Rayleigh quotient and
will form an important tool in the development of the algorithms of Chapter
6. Consider the optimisation problem

max
v

v′Av
v′v

(3.2)

and observe that the solution is invariant to rescaling. We can therefore
impose the constraint that ‖v‖ = 1 and solve using a Lagrange multiplier.
We obtain for a symmetric matrix A the optimisation

max
v

(
v′Av − λ

(
v′v − 1

))
,

which on setting the derivatives with respect to v equal to zero gives

Av = λv.

We will always assume that an eigenvector is normalised.
Hence, the eigenvector of the largest eigenvalue is the solution of the

optimisation (3.2) with the corresponding eigenvalue giving the value of
the maximum. Since we are seeking the maximum over a compact set we
are guaranteed a solution. A similar approach can also yield the minimum
eigenvalue.

The spectral norm or 2-norm of a matrix A is defined as

max
v

‖Av‖
‖v‖ =

√
max

v

v′A′Av
v′v

. (3.3)

3.1 Inner products and positive semi-definite matrices 55

Symmetric matrices and eigenvalues We say a square matrix A is
symmetric if A′ = A, that is the (i, j) entry equals the (j, i) entry for all
i and j. A matrix is diagonal if its off-diagonal entries are all 0. A square
matrix is upper (lower) triangular if its above (below) diagonal elements
are all zero.

For symmetric matrices we have that eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal, since if µ, z is a second eigenvalue, eigen-
vector pair with µ
= λ, we have that

λ 〈x, z〉 = 〈Ax, z〉
= (Ax)′ z

= x′A′z

= x′Az

= µ 〈x, z〉 ,

implying that 〈x, z〉 = x′z = 0. This means that if A is an n×n symmetric
matrix, it can have at most n distinct eigenvalues. Given an eigenvector–
eigenvalue pair x, λ of the matrix A, the transformation

A �−→ Ã = A − λxx′,

is known as deflation. Note that since x is normalised

Ãx = Ax − λxx′x = 0,

so that deflation leaves x an eigenvector but reduces the corresponding eigen-
value to zero. Since eigenvectors corresponding to distinct eigenvalues are
orthogonal the remaining eigenvalues of A remain unchanged. By repeat-
edly finding the eigenvector corresponding to the largest positive (or smallest
negative) eigenvalue and then deflating, we can always find an orthonormal
set of n eigenvectors, where eigenvectors corresponding to an eigenvalue of
0 are added by extending the set of eigenvectors obtained by deflation to
an orthonormal basis. If we form a matrix V with the (orthonormal) eigen-
vectors as columns and a diagonal matrix Λ with Λii = λi, i = 1, . . . , n, the
corresponding eigenvalues, we have VV′ = V′V = I, the identity matrix
and

AV = VΛ.

This is often referred to as the eigen-decomposition of A, while the set of
eigenvalues λ (A) are known as its spectrum. We generally assume that the
eigenvalues appear in order of decreasing value

λ1 ≥ λ2 ≥ · · · ≥ λn.

56 Properties of kernels

Note that a matrix V with the property VV′ = V′V = I is known as an
orthonormal or unitary matrix.

The principal minors of a matrix are the submatrices obtained by selecting
a subset of the rows and the same subset of columns. The corresponding
minor contains the elements that lie on the intersections of the chosen rows
and columns.

If the symmetric matrix A has k non-zero eigenvalues then we can express
the eigen-decomposition as

A = VΛV′ = VkΛkV′
k,

where Vk and Λk are the matrices containing the k columns of V and the
principal minor of Λ corresponding to non-zero eigenvalues. Hence, A has
rank at most k. Given any vector v in the span of the columns of Vk we
have

v = Vku = AVkΛ−1
k u,

where Λ−1
k is the diagonal matrix with inverse entries, so that the columns

of A span the same k-dimensional space, implying the rank of a symmetric
matrix A is equal to the number of non-zero eigenvalues.

For a matrix with all eigenvalues non-zero we can write

A−1 = VΛ−1V′,

as

VΛ−1V′VΛV′ = I,

showing again that only full rank matrices are invertible.
For symmetric matrices the spectral norm can now be simply evaluated

since the eigen-decomposition of A′A = A2 is given by

A2 = VΛV′VΛV′ = VΛ2V′,

so that the spectrum of A2 is
{
λ2 : λ ∈ λ (A)

}
. Hence, by (3.3) we have

‖A‖ = max
λ∈λ(A)

|λ| .

The Courant–Fisher Theorem gives a further characterisation of eigen-
values extending the characterisation of the largest eigenvalue given by the
Raleigh quotient. It considers maximising or minimising the quotient in a
subspace T of specified dimension, and then choosing the subspace either to
minimise the maximum or maximise the minimum. The largest eigenvalue

3.1 Inner products and positive semi-definite matrices 57

case corresponds to taking the dimension of T to be that of the whole space
and hence maximising the quotient in the whole space.

Theorem 3.6 (Courant–Fisher) If A ∈ R
n×n is symmetric, then for

k = 1, . . . , n, the kth eigenvalue λk (A) of the matrix A satisfies

λk(A) = max
dim(T)=k

min
0 �=v∈T

v′Av
v′v

= min
dim(T)=n−k+1

max
0 �=v∈T

v′Av
v′v

,

with the extrema achieved by the corresponding eigenvector.

Positive semi-definite matrices A symmetric matrix is positive semi-
definite, if its eigenvalues are all non-negative. By Theorem 3.6 this holds if
and only if

v′Av ≥ 0

for all vectors v, since the minimal eigenvalue satisfies

λm(A) = min
0 �=v∈Rn

v′Av
v′v

.

Similarly a matrix is positive definite, if its eigenvalues are positive or equiv-
alently

v′Av > 0, for v
= 0.

We now give two results concerning positive semi-definite matrices.

Proposition 3.7 Gram and kernel matrices are positive semi-definite.

Proof Considering the general case of a kernel matrix let

Gij = κ (xi,xj) = 〈φ (xi) ,φ (xj)〉 , for i, j = 1, . . . , �.

For any vector v we have

v′Gv =
�∑

i,j=1

vivjGij =
�∑

i,j=1

vivj 〈φ (xi) ,φ (xj)〉

=

〈
�∑

i=1

viφ (xi) ,
�∑

j=1

vjφ (xj)

〉

=

∥∥∥∥∥
�∑

i=1

viφ (xi)

∥∥∥∥∥
2

≥ 0,

58 Properties of kernels

as required.

Proposition 3.8 A matrix A is positive semi-definite if and only if A =
B′B for some real matrix B.

Proof Suppose A = B′B, then for any vector v we have

v′Av=v′B′Bv = ‖Bv‖2 ≥ 0,

implying A is positive semi-definite.
Now suppose A is positive semi-definite. Let AV = VΛ be the eigen-

decomposition of A and set B =
√

ΛV′, where
√

Λ is the diagonal matrix
with entries

(√
Λ
)
ii

=
√
λi. The matrix exists since the eigenvalues are

non-negative. Then

B′B = V
√

Λ
√

ΛV′ = VΛV′ = AVV′ = A,

as required.

The choice of the matrix B in the proposition is not unique. For example
the Cholesky decomposition of a positive semi-definite matrix A provides an
alternative factorisation

A = R′R,

where the matrix R is upper-triangular with a non-negative diagonal. The
Cholesky decomposition is the unique factorisation that has this property;
see Chapter 5 for more details.

The next proposition gives another useful characterisation of positive
(semi-) definiteness.

Proposition 3.9 A matrix A is positive (semi-)definite if and only if all of
its principal minors are positive (semi-)definite.

Proof Consider a k×k minor M of A. Clearly by inserting 0s in the positions
of the rows that were not chosen for the minor M we can extend any vector
u ∈ R

k to a vector v ∈ R
n. Observe that for A positive semi-definite

u′Mu = v′Av ≥ 0,

with strict inequality if A is positive definite and u
= 0. Hence, if A is
positive (semi-)definite so is M. The reverse implication follows, since A is
a principal minor of itself.

3.1 Inner products and positive semi-definite matrices 59

Note that each diagonal entry is a principal minor and so must be non-
negative for a positive semi-definite matrix.

Determinant and trace The determinant det(A) of a square matrix A
is the product of its eigenvalues. Hence, for a positive definite matrix the
determinant will be strictly positive, while for singular matrices it will be
zero.

If we consider the matrix as a linear transformation

x �−→ Ax = VΛV′x,

V′x computes the projection of x onto the eigenvectors that form the
columns of V, multiplication by Λ rescales the projections, while the prod-
uct with V recomputes the resulting vector. Hence the image of the unit
sphere is an ellipse with its principal axes equal to the eigenvectors and
with its lengths equal to the eigenvalues. The ratio of the volume of the
image of the unit sphere to its pre-image is therefore equal to the absolute
value of the determinant (the determinant is negative if the sphere has un-
dergone a reflection). The same holds for any translation of a cube of any
size aligned with the principal axes. Since we can approximate any shape
arbitrarily closely with a collection of such cubes, it follows that the ratio of
the volume of the image of any object to that of its pre-image is equal to the
determinant. If we follow A with a second transformation B and consider
the volume ratios, we conclude that det(AB) = det(A) det(B).

The trace tr(A) of a n × n square matrix A is the sum of its diagonal
entries

tr(A) =
n∑

i=1

Aii.

Since we have

tr(AB) =
n∑

i=1

n∑
j=1

AijBji =
n∑

i=1

n∑
j=1

BijAji = tr(BA),

the trace remains invariant under transformations of the form A −→ V−1AV
for unitary V since

tr(V−1AV) = tr((AV)V−1) = tr(A).

It follows by taking V from the eigen-decomposition of A that the trace of
a matrix is equal to the sum of its eigenvalues.

60 Properties of kernels

3.2 Characterisation of kernels

Recall that a kernel function computes the inner product of the images under
an embedding φ of two data points

κ(x, z) = 〈φ(x),φ(z)〉 .

We have seen how forming a matrix of the pairwise evaluations of a kernel
function on a set of inputs gives a positive semi-definite matrix. We also saw
in Chapter 2 how a kernel function implicitly defines a feature space that
in many cases we do not need to construct explicitly. This second obser-
vation suggests that we may also want to create kernels without explicitly
constructing the feature space. Perhaps the structure of the data and our
knowledge of the particular application suggest a way of comparing two in-
puts. The function that makes this comparison is a candidate for a kernel
function.

A general characterisation So far we have only one way of verifying
that the function is a kernel, that is to construct a feature space for which
the function corresponds to first performing the feature mapping and then
computing the inner product between the two images. For example we used
this technique to show the polynomial function is a kernel and to show that
the exponential of the cardinality of a set intersection is a kernel.

We will now introduce an alternative method of demonstrating that a
candidate function is a kernel. This will provide one of the theoretical tools
needed to create new kernels, and combine old kernels to form new ones.

One of the key observations is the relation with positive semi-definite
matrices. As we saw above the kernel matrix formed by evaluating a kernel
on all pairs of any set of inputs is positive semi-definite. This forms the
basis of the following definition.

Definition 3.10 [Finitely positive semi-definite functions] A function

κ : X ×X −→ R

satisfies the finitely positive semi-definite property if it is a symmetric func-
tion for which the matrices formed by restriction to any finite subset of the
space X are positive semi-definite.

Note that this definition does not require the set X to be a vector space.
We will now demonstrate that the finitely positive semi-definite property
characterises kernels. We will do this by explicitly constructing the feature
space assuming only this property. We first state the result in the form of a
theorem.

3.2 Characterisation of kernels 61

Theorem 3.11 (Characterisation of kernels) A function

κ : X ×X −→ R,

which is either continuous or has a finite domain, can be decomposed

κ(x, z) = 〈φ(x),φ(z)〉

into a feature map φ into a Hilbert space F applied to both its arguments
followed by the evaluation of the inner product in F if and only if it satisfies
the finitely positive semi-definite property.

Proof The ‘only if’ implication is simply the result of Proposition 3.7. We
will now show the reverse implication. We therefore assume that κ satisfies
the finitely positive semi-definite property and proceed to construct a feature
mapping φ into a Hilbert space for which κ is the kernel.

There is one slightly unusual aspect of the construction in that the el-
ements of the feature space will in fact be functions. They are, however,
points in a vector space and will fulfil all the required properties. Recall our
observation in Section 3.1.1 that learning a weight vector is equivalent to
identifying an element of the feature space, in our case one of the functions.
It is perhaps natural therefore that the feature space is actually the set of
functions that we will be using in the learning problem

F =

{
�∑

i=1

αiκ(xi, ·) : � ∈ N, xi ∈ X, αi ∈ R, i = 1, . . . , �

}
.

We have chosen to use a caligraphic F reserved for function spaces rather
than the normal F of a feature space to emphasise that the elements are
functions. We should, however, emphasise that this feature space is a set
of points that are in fact functions. Note that we have used a · to indicate
the position of the argument of the function. Clearly, the space is closed
under multiplication by a scalar and addition of functions, where addition
is defined by

f, g ∈ F =⇒ (f + g)(x) = f(x) + g(x).

Hence, F is a vector space. We now introduce an inner product on F as
follows. Let f, g ∈ F be given by

f(x) =
�∑

i=1

αiκ(xi,x) and g(x) =
n∑

i=1

βiκ(zi,x)

62 Properties of kernels

then we define

〈f, g〉 =
�∑

i=1

n∑
j=1

αiβjκ(xi, zj) =
�∑

i=1

αig(xi) =
n∑

j=1

βjf(zj), (3.4)

where the second and third equalities follow from the definitions of f and
g. It is clear from these equalities that 〈f, g〉 is real-valued, symmetric and
bilinear and hence satisfies the properties of an inner product, provided

〈f, f〉 ≥ 0 for all f ∈ F .

But this follows from the assumption that all kernel matrices are positive
semi-definite, since

〈f, f〉 =
�∑

i=1

�∑
j=1

αiαjκ(xi,xj) = α′Kα ≥ 0,

where α is the vector with entries αi, i = 1, . . . , �, and K is the kernel matrix
constructed on x1,x2, . . . ,x�.

There is a further property that follows directly from the equations (3.4)
if we take g = κ(x, ·)

〈f, κ(x, ·)〉 =
�∑

i=1

αiκ(xi,x) = f(x). (3.5)

This fact is known as the reproducing property of the kernel. It remains to
show the two additional properties of completeness and separability. Sepa-
rability will follow if the input space is countable or the kernel is continuous,
but we omit the technical details of the proof of this fact. For completeness
consider a fixed input x and a Cauchy sequence (fn)∞n=1. We have

(fn(x) − fm(x))2 = 〈fn − fm, κ(x, ·)〉2 ≤ ‖fn − fm‖2κ(x,x)

by the Cauchy–Schwarz inequality. Hence, fn(x) is a bounded Cauchy se-
quence of real numbers and hence has a limit. If we define the function

g(x) = lim
n→∞

fn(x),

and include all such limit functions in F we obtain the Hilbert space Fκ

associated with the kernel κ.
We have constructed the feature space, but must specify the image of an

input x under the mapping φ

φ : x ∈ X �−→ φ(x) = κ(x, ·) ∈ Fκ.

3.2 Characterisation of kernels 63

We can now evaluate the inner product between an element of Fκ and the
image of an input x using equation (3.5)

〈f,φ(x)〉 = 〈f, κ(x, ·)〉 = f(x).

This is precisely what we require, namely that the function f can indeed be
represented as the linear function defined by an inner product (with itself)
in the feature space Fκ. Furthermore the inner product is strict since if
‖f‖ = 0, then for all x we have that

f(x) = 〈f,φ(x)〉 ≤ ‖f‖ ‖φ(x)‖ = 0.

Given a function κ that satisfies the finitely positive semi-definite prop-
erty we will refer to the corresponding space Fκ as its Reproducing Kernel
Hilbert Space (RKHS). Similarly, we will use the notation 〈·, ·〉Fκ for the
corresponding inner product when we wish to emphasise its genesis.

Remark 3.12 [Reproducing property] We have shown how any kernel can
be used to construct a Hilbert space in which the reproducing property
holds. It is fairly straightforward to see that if a symmetric function κ(·, ·)
satisfies the reproducing property in a Hilbert space F of functions

〈κ(x, ·), f(·)〉F = f(x), for f ∈ F ,

then κ satisfies the finitely positive semi-definite property, since

�∑
i,j=1

αiαjκ(xi,xj) =
�∑

i,j=1

αiαj〈κ(xi, ·), κ(xj , ·)〉F

=

〈
�∑

i=1

αiκ(xi, ·),
�∑

j=1

αjκ(xj , ·)
〉

F

=

∥∥∥∥∥
�∑

i=1

αiκ(xi, ·)
∥∥∥∥∥

2

F
≥ 0.

Mercer kernel We are now able to show Mercer’s theorem as a conse-
quence of the previous analysis. Mercer’s theorem is usually used to con-
struct a feature space for a valid kernel. Since we have already achieved this
with the RKHS construction, we do not actually require Mercer’s theorem
itself. We include it for completeness and because it defines the feature

64 Properties of kernels

space in terms of an explicit feature vector rather than using the function
space of our RKHS construction. Recall the definition of the function space
L2 (X) from Example 3.4.

Theorem 3.13 (Mercer) Let X be a compact subset of R
n. Suppose κ is a

continuous symmetric function such that the integral operator Tκ : L2(X) →
L2(X)

(Tκf) (·) =
∫
X
κ(·,x)f(x)dx,

is positive, that is ∫
X×X

κ(x, z)f(x)f(z)dxdz ≥ 0,

for all f ∈ L2(X). Then we can expand κ(x, z) in a uniformly convergent
series (on X ×X) in terms of functions φj, satisfying

〈
φj ,φi

〉
= δij

κ(x, z) =
∞∑
j=1

φj(x)φj(z).

Furthermore, the series
∑∞

i=1 ‖φi‖2
L2(X) is convergent.

Proof The theorem will follow provided the positivity of the integral opera-
tor implies our condition that all finite submatrices are positive semi-definite.
Suppose that there is a finite submatrix on the points x1, . . . ,x� that is not
positive semi-definite. Let the vector α be such that

�∑
i,j=1

κ(xi,xj)αiαj = ε < 0,

and let

fσ(x) =
�∑

i=1

αi
1

(2πσ)d/2
exp
(‖x − xi‖2

2σ2

)
∈ L2(X),

where d is the dimension of the space X. We have that

lim
σ→0

∫
X×X

κ(x, z)fσ(x)fσ(z)dxdz = ε.

But then for some σ > 0 the integral will be less than 0 contradicting the
positivity of the integral operator.

3.2 Characterisation of kernels 65

Now consider an orthonormal basis φi(·), i = 1, . . . of Fκ the RKHS of
the kernel κ. Then we have the Fourier series for κ(x, ·)

κ(x, z) =
∞∑
i=1

〈κ(x, ·),φi(·)〉φi(z) =
∞∑
i=1

φi(x)φi(z),

as required.
Finally, to show that the series

∑∞
i=1 ‖φi‖2

L2(X) is convergent, using the
compactness of X we obtain

∞ >

∫
X
κ(x,x)dx = lim

n→∞

∫
X

n∑
i=1

φi(x)φi(x)dx

= lim
n→∞

n∑
i=1

∫
X
φi(x)φi(x)dx = lim

n→∞

n∑
i=1

‖φi‖2
L2(X)

Example 3.14 Consider the kernel function κ(x, z) = κ(x − z). Such a
kernel is said to be translation invariant, since the inner product of two
inputs is unchanged if both are translated by the same vector. Consider the
one-dimensional case in which κ is defined on the interval [0, 2π] in such a
way that κ(u) can be extended to a continuous, symmetric, periodic function
on R. Such a function can be expanded in a uniformly convergent Fourier
series

κ(u) =
∞∑
n=0

an cos(nu).

In this case we can expand κ(x− z) as follows

κ(x− z) = a0 +
∞∑
n=1

an sin(nx) sin(nz) +
∞∑
n=1

an cos(nx) cos(nz).

Provided the an are all positive this shows κ(x, z) is the inner product in
the feature space defined by the orthogonal features

{φi(x)}∞i=0 = (1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx), . . .),

since the functions, 1, cos(nu) and sin(nu) form a set of orthogonal func-
tions on the interval [0, 2π]. Hence, normalising them will provide a set
of Mercer features. Note that the embedding is defined independently of
the parameters an, which subsequently control the geometry of the feature
space.

66 Properties of kernels

Example 3.14 provides some useful insight into the role that the choice of
kernel can play. The parameters an in the expansion of κ(u) are its Fourier
coefficients. If, for some n, we have an = 0, the corresponding features are
removed from the feature space. Similarly, small values of an mean that the
feature is given low weighting and so will have less influence on the choice
of hyperplane. Hence, the choice of kernel can be seen as choosing a filter
with a particular spectral characteristic, the effect of which is to control the
influence of the different frequencies in determining the optimal separation.

Covariance kernels The fact that Mercer’s theorem enables us to express
a kernel as a sum over a set of functions of the product of their values on
the two inputs

κ(x, z) =
∞∑
j=1

φj(x)φj(z).

This suggests a different view of kernels as a covariance function determined
by a probability distribution over a function class. In general, given a dis-
tribution q(f) over a function class F , the covariance function is given by

κq(x, z) =
∫
F
f(x)f(z)q(f)df.

We will refer to such a kernel as a covariance kernel . We can see that this
is a kernel by considering the mapping

φ : x �−→ (f(x))f∈F

into the space of functions on F with inner product given by

〈a (·) , b (·)〉 =
∫
F
a (f) b (f) q (f) df .

This definition is quite natural if we consider that the ideal kernel for
learning a function f is given by

κf (x, z) = f(x)f(z), (3.6)

since the space F = Fκf
in this case contains functions of the form

�∑
i=1

αiκf (xi, ·) =
�∑

i=1

αif(xi)f(·) = Cf(·).

So for the kernel κf , the corresponding F is one-dimensional, containing only
multiples of f . We can therefore view κq as taking a combination of these

3.2 Characterisation of kernels 67

simple kernels for all possible f weighted according to the prior distribution
q. Any kernel derived in this way is a valid kernel, since it is easily verified
that it satisfies the finitely positive semi-definite property

�∑
i=1

�∑
j=1

αiαjκq(xi,xj) =
�∑

i=1

�∑
j=1

αiαj

∫
F
f(xi)f(xj)q(f)df

=
∫
F

�∑
i=1

�∑
j=1

αiαjf(xi)f(xj)q(f)df

=
∫
F

(
�∑

i=1

αif(xi)

)2

q(f)df ≥ 0.

Furthermore, if the underlying class F of functions are {−1,+1}-valued, the
kernel κq will be normalised since

κq(x,x) =
∫
F
f(x)f(x)q(f)df =

∫
F
q(f)df = 1.

We will now show that every kernel can be obtained as a covariance kernel
in which the distribution has a particular form. Given a valid kernel κ,
consider the Gaussian prior q that generates functions f according to

f(x) =
∞∑
i=1

uiφi(x),

where φi are the orthonormal functions of Theorem 3.13 for the kernel κ,
and ui are generated according to the Gaussian distribution N (0, 1) with
mean 0 and standard deviation 1. Notice that this function will be in L2(X)
with probability 1, since using the orthonormality of the φi we can bound
its expected norm by

E

[
‖f‖2

L2(X)

]
= E


 ∞∑

i=1

∞∑
j=1

uiuj
〈
φi,φj

〉
L2(X)




=
∞∑
i=1

∞∑
j=1

E [uiuj]
〈
φi,φj

〉
L2(X)

=
∞∑
i=1

E[u2
i]‖φi‖2

L2(X) =
∞∑
i=1

‖φi‖2
L2(X) < ∞,

where the final inequality follows from Theorem 3.13. Since the norm is a
positive function it follows that the measure of functions not in L2(X) is 0,

68 Properties of kernels

as otherwise the expectation would not be finite. But curiously the function
will almost certainly not be in Fκ for infinite-dimensional feature spaces.
We therefore take the distribution q to be defined over the space L2(X).

The covariance function κq is now equal to

κq(x, z) =
∫
L2(X)

f(x)f(z)q(f)df

= lim
n→∞

n∑
i,j=1

φi(x)φj(z)
∫

Rn

uiuj

n∏
k=1

(
1√
2π

exp(−u2
k/2)duk

)

= lim
n→∞

n∑
i,j=1

φi(x)φj(z)δij =
∞∑
i=1

φi(x)φi(z)

= κ(x, z).

3.3 The kernel matrix

Given a training set S = {x1, . . . ,x�} and kernel function κ(·, ·), we intro-
duced earlier the kernel or Gram matrix K = (Kij)�i,j=1 with entries

Kij = κ(xi,xj), for i, j = 1, . . . , �.

The last subsection was devoted to showing that the function κ is a valid
kernel provided its kernel matrices are positive semi-definite for all training
sets S, the so-called finitely positive semi-definite property. This fact enables
us to manipulate kernels without necessarily considering the corresponding
feature space. Provided we maintain the finitely positive semi-definite prop-
erty we are guaranteed that we have a valid kernel, that is, that there exists
a feature space for which it is the corresponding kernel function. Reasoning
about the similarity measure implied by the kernel function may be more
natural than performing an explicit construction of its feature space.

The intrinsic modularity of kernel machines also means that any kernel
function can be used provided it produces symmetric, positive semi-definite
kernel matrices, and any kernel algorithm can be applied, as long as it
can accept as input such a matrix together with any necessary labelling
information. In other words, the kernel matrix acts as an interface between
the data input and learning modules.

Kernel matrix as information bottleneck In view of our characteri-
sation of kernels in terms of the finitely positive semi-definite property, it
becomes clear why the kernel matrix is perhaps the core ingredient in the
theory of kernel methods. It contains all the information available in order

3.3 The kernel matrix 69

to perform the learning step, with the sole exception of the output labels in
the case of supervised learning. It is worth bearing in mind that it is only
through the kernel matrix that the learning algorithm obtains information
about the choice of feature space or model, and indeed the training data
itself.

The finitely positive semi-definite property can also be used to justify
intermediate processing steps designed to improve the representation of the
data, and hence the overall performance of the system through manipulating
the kernel matrix before it is passed to the learning machine. One simple
example is the addition of a constant to the diagonal of the matrix. This
has the effect of introducing a soft margin in classification or equivalently
regularisation in regression, something that we have already seen in the ridge
regression example. We will, however, describe more complex manipulations
of the kernel matrix that correspond to more subtle tunings of the feature
space.

In view of the fact that it is only through the kernel matrix that the
learning algorithm receives information about the feature space and input
data, it is perhaps not surprising that some properties of this matrix can
be used to assess the generalization performance of a learning system. The
properties vary according to the type of learning task and the subtlety of
the analysis, but once again the kernel matrix plays a central role both in
the derivation of generalisation bounds and in their evaluation in practical
applications.

The kernel matrix is not only the central concept in the design and anal-
ysis of kernel machines, it can also be regarded as the central data structure
in their implementation. As we have seen, the kernel matrix acts as an
interface between the data input module and the learning algorithms. Fur-
thermore, many model adaptation and selection methods are implemented
by manipulating the kernel matrix as it is passed between these two modules.
Its properties affect every part of the learning system from the computation,
through the generalisation analysis, to the implementation details.

Remark 3.15 [Implementation issues] One small word of caution is perhaps
worth mentioning on the implementation side. Memory constraints mean
that it may not be possible to store the full kernel matrix in memory for
very large datasets. In such cases it may be necessary to recompute the
kernel function as entries are needed. This may have implications for both
the choice of algorithm and the details of the implementation.

Another important aspect of our characterisation of valid kernels in terms

70 Properties of kernels

of the finitely positive semi-definite property is that the same condition holds
for kernels defined over any kind of inputs. We did not require that the
inputs should be real vectors, so that the characterisation applies whatever
the type of the data, be it strings, discrete structures, images, time series,
and so on. Provided the kernel matrices corresponding to any finite training
set are positive semi-definite the kernel computes the inner product after
projecting pairs of inputs into some feature space. Figure 3.1 illustrates this
point with an embedding showing objects being mapped to feature vectors
by the mapping φ.

Fig. 3.1. The use of kernels enables the application of the algorithms to non-
vectorial data.

Remark 3.16 [Kernels and prior knowledge] The kernel contains all of the
information available to the learning machine about the relative positions
of the inputs in the feature space. Naturally, if structure is to be discovered
in the data set, the data must exhibit that structure through the kernel
matrix. If the kernel is too general and does not give enough importance
to specific types of similarity. In the language of our discussion of priors
this corresponds to giving weight to too many different classifications. The
kernel therefore views with the same weight any pair of inputs as similar or
dissimilar, and so the off-diagonal entries of the kernel matrix become very
small, while the diagonal entries are close to 1. The kernel can therefore only
represent the concept of identity. This leads to overfitting since we can easily
classify a training set correctly, but the kernel has no way of generalising to
new data. At the other extreme, if a kernel matrix is completely uniform,
then every input is similar to every other input. This corresponds to every

3.3 The kernel matrix 71

input being mapped to the same feature vector and leads to underfitting of
the data since the only functions that can be represented easily are those
which map all points to the same class. Geometrically the first situation
corresponds to inputs being mapped to orthogonal points in the feature
space, while in the second situation all points are merged into the same
image. In both cases there are no non-trivial natural classes in the data,
and hence no real structure that can be exploited for generalisation.

Remark 3.17 [Kernels as oracles] It is possible to regard a kernel as defining
a similarity measure between two data points. It can therefore be considered
as an oracle, guessing the similarity of two inputs. If one uses normalised
kernels, this can be thought of as the a priori probability of the inputs being
in the same class minus the a priori probability of their being in different
classes. In the case of a covariance kernel over a class of classification func-
tions this is precisely the meaning of the kernel function under the prior
distribution q(f), since

κq(x, z) =
∫
F
f(x)f(z)q(f)df = Pq (f(x) = f(z)) − Pq (f(x)
= f(z)) .

Remark 3.18 [Priors over eigenfunctions] Notice that the kernel matrix
can be decomposed as follows

K =
�∑

i=1

λiviv′
i,

where vi are eigenvectors and λi are the corresponding eigenvalues. This de-
composition is reminiscent of the form of a covariance kernel if we view each
eigenvector vi as a function over the set of examples and treat the eigenval-
ues as a (unnormalised) distribution over these functions. We can think of
the eigenvectors as defining a feature space, though this is restricted to the
training set in the form given above. Extending this to the eigenfunctions
of the underlying integral operator

f (·) �−→
∫
X
κ (x, ·) f (x) dx

gives another construction for the feature space of Mercer’s theorem. We
can therefore think of a kernel as defining a prior over the eigenfunctions
of the kernel operator. This connection will be developed further when we
come to consider principle components analysis. In general, defining a good

72 Properties of kernels

kernel involves incorporating the functions that are likely to arise in the
particular application and excluding others.

Remark 3.19 [Hessian matrix] For supervised learning with a target vector
of {+1,−1} values y, we will often consider the matrix Hij = yiyjKij . This
matrix is known as the Hessian for reasons to be clarified later. It can
be defined as the Schur product (entrywise multiplication) of the matrix
yy′ and K. If λ,v is an eigenvalue-eigenvector pair of K then λ,u is an
eigenvalue-eigenvector pair of H, where ui = viyi, for all i.

Selecting a kernel We have already seen in the covariance kernels how
the choice of kernel amounts to encoding our prior expectation about the
possible functions we may be expected to learn. Ideally we select the kernel
based on our prior knowledge of the problem domain and restrict the learning
to the task of selecting the particular pattern function in the feature space
defined by the chosen kernel. Unfortunately, it is not always possible to make
the right choice of kernel a priori. We are rather forced to consider a family
of kernels defined in a way that again reflects our prior expectations, but
which leaves open the choice of the particular kernel that will be used. The
learning system must now solve two tasks, that of choosing a kernel from
the family, and either subsequently or concurrently of selecting a pattern
function in the feature space of the chosen kernel.

Many different approaches can be adopted for solving this two-part learn-
ing problem. The simplest examples of kernel families require only limited
amount of additional information that can be estimated from the training
data, frequently without using the label information in the case of a super-
vised learning task.

More elaborate methods that make use of the labelling information need
a measure of ‘goodness’ to drive the kernel selection stage of the learning.
This can be provided by introducing a notion of similarity between kernels
and choosing the kernel that is closest to the ideal kernel described in equa-
tion (3.6) given by κ(x, z) = y(x)y(z). A measure of matching between
kernels or, in the case of the ideal kernel, between a kernel and a target
should satisfy some basic properties: it should be symmetric, should be
maximised when its arguments are equal, and should be minimised when
applied to two independent kernels.

Furthermore, in practice the comparison with the ideal kernel will only be
feasible when restricted to the kernel matrix on the training set rather than
between complete functions, since the ideal kernel can only be computed

3.3 The kernel matrix 73

on the training data. It should therefore be possible to justify that reliable
estimates of the true similarity can be obtained using only the training set.

Cone of kernel matrices Positive semi-definite matrices form a cone in
the vector space of � × � matrices, where by cone we mean a set closed
under addition and under multiplication by non-negative scalars. This is
important if we wish to optimise over such matrices, since it implies that
they will be convex, an important property in ensuring the existence of
efficient methods. The study of optimization over such sets is known as
semi-definite programming (SDP). In view of the central role of the kernel
matrix in the above discussion, it is perhaps not surprising that this recently
developed field has started to play a role in kernel optimization algorithms.

We now introduce a measure of similarity between two kernels. First
consider the Frobenius inner product between pairs of matrices with identical
dimensions

〈M,N〉 = M · N =
�∑

i,j=1

MijNij = tr(M′N).

The corresponding matrix norm is known as the Frobenius norm. Further-
more if we consider tr(M′N) as a function of M, its gradient is of course
N.

Based on this inner product a simple measure of similarity between two
kernel matrices K1and K2 is the following:

Definition 3.20 The alignment A (K1,K2) between two kernel matrices
K1 and K2 is given by

A(K1,K2) =
〈K1,K2〉√

〈K1,K1〉〈K2,K2〉
The alignment between a kernel K and a target y is simply A(K,yy′), as
yy′ is the ideal kernel for that target. For y ∈ {−1,+1}� this becomes

A(K,yy′) =
y′Ky
�‖K‖ .

Since the alignment can be viewed as the cosine of the angle between the
matrices viewed as �2-dimensional vectors, it satisfies −1 ≤ A(K1,K2) ≤ 1.

The definition of alignment has not made use of the fact that the matrices
we are considering are positive semi-definite. For such matrices the lower
bound on alignment is in fact 0 as can be seen from the following proposition.

74 Properties of kernels

Proposition 3.21 Let M be symmetric. Then M is positive semi-definite
if and only if 〈M,N〉 ≥ 0 for every positive semi-definite N.

Proof Let λ1, λ2, . . . , λ� be the eigenvalues of M with corresponding eigen-
vectors v1,v2, . . . ,v�. It follows that

〈M,N〉 =

〈
�∑

i=1

λiviv′
i,N

〉
=

�∑
i=1

λi〈viv′
i,N〉 =

�∑
i=1

λiv′
iNvi.

Note that v′
iNvi ≥ 0 if N is positive semi-definite and we can choose N so

that only one of these is non-zero. Furthermore, M is positive semi-definite
if and only if λi ≥ 0 for all i, and so 〈M,N〉 ≥ 0 for all positive semi-definite
N if and only if M is positive semi-definite.

The alignment can also be considered as a Pearson correlation coefficient
between the random variables K1(x, z) and K2(x, z) generated with a uni-
form distribution over the pairs (xi, zj). It is also easily related to the
distance between the normalised kernel matrices in the Frobenius norm∥∥∥∥ K1

‖K1‖
− K2

‖K2‖

∥∥∥∥ = 2 −A(K1,K2)

3.4 Kernel construction

The characterization of kernel functions and kernel matrices given in the
previous sections is not only useful for deciding whether a given candidate
is a valid kernel. One of its main consequences is that it can be used to
justify a series of rules for manipulating and combining simple kernels to
obtain more complex and useful ones. In other words, such operations on
one or more kernels can be shown to preserve the finitely positive semi-
definiteness ‘kernel’ property. We will say that the class of kernel functions
is closed under such operations. These will include operations on kernel
functions and operations directly on the kernel matrix. As long as we can
guarantee that the result of an operation will always be a positive semi-
definite symmetric matrix, we will still be embedding the data in a feature
space, albeit a feature space transformed by the chosen operation. We first
consider the case of operations on the kernel function.

3.4 Kernel construction 75

3.4.1 Operations on kernel functions

The following proposition can be viewed as showing that kernels satisfy a
number of closure properties, allowing us to create more complicated kernels
from simple building blocks.

Proposition 3.22 (Closure properties) Let κ1 and κ2 be kernels over
X ×X, X ⊆ R

n, a ∈ R
+, f(·) a real-valued function on X, φ: X −→ R

N

with κ3 a kernel over R
N × R

N , and B a symmetric positive semi-definite
n× n matrix. Then the following functions are kernels:

(i) κ(x, z) = κ1(x, z) + κ2(x, z),
(ii) κ(x, z) = aκ1(x, z),
(iii) κ(x, z) = κ1(x, z)κ2(x, z),
(iv) κ(x, z) = f(x)f(z),
(v) κ(x, z) = κ3(φ(x),φ(z)),
(vi) κ(x, z) = x′Bz.

Proof Let S a finite set of points {x1, . . . ,x�}, and let K1 and K2, be the
corresponding kernel matrices obtained by restricting κ1 and κ2 to these
points. Consider any vector α ∈R

�. Recall that a matrix K is positive
semi-definite if and only if α′Kα ≥ 0, for all α.

(i) We have

α′ (K1 + K2)α = α′K1α + α′K2α ≥ 0,

and so K1+K2 is positive semi-definite and κ1 +κ2 a kernel function.
(ii) Similarly α′aK1α = aα′K1α ≥ 0, verifying that aκ1 is a kernel.
(iii) Let

K = K1

⊗
K2

be the tensor product of the matrices K1 and K2 obtained by re-
placing each entry of K1 by K2 multiplied by that entry. The tensor
product of two positive semi-definite matrices is itself positive semi-
definite since the eigenvalues of the product are all pairs of products
of the eigenvalues of the two components. The matrix corresponding
to the function κ1κ2 is known as the Schur product H of K1 and
K2 with entries the products of the corresponding entries in the two
components. The matrix H is a principal submatrix of K defined by
a set of columns and the same set of rows. Hence for any α ∈ R

�,
there is a corresponding α1 ∈ R

�2 , such that

α′Hα = α′
1Kα1 ≥ 0,

76 Properties of kernels

and so H is positive semi-definite as required.
(iv) Consider the 1-dimensional feature map

φ : x �−→ f(x) ∈ R;

then κ(x, z) is the corresponding kernel.
(v) Since κ3 is a kernel, the matrix obtained by restricting κ3 to the

points φ(x1), . . . ,φ(x�) is positive semi-definite as required.
(vi) Consider the diagonalisation of B = V′ΛV by an orthogonal matrix

V, where Λ is the diagonal matrix containing the non-negative eigen-
values. Let

√
Λ be the diagonal matrix with the square roots of the

eigenvalues and set A =
√

ΛV. We therefore have

κ(x, z) = x′Bz = x′V′ΛVz = x′A′Az = 〈Ax,Az〉 ,

the inner product using the linear feature mapping A.

Remark 3.23 [Schur product] The combination of kernels given in part (iii)
is often referred to as the Schur product. We can decompose any kernel into
the Schur product of its normalisation and the 1-dimensional kernel of part
(iv) with f(x) =

√
κ(x,x).

The original motivation for introducing kernels was to search for nonlinear
patterns by using linear functions in a feature space created using a nonlinear
feature map. The last example of the proposition might therefore seem an
irrelevance since it corresponds to a linear feature map. Despite this, such
mappings can be useful in practice as they can rescale the geometry of the
space, and hence change the relative weightings assigned to different linear
functions. In Chapter 10 we will describe the use of such feature maps in
applications to document analysis.

Proposition 3.24 Let κ1(x, z) be a kernel over X×X, where x, z ∈ X, and
p(x) is a polynomial with positive coefficients. Then the following functions
are also kernels:

(i) κ(x, z) =p(κ1(x, z)),
(ii) κ(x, z) = exp(κ1(x, z)),
(iii) κ(x, z) = exp(−‖x − z‖2 /(2σ2)).

Proof We consider the three parts in turn:

3.4 Kernel construction 77

(i) For a polynomial the result follows from parts (i), (ii), (iii) of Propo-
sition 3.22 with part (iv) covering the constant term if we take f(·)
to be a constant.

(ii) The exponential function can be arbitrarily closely approximated by
polynomials with positive coefficients and hence is a limit of kernels.
Since the finitely positive semi-definiteness property is closed under
taking pointwise limits, the result follows.

(iii) By part (ii) we have that exp(〈x, z〉 /σ2) is a kernel for σ ∈ R
+. We

now normalise this kernel (see Section 2.3.2) to obtain the kernel

exp(〈x, z〉 /σ2)√
exp(‖x‖2 /σ2) exp(‖z‖2 /σ2)

= exp
(〈x, z〉

σ2
− 〈x,x〉

2σ2
− 〈z, z〉

2σ2

)

= exp

(
−‖x − z‖2

2σ2

)
.

Remark 3.25 [Gaussian kernel] The final kernel of Proposition 3.24 is
known as the Gaussian kernel. These functions form the hidden units of
a radial basis function network, and hence using this kernel will mean the
hypotheses are radial basis function networks. It is therefore also referred
to as the RBF kernel. We will discuss this kernel further in Chapter 9.

Embeddings corresponding to kernel constructions Proposition 3.22
shows that we can create new kernels from existing kernels using a number
of simple operations. Our approach has demonstrated that new functions
are kernels by showing that they are finitely positive semi-definite. This is
sufficient to verify that the function is a kernel and hence demonstrates that
there exists a feature space map for which the function computes the cor-
responding inner product. Often this information provides sufficient insight
for the user to sculpt an appropriate kernel for a particular application. It
is, however, sometimes helpful to understand the effect of the kernel combi-
nation on the structure of the corresponding feature space.

The proof of part (iv) used a feature space construction, while part (ii)
corresponds to a simple re-scaling of the feature vector by

√
a. For the

addition of two kernels in part (i) the feature vector is the concatenation of
the corresponding vectors

φ(x) = [φ1(x),φ2(x)] ,

78 Properties of kernels

since

κ (x, z) = 〈φ(x),φ(z)〉 = 〈[φ1(x),φ2(x)] , [φ1(z),φ2(z)]〉 (3.7)

= 〈φ1(x),φ1(z)〉 + 〈φ2(x),φ2(z)〉 (3.8)

= κ1(x, z) + κ2(x, z).

For the Hadamard construction of part (iii) the corresponding features are
the products of all pairs of features one from the first feature space and one
from the second. Thus, the (i, j)th feature is given by

φ(x)ij = φ1(x)iφ2(x)j for i = 1, . . . , N1 and j = 1, . . . , N2,

where Ni is the dimension of the feature space corresponding to φi, i = 1, 2.
The inner product is now given by

κ (x, z) = 〈φ(x),φ(z)〉 =
N1∑
i=1

N2∑
j=1

φ(x)ijφ(z)ij

=
N1∑
i=1

φ1(x)iφ1(z)i
N2∑
j=1

φ2(x)jφ2(z)j (3.9)

= κ1(x, z)κ2(x, z). (3.10)

The definition of the feature space in this case appears to depend on the
choice of coordinate system since it makes use of the specific embedding
function. The fact that the new kernel can be expressed simply in terms of
the base kernels shows that in fact it is invariant to this choice. For the case
of an exponent of a single kernel

κ(x, z) = κ1(x, z)s,

we obtain by induction that the corresponding feature space is indexed by
all monomials of degree s

φi(x) = φ1(x)i11 φ1(x)i22 . . .φ1(x)iNN , (3.11)

where i = (i1, . . . , iN) ∈ N
N satisfies

N∑
j=1

ij = s.

Remark 3.26 [Feature weightings] It is important to observe that the mono-
mial features do not all receive an equal weighting in this embedding. This
is due to the fact that in this case there are repetitions in the expansion

3.4 Kernel construction 79

given in equation (3.11), that is, products of individual features which lead
to the same function φi. For example, in the 2-dimensional degree-2 case,
the inner product can be written as

κ (x, z) = 2x1x2z1z2 + x2
1z

2
1 + x2

2z
2
2

=
〈(√

2x1x2, x
2
1, x

2
2

)
,
(√

2z1z2, z
2
1 , z

2
2

)〉
,

where the repetition of the cross terms leads to a weighting factor of
√

2.

Remark 3.27 [Features of the Gaussian kernel] Note that from the proofs
of parts (ii) and (iii) of Proposition 3.24 the Gaussian kernel is a polynomial
kernel of infinite degree. Hence, its features are all possible monomials
of input features with no restriction placed on the degrees. The Taylor
expansion of the exponential function

exp (x) =
∞∑
i=0

1
i!
xi

shows that the weighting of individual monomials falls off as i! with increas-
ing degree.

3.4.2 Operations on kernel matrices

We can also transform the feature space by performing operations on the
kernel matrix, provided that they leave it positive semi-definite and sym-
metric. This type of transformation raises the question of how to compute
the kernel on new test points.

In some cases we may have already constructed the kernel matrix on both
the training and test points so that the transformed kernel matrix contains
all of the information that we will require. In other cases the transformation
of the kernel matrix corresponds to a computable transformation in the
feature space, hence enabling the computation of the kernel on test points.

In addition to these computational problems there is also the danger that
by adapting the kernel based on the particular kernel matrix, we may have
adjusted it in a way that is too dependent on the training set and does not
perform well on new data.

For the present we will ignore these concerns and mention a number of
different transformations that will prove useful in different contexts, where
possible explaining the corresponding effect in the feature space. Detailed
presentations of these methods will be given in Chapters 5 and 6.

80 Properties of kernels

Simple transformations There are a number of very simple transforma-
tions that have practical significance. For example adding a constant to all
of the entries in the matrix corresponds to adding an extra constant fea-
ture, as follows from parts (i) and (iv) of Proposition 3.22. This effectively
augments the class of functions with an adaptable offset, though this has
a slightly different effect than introducing such an offset into the algorithm
itself as is done with for example support vector machines.

Another simple operation is the addition of a constant to the diagonal.
This corresponds to adding a new different feature for each input, hence
enhancing the independence of all the inputs. This forces algorithms to
create functions that depend on more of the training points. In the case
of hard margin support vector machines this results in the so-called 2-norm
soft margin algorithm, to be described in Chapter 7..

A further transformation that we have already encountered in Section
2.3.2 is that of normalising the data in the feature space. This transforma-
tion can be implemented for a complete kernel matrix with a short sequence
of operations, to be described in Chapter 5.

Centering data Centering data in the feature space is a more complex
transformation, but one that can again be performed by operations on the
kernel matrix. The aim is to move the origin of the feature space to the
centre of mass of the training examples. Furthermore, the choice of the
centre of mass can be characterised as the origin for which the sum of the
norms of the points is minimal. Since the sum of the norms is the trace
of the kernel matrix this is also equal to the sum of its eigenvalues. It
follows that this choice of origin minimises the sum of the eigenvalues of
the corresponding kernel matrix. We describe how to perform this centering
transformation on a kernel matrix in Chapter 5.

Subspace projection In high-dimensional feature spaces there is no a pri-
ori reason why the eigenvalues of the kernel matrix should decay. If each
input vector is orthogonal to the remainder, the eigenvalues will be equal to
the norms of the inputs. If the points are constrained in a low-dimensional
subspace, the number of non-zero eigenvalues is equal to the subspace di-
mension. Since the sum of the eigenvalues will still be equal to the sum of
the squared norms, the individual eigenvalues will be correspondingly larger.

Although it is unlikely that data will lie exactly in a low-dimensional
subspace, it is not unusual that the data can be accurately approximated
by projecting into a carefully chosen low-dimensional subspace. This means
that the sum of the squares of the distances between the points and their

3.4 Kernel construction 81

approximations is small. We will see in Chapter 6 that in this case the first
eigenvectors of the covariance matrix will be a basis of the subspace, while
the sum of the remaining eigenvalues will be equal to the sum of the squared
residuals. Since the eigenvalues of the covariance and kernel matrices are
the same, this means that the kernel matrix can be well approximated by a
low-rank matrix.

It may be that the subspace corresponds to the underlying structure of the
data, and the residuals are the result of measurement or estimation noise.
In this case, subspace projections give a better model of the data for which
the corresponding kernel matrix is given by the low-rank approximation.
Hence, forming a low-rank approximation of the kernel matrix can be an
effective method of de-noising the data. In Chapter 10 we will also refer
to this method of finding a more accurate model of the data as semantic
focussing.

In Chapters 5 and 6 we will present in more detail methods for creating
low-rank approximations, including projection into the subspace spanned by
the first eigenvectors, as well as using the subspace obtained by performing a
partial Gram–Schmidt orthonormalisation of the data points in the feature
space, or equivalently taking a partial Cholesky decomposition of the kernel
matrix. In both cases the projections and inner products of new test points
can be evaluated using just the original kernel.

Whitening If a low-dimensional approximation fails to capture the data
accurately enough, we may still find an eigen-decomposition useful in order
to alter the scaling of the feature space by adjusting the size of the eigenval-
ues. One such technique, known as whitening , sets all of the eigenvalues to
1, hence creating a feature space in which the data distribution is spherically
symmetric. Alternatively, values may be chosen to optimise some measure
of fit of the kernel, such as the alignment.

Sculpting the feature space All these operations amount to moving the
points in the feature space, by sculpting their inner product matrix. In some
cases those modifications can be done in response to prior information as,
for example, in the cases of adding a constant to the whole matrix, adding
a constant to the diagonal and normalising the data. The second type of
modification makes use of parameters estimated from the matrix itself as
in the examples of centering the data, subspace projection and whitening.
The final example of adjusting the eigenvalues to create a kernel that fits
the data will usually make use of the corresponding labels or outputs.

We can view these operations as a first phase of learning in which the most

82 Properties of kernels

appropriate feature space is selected for the data. As with many traditional
learning algorithms, kernel methods improve their performance when data
are preprocessed and the right features are selected. In the case of kernels
it is also possible to view this process as selecting the right topology for
the input space, that is, a topology which either correctly encodes our prior
knowledge concerning the similarity between data points or learns the most
appropriate topology from the training set.

Viewing kernels as defining a topology suggests that we should make use
of prior knowledge about invariances in the input space. For example, trans-
lations and rotations of hand written characters leave their label unchanged
in a character recognition task, indicating that these transformed images,
though distant in the original metric, should become close in the topology
defined by the kernel.

Part III of the book will look at a number of methods for creating kernels
for different data types, introducing prior knowledge into kernels, fitting a
generative model to the data and creating a derived kernel, and so on. The
aim of the current chapter has been to provide the framework on which these
later chapters can build.

3.5 Summary

• Kernels compute the inner product of projections of two data points into
a feature space.

• Kernel functions are characterised by the property that all finite kernel
matrices are positive semi-definite.

• Mercer’s theorem is an equivalent formulation of the finitely positive semi-
definite property for vector spaces.

• The finitely positive semi-definite property suggests that kernel matrices
form the core data structure for kernel methods technology.

• Complex kernels can be created by simple operations that combine simpler
kernels.

• By manipulating kernel matrices one can tune the corresponding embed-
ding of the data in the kernel-defined feature space.

3.6 Further reading and advanced topics

Jorgen P. Gram (1850–1916) was a Danish actuary, remembered for (re)dis-
covering the famous orthonormalisation procedure that bears his name, and
for studying the properties of the matrix A′A. The Gram matrix is a cen-
tral concept in this book, and its many properties are well-known in linear

3.6 Further reading and advanced topics 83

algebra. In general, for properties of positive (semi-)definite matrices and
general linear algebra, we recommend the excellent book of Carl Meyer [96],
and for a discussion of the properties of the cone of PSD matrices, the col-
lection [163].

The use of Mercer’s theorem for interpreting kernels as inner products
in a feature space was introduced into machine learning in 1964 by the
work of Aizermann, Bravermann and Rozoener on the method of potential
functions [1], but its possibilities did not begin to be fully understood until
it was used in the article by Boser, Guyon and Vapnik that introduced the
support vector method [16] (see also discussion in Section 2.7).

The mathematical theory of kernels is rather old: Mercer’s theorem dates
back to 1909 [95], and the study of reproducing kernel Hilbert spaces was
developed by Aronszajn in the 1940s. This theory was used in approximation
and regularisation theory, see for example the book of Wahba and her 1999
survey [152], [153]. The seed idea for polynomial kernels was contained in
[104]. Reproducing kernels were extensively used in machine learning and
neural networks by Poggio and Girosi from the early 1990s. [48]. Related
results can be found in [97]. More references about the rich regularization
literature can be found in section 4.6.

Chapter 1 of Wahba’s book [152] gives a number of theoretical results
on kernel functions and can be used an a reference. Closure properties are
discussed in [52] and in [97]. Anova kernels were introduced by Burges and
Vapnik [21]. The theory of positive definite functions was also developed in
the context of covariance and correlation functions, so that classical work in
statistics is closely related [153], [154].

The discussion about Reproducing Kernel Hilbert Spaces in this chapter
draws on the paper of Haussler [52]. Our characterization of kernel functions,
by means of the finitely positive semi-definite property, is based on a theorem
of Saitoh [111]. This approach paves the way to the use of general kernels
on general types of data, as suggested by [116] and developed by Watkins
[155], [154] and Haussler [52]. These works have greatly extended the use of
kernels, showing that they can in fact be defined on general objects, which
do not need to be Euclidean spaces, allowing their use in a swathe of new
real-world applications, on input spaces as diverse as biological sequences,
text, and images.

The notion of kernel alignment was proposed by [33] in order to capture
the idea of similarity of two kernel functions, and hence of the embedding
they induce, and the information they extract from the data. A number
of formal properties of such quantity are now known, many of which are
discussed in the technical report , but two are most relevant here: its inter-

84 Properties of kernels

pretation as the inner product in the cone of positive semi-definite matrices,
and consequently its interpretation as a kernel between kernels, that is a
higher order kernel function. Further papers on this theme include [70],
[71]. This latest interpretation of alignment was further analysed in [102].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net

