
1

Pattern analysis

Pattern analysis deals with the automatic detection of patterns in data,
and plays a central role in many modern artificial intelligence and computer
science problems. By patterns we understand any relations, regularities or
structure inherent in some source of data. By detecting significant patterns
in the available data, a system can expect to make predictions about new
data coming from the same source. In this sense the system has acquired
generalisation power by ‘learning’ something about the source generating
the data. There are many important problems that can only be solved using
this approach, problems ranging from bioinformatics to text categorization,
from image analysis to web retrieval. In recent years, pattern analysis has
become a standard software engineering approach, and is present in many
commercial products.

Early approaches were efficient in finding linear relations, while nonlinear
patterns were dealt with in a less principled way. The methods described
in this book combine the theoretically well-founded approach previously
limited to linear systems, with the flexibility and applicability typical of
nonlinear methods, hence forming a remarkably powerful and robust class
of pattern analysis techniques.

There has been a distinction drawn between statistical and syntactical
pattern recognition, the former dealing essentially with vectors under sta-
tistical assumptions about their distribution, and the latter dealing with
structured objects such as sequences or formal languages, and relying much
less on statistical analysis. The approach presented in this book reconciles
these two directions, in that it is capable of dealing with general types of
data such as sequences, while at the same time addressing issues typical of
statistical pattern analysis such as learning from finite samples.

3



4 Pattern analysis

1.1 Patterns in data

1.1.1 Data

This book deals with data and ways to exploit it through the identification
of valuable knowledge. By data we mean the output of any observation,
measurement or recording apparatus. This therefore includes images in
digital format; vectors describing the state of a physical system; sequences
of DNA; pieces of text; time series; records of commercial transactions, etc.
By knowledge we mean something more abstract, at the level of relations
between and patterns within the data. Such knowledge can enable us to
make predictions about the source of the data or draw inferences about the
relationships inherent in the data.

Many of the most interesting problems in AI and computer science in
general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution. As an example consider the
problem of recognising genes in a DNA sequence. We do not know how to
specify a program to pick out the subsequences of, say, human DNA that
represent genes. Similarly we are not able directly to program a computer to
recognise a face in a photo. Learning systems offer an alternative method-
ology for tackling these problems. By exploiting the knowledge extracted
from a sample of data, they are often capable of adapting themselves to infer
a solution to such tasks. We will call this alternative approach to software
design the learning methodology. It is also referred to as the data driven or
data based approach, in contrast to the theory driven approach that gives
rise to precise specifications of the required algorithms.

The range of problems that have been shown to be amenable to the learn-
ing methodology has grown very rapidly in recent years. Examples include
text categorization; email filtering; gene detection; protein homology detec-
tion; web retrieval; image classification; handwriting recognition; prediction
of loan defaulting; determining properties of molecules, etc. These tasks are
very hard or in some cases impossible to solve using a standard approach,
but have all been shown to be tractable with the learning methodology.
Solving these problems is not just of interest to researchers. For example,
being able to predict important properties of a molecule from its structure
could save millions of dollars to pharmaceutical companies that would nor-
mally have to test candidate drugs in expensive experiments, while being
able to identify a combination of biomarker proteins that have high predic-
tive power could result in an early cancer diagnosis test, potentially saving
many lives.

In general, the field of pattern analysis studies systems that use the learn-



1.1 Patterns in data 5

ing methodology to discover patterns in data. The patterns that are sought
include many different types such as classification, regression, cluster analy-
sis (sometimes referred to together as statistical pattern recognition), feature
extraction, grammatical inference and parsing (sometimes referred to as syn-
tactical pattern recognition). In this book we will draw concepts from all of
these fields and at the same time use examples and case studies from some
of the applications areas mentioned above: bioinformatics, machine vision,
information retrieval, and text categorization.

It is worth stressing that while traditional statistics dealt mainly with
data in vector form in what is known as multivariate statistics, the data for
many of the important applications mentioned above are non-vectorial. We
should also mention that pattern analysis in computer science has focussed
mainly on classification and regression, to the extent that pattern analysis is
synonymous with classification in the neural network literature. It is partly
to avoid confusion between this more limited focus and our general setting
that we have introduced the term pattern analysis.

1.1.2 Patterns

Imagine a dataset containing thousands of observations of planetary posi-
tions in the solar system, for example daily records of the positions of each
of the nine planets. It is obvious that the position of a planet on a given day
is not independent of the position of the same planet in the preceding days:
it can actually be predicted rather accurately based on knowledge of these
positions. The dataset therefore contains a certain amount of redundancy,
that is information that can be reconstructed from other parts of the data,
and hence that is not strictly necessary. In such cases the dataset is said
to be redundant : simple laws can be extracted from the data and used to
reconstruct the position of each planet on each day. The rules that govern
the position of the planets are known as Kepler’s laws. Johannes Kepler dis-
covered his three laws in the seventeenth century by analysing the planetary
positions recorded by Tycho Brahe in the preceding decades.

Kepler’s discovery can be viewed as an early example of pattern analysis,
or data-driven analysis. By assuming that the laws are invariant, they can
be used to make predictions about the outcome of future observations. The
laws correspond to regularities present in the planetary data and by inference
therefore in the planetary motion itself. They state that the planets move in
ellipses with the sun at one focus; that equal areas are swept in equal times
by the line joining the planet to the sun; and that the period P (the time



6 Pattern analysis

D P D2 P 3

Mercury 0.24 0.39 0.058 0.059
Venus 0.62 0.72 0.38 0.39
Earth 1.00 1.00 1.00 1.00
Mars 1.88 1.53 3.53 3.58
Jupiter 11.90 5.31 142.00 141.00
Saturn 29.30 9.55 870.00 871.00

Table 1.1. An example of a pattern in data: the quantity D2/P 3 remains
invariant for all the planets. This means that we could compress the data
by simply listing one column or that we can predict one of the values for
new previously unknown planets, as happened with the discovery of the

outer planets.

of one revolution around the sun) and the average distance D from the sun
are related by the equation P 3 = D2 for each planet.

Example 1.1 From Table 1.1 we can observe two potential properties of
redundant datasets: on the one hand they are compressible in that we could
construct the table from just one column of data with the help of Kepler’s
third law, while on the other hand they are predictable in that we can, for
example, infer from the law the distances of newly discovered planets once we
have measured their period. The predictive power is a direct consequence of
the presence of the possibly hidden relations in the data. It is these relations
once discovered that enable us to predict and therefore manipulate new data
more effectively.

Typically we anticipate predicting one feature as a function of the remain-
ing features: for example the distance as a function of the period. For us
to be able to do this, the relation must be invertible, so that the desired
feature can be expressed as a function of the other values. Indeed we will
seek relations that have such an explicit form whenever this is our intention.
Other more general relations can also exist within data, can be detected and
can be exploited. For example, if we find a general relation that is expressed
as an invariant function f that satisfies

f(x) = 0, (1.1)

where x is a data item, we can use it to identify novel or faulty data items
for which the relation fails, that is for which f(x) �= 0. In such cases it is,
however, harder to realise the potential for compressibility since it would
require us to define a lower-dimensional coordinate system on the manifold
defined by equation (1.1).



1.1 Patterns in data 7

Kepler’s laws are accurate and hold for all planets of a given solar sys-
tem. We refer to such relations as exact. The examples that we gave above
included problems such as loan defaulting, that is the prediction of which
borrowers will fail to repay their loans based on information available at the
time the loan is processed. It is clear that we cannot hope to find an exact
prediction in this case since there will be factors beyond those available to
the system, which may prove crucial. For example, the borrower may lose
his job soon after taking out the loan and hence find himself unable to ful-
fil the repayments. In such cases the most the system can hope to do is
find relations that hold with a certain probability. Learning systems have
succeeded in finding such relations. The two properties of compressibility
and predictability are again in evidence. We can specify the relation that
holds for much of the data and then simply append a list of the exceptional
cases. Provided the description of the relation is succinct and there are
not too many exceptions, this will result in a reduction in the size of the
dataset. Similarly, we can use the relation to make predictions, for example
whether the borrower will repay his or her loan. Since the relation holds
with a certain probability we will have a good chance that the prediction
will be fulfilled. We will call relations that hold with a certain probability
statistical.

Predicting properties of a substance based on its molecular structure is
hindered by a further problem. In this case, for properties such as boiling
point that take real number values, the relations sought will necessarily have
to be approximate in the sense that we cannot expect an exact prediction.
Typically we may hope that the expected error in the prediction will be
small, or that with high probability the true value will be within a certain
margin of the prediction, but our search for patterns must necessarily seek a
relation that is approximate. One could claim that Kepler’s laws are approx-
imate if for no other reason because they fail to take general relativity into
account. In the cases of interest to learning systems, however, the approx-
imations will be much looser than those affecting Kepler’s laws. Relations
that involve some inaccuracy in the values accepted are known as approxi-
mate. For approximate relations we can still talk about prediction, though
we must qualify the accuracy of the estimate and quite possibly the proba-
bility with which it applies. Compressibility can again be demonstrated if
we accept that specifying the error corrections between the value output by
the rule and the true value, take less space if they are small.

The relations that make a dataset redundant, that is the laws that we
extract by mining it, are called patterns throughout this book. Patterns
can be deterministic relations like Kepler’s exact laws. As indicated above



8 Pattern analysis

other relations are approximate or only holds with a certain probability.
We are interested in situations where exact laws, especially ones that can
be described as simply as Kepler’s, may not exist. For this reason we will
understand a pattern to be any relation present in the data, whether it be
exact, approximate or statistical.

Example 1.2 Consider the following artificial example, describing some
observations of planetary positions in a two dimensional orthogonal coor-
dinate system. Note that this is certainly not what Kepler had in Tycho’s
data.

x y x2 y2 xy

0.8415 0.5403 0.7081 0.2919 0.4546
0.9093 −0.4161 0.8268 0.1732 −0.3784
0.1411 −0.99 0.0199 0.9801 −0.1397

−0.7568 −0.6536 0.5728 0.4272 0.4947
−0.9589 0.2837 0.9195 0.0805 −0.272
−0.2794 0.9602 0.0781 0.9219 −0.2683

0.657 0.7539 0.4316 0.5684 0.4953
0.9894 −0.1455 0.9788 0.0212 −0.144
0.4121 −0.9111 0.1698 0.8302 −0.3755

−0.544 −0.8391 0.296 0.704 0.4565

The left plot of Figure 1.1 shows the data in the (x, y) plane. We can
make many assumptions about the law underlying such positions. However
if we consider the quantity c1x

2+c2y
2+c3xy+c4x+c5y+c6 we will see that

it is constant for some choice of the parameters, indeed as shown in the left
plot of Figure 1.1 we obtain a linear relation with just two features, x2 and
y2. This would not generally the case if the data were random, or even if
the trajectory was following a curve different from a quadratic. In fact this
invariance in the data means that the planet follows an elliptic trajectory.
By changing the coordinate system the relation has become linear.

In the example we saw how applying a change of coordinates to the data
leads to the representation of a pattern changing. Using the initial coor-
dinate system the pattern was expressed as a quadratic form, while in the
coordinate system using monomials it appeared as a linear function. The
possibility of transforming the representation of a pattern by changing the
coordinate system in which the data is described will be a recurrent theme
in this book.



1.1 Patterns in data 9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.1. The artificial planetary data lying on an ellipse in two dimensions and the
same data represented using the features x2 and y2 showing a linear relation

The pattern in the example had the form of a function f that satisfied

f(x) = 0,

for all the data points x. We can also express the pattern described by
Kepler’s third law in this form

f(D,P ) = D2 − P 3 = 0.

Alternatively

g (D,P ) = 2 logD − 3 logP = 0.

Similarly, if we have a function g that for each data item (x,y) predicts
some output values y as a function of the input features x, we can express
the pattern in the form

f (x,y) = L (g (x) ,y) = 0,

where L : Y × Y → R
+ is a so-called loss function that measures the



10 Pattern analysis

disagreement between its two arguments outputting 0 if and only if the two
arguments are the same and outputs a positive discrepancy if they differ.

Definition 1.3 A general exact pattern for a data source is a non-trivial
function f that satisfies

f(x) = 0,

for all of the data, x, that can arise from the source.

The definition only covers exact patterns. We first consider the relaxation
required to cover the case of approximate patterns. Taking the example of
a function g that predicts the values y as a function of the input features
x for a data item (x,y), if we cannot expect to obtain an exact equality
between g (x) and y, we use the loss function L to measure the amount of
mismatch. This can be done by allowing the function to output 0 when
the two arguments are similar, but not necessarily identical, or by allowing
the function f to output small, non-zero positive values. We will adopt the
second approach since when combined with probabilistic patterns it gives a
distinct and useful notion of probabilistic matching.

Definition 1.4 A general approximate pattern for a data source is a non-
trivial function f that satisfies

f(x) ≈ 0

for all of the data x, that can arise from the source.

We have deliberately left vague what approximately equal to zero might
mean in a particular context.

Finally, we consider statistical patterns. In this case there is a probability
distribution that generates the data. In many cases the individual data
items can be assumed to be generate independently and identically, a case
often referred to as independently and identically distributed or i.i.d. for
short. We will use the symbol E to denote the expectation of some quantity
under a distribution. If we wish to indicate the distribution over which the
expectation is taken we add either the distribution or the variable as an
index.

Note that our definitions of patterns hold for each individual data item
in the case of exact and approximate patterns, but for the case of a statis-
tical pattern we will consider the expectation of a function according to the
underlying distribution. In this case we require the pattern function to be
positive to ensure that a small expectation arises from small function values



1.1 Patterns in data 11

and not through the averaging of large positive and negative outputs. This
can always be achieved by taking the absolute value of a pattern function
that can output negative values.

Definition 1.5 A general statistical pattern for a data source generated
i.i.d. according to a distribution D is a non-trivial non-negative function f

that satisfies

EDf(x) = Exf(x) ≈ 0.

If the distribution does not satisfy the i.i.d. requirement this is usually
as a result of dependencies between data items generated in sequence or
because of slow changes in the underlying distribution. A typical example
of the first case is time series data. In this case we can usually assume that
the source generating the data is ergodic, that is, the dependency decays
over time to a probability that is i.i.d. It is possible to develop an analysis
that approximates i.i.d. for this type of data. Handling changes in the
underlying distribution has also been analysed theoretically but will also be
beyond the scope of this book.

Remark 1.6 [Information theory] It is worth mentioning how the patterns
we are considering and the corresponding compressibility are related to the
traditional study of statistical information theory. Information theory de-
fines the entropy of a (not necessarily i.i.d.) source of data and limits the
compressibility of the data as a function of its entropy. For the i.i.d. case
it relies on knowledge of the exact probabilities of the finite set of possible
items.

Algorithmic information theory provides a more general framework for
defining redundancies and regularities in datasets, and for connecting them
with the compressibility of the data. The framework considers all com-
putable functions, something that for finite sets of data becomes too rich a
class. For in general we do not have access to all of the data and certainly
not an exact knowledge of the distribution that generates it.

Our information about the data source must rather be gleaned from a
finite set of observations generated according to the same underlying distri-
bution. Using only this information a pattern analysis algorithm must be
able to identify patterns. Hence, we give the following general definition of
a pattern analysis algorithm.



12 Pattern analysis

Definition 1.7 [Pattern analysis algorithm] A Pattern analysis algorithm
takes as input a finite set of examples from the source of data to be analysed.
Its output is either an indication that no patterns were detectable in the
data, or a positive pattern function f that the algorithm asserts satisfies

Ef(x) ≈ 0,

where the expectation is with respect to the data generated by the source.
We refer to input data examples as the training instances, the training ex-
amples or the training data and to the pattern function f as the hypothesis
returned by the algorithm. The value of the expectation is known as the
generalisation error.

Note that the form of the pattern function is determined by the particular
algorithm, though of course the particular function chosen will depend on
the sample of data given to the algorithm.

It is now time to examine in more detail the properties that we would like
a pattern analysis algorithm to possess.

1.2 Pattern analysis algorithms

Identifying patterns in a finite set of data presents very different and distinc-
tive challenges. We will identify three key features that a pattern analysis
algorithm will be required to exhibit before we will consider it to be effective.

Computational efficiency Since we are interested in practical solutions
to real-world problems, pattern analysis algorithms must be able to handle
very large datasets. Hence, it is not sufficient for an algorithm to work well
on small toy examples; we require that its performance should scale to large
datasets. The study of the computational complexity or scalability of algo-
rithms identifies efficient algorithms as those whose resource requirements
scale polynomially with the size of the input. This means that we can bound
the number of steps and memory that the algorithm requires as a polyno-
mial function of the size of the dataset and other relevant parameters such
as the number of features, accuracy required, etc. Many algorithms used in
pattern analysis fail to satisfy this apparently benign criterion, indeed there
are some for which there is no guarantee that a solution will be found at all.
For the purposes of this book we will require all algorithms to be computa-
tionally efficient and furthermore that the degree of any polynomial involved
should render the algorithm practical for large datasets.



1.2 Pattern analysis algorithms 13

Robustness The second challenge that an effective pattern analysis algo-
rithm must address is the fact that in real-life applications data is often
corrupted by noise. By noise we mean that the values of the features for
individual data items may be affected by measurement inaccuracies or even
miscodings, for example through human error. This is closely related to the
notion of approximate patterns discussed above, since even if the underlying
relation is exact, once noise has been introduced it will necessarily become
approximate and quite possibly statistical. For our purposes we will require
that the algorithms will be able to handle noisy data and identify approxi-
mate patterns. They should therefore tolerate a small amount of noise in the
sense that it will not affect their output too much. We describe an algorithm
with this property as robust.

Statistical stability The third property is perhaps the most fundamental,
namely that the patterns the algorithm identifies really are genuine patterns
of the data source and not just an accidental relation occurring in the finite
training set. We can view this property as the statistical robustness of the
output in the sense that if we rerun the algorithm on a new sample from
the same source it should identify a similar pattern. Hence, the output of
the algorithm should not be sensitive to the particular dataset, just to the
underlying source of the data. For this reason we will describe an algorithm
with this property as statistically stable or stable for short. A relation iden-
tified by such an algorithm as a pattern of the underlying source is also
referred to as stable, significant or invariant. Again for our purposes we will
aim to demonstrate that our algorithms are statistically stable.

Remark 1.8 [Robustness and stability] There is some overlap between ro-
bustness and statistical stability in that they both measure sensitivity of the
pattern function to the sampling process. The difference is that robustness
emphasise the effect of the sampling on the pattern function itself, while sta-
tistical stability measures how reliably the particular pattern function will
process unseen examples. We have chosen to separate them as they lead to
different considerations in the design of pattern analysis algorithms.

To summarise: a pattern analysis algorithm should possess three properties:
efficiency, robustness and statistical stability. We will now examine the third
property in a little more detail.



14 Pattern analysis

1.2.1 Statistical stability of patterns

Proving statistical stability Above we have seen how discovering pat-
terns in data can enable us to make predictions and hence how a stable
pattern analysis algorithm can extend the usefulness of the data by learn-
ing general properties from the analysis of particular observations. When a
learned pattern makes correct predictions about future observations we say
that it has generalised, as this implies that the pattern has more general
applicability. We will also refer to the accuracy of these future predictions
as the quality of the generalization. This property of an observed relation
is, however, a delicate one. Not all the relations found in a given set of data
can be assumed to be invariant or stable. It may be the case that a relation
has arisen by chance in the particular set of data. Hence, at the heart of
pattern analysis is the problem of assessing the reliability of relations and
distinguishing them from ephemeral coincidences. How can we be sure we
have not been misled by a particular relation we have observed in the given
dataset? After all it is always possible to find some relation between any
finite set of numbers, even random ones, provided we are prepared to allow
arbitrarily complex relations.

Conversely, the possibility of false patterns means there will always be
limits to the level of assurance that we are able to give about a pattern’s
stability.

Example 1.9 Suppose all of the phone numbers stored in your friend’s
mobile phone are even. If (s)he has stored 20 numbers the probability of this
occurring by chance is approximately 2× 10−6, but you probably shouldn’t
conclude that you would cease to be friends if your phone number were
changed to an odd number (of course if in doubt, changing your phone
number might be a way of putting your friendship to the test).

Pattern analysis and hypothesis testing The pattern analysis algo-
rithm similarly identifies a stable pattern with a proviso that there is a
small probability that it could be the result of a misleading dataset. The
status of this assertion is identical to that of a statistical test for a property
P . The null hypothesis of the test states that P does not hold. The test
then bounds the probability that the observed data could have arisen if the
null hypothesis is true. If this probability is some small number p, then we
conclude that the property does hold subject to the caveat that there is a
probability p we were misled by the data. The number p is the so-called
significance with which the assertion is made. In pattern analysis this prob-



1.2 Pattern analysis algorithms 15

ability is referred to as the confidence parameter and it is usually denoted
with the symbol δ.

If we were testing for the presence of just one pattern we could apply the
methodology of a statistical test. Learning theory provides a framework for
testing for the presence of one of a set of patterns in a dataset. This at
first sight appears a difficult task. For example if we applied the same test
for n hypotheses P1, . . . , Pn, and found that for one of the hypotheses, say
P ∗, a significance of p is measured, we can only assert the hypothesis with
significance np. This is because the data could have misled us about any one
of the hypotheses, so that even if none were true there is still a probability
p for each hypothesis that it could have appeared significant, giving in the
worst case a probability of np that one of the hypotheses appears significant
at level p. It is therefore remarkable that learning theory enables us to
improve on this worst case estimate in order to test very large numbers (in
some cases infinitely many) of hypotheses and still obtain significant results.

Without restrictions on the set of possible relations, proving that a certain
pattern is stable is impossible. Hence, to ensure stable pattern analysis we
will have to restrict the set of possible relations. At the same time we
must make assumptions about the way in which the data is generated by
the source. For example we have assumed that there is a fixed distribution
and that the data is generated i.i.d. Some statistical tests make the further
assumption that the data distribution is Gaussian making it possible to
make stronger assertions, but ones that no longer hold if the distribution
fails to be Gaussian.

Overfitting At a general level the task of a learning theory is to derive
results which enable testing of as wide as possible a range of hypotheses,
while making as few assumptions as possible. This is inevitably a trade-off.
If we make too restrictive assumptions there will be a misfit with the source
and hence unreliable results or no detected patterns. This may be because
for example the data is not generated in the manner we assumed; say a
test that assumes a Gaussian distribution is used for non-Gaussian data or
because we have been too miserly in our provision of hypotheses and failed
to include any of the patterns exhibited by the source. In these cases we
say that we have underfit the data. Alternatively, we may make too few
assumptions either by assuming too much flexibility for the way in which
the data is generated (say that there are interactions between neighbouring
examples) or by allowing too rich a set of hypotheses making it likely that
there will be a chance fit with one of them. This is called overfitting the
data.



16 Pattern analysis

In general it makes sense to use all of the known facts about the data,
though in many cases this may mean eliciting domain knowledge from ex-
perts. In the next section we describe one approach that can be used to
incorporate knowledge about the particular application domain.

1.2.2 Detecting patterns by recoding

As we have outlined above if we are to avoid overfitting we must necessarily
bias the learning machine towards some subset of all the possible relations
that could be found in the data. It is only in this way that the probability
of obtaining a chance match on the dataset can be controlled. This raises
the question of how the particular set of patterns should be chosen. This
will clearly depend on the problem being tackled and with it the dataset
being analysed. The obvious way to address this problem is to attempt to
elicit knowledge about the types of patterns that might be expected. These
could then form the basis for a matching algorithm.

There are two difficulties with this approach. The first is that eliciting
possible patterns from domain experts is not easy, and the second is that it
would mean designing specialist algorithms for each problem.

An alternative approach that will be exploited throughout this book fol-
lows from the observation that regularities can be translated. By this we
mean that they can be rewritten into different regularities by changing the
representation of the data. We have already observed this fact in the exam-
ple of the planetary ellipses. By representing the data as a feature vector of
monomials of degree two, the ellipse became a linear rather than a quadratic
pattern. Similarly, with Kepler’s third law the pattern becomes linear if we
include logD and logP as features.

Example 1.10 The most convincing example of how the choice of represen-
tation can make the difference between learnable and non-learnable patterns
is given by cryptography, where explicit efforts are made to find represen-
tations of the data that appear random, unless the right representation, as
revealed by the key, is known. In this sense, pattern analysis has the op-
posite task of finding representations in which the patterns in the data are
made sufficiently explicit that they can be discovered automatically.

It is this viewpoint that suggests the alternative strategy alluded to above.
Rather than devising a different algorithm for each problem, we fix on a
standard set of algorithms and then transform the particular dataset into
a representation suitable for analysis using those standard algorithms. The



1.3 Exploiting patterns 17

advantage of this approach is that we no longer have to devise a new al-
gorithm for each new problem, but instead we must search for a recoding
of the data into a representation that is suited to the chosen algorithms.
For the algorithms that we will describe this turns out to be a more nat-
ural task in which we can reasonably expect a domain expert to assist. A
further advantage of the approach is that much of the efficiency, robustness
and stability analysis can be undertaken in the general setting, so that the
algorithms come already certified with the three required properties.

The particular choice we fix on is the use of patterns that are determined
by linear functions in a suitably chosen feature space. Recoding therefore
involves selecting a feature space for the linear functions. The use of linear
functions has the further advantage that it becomes possible to specify the
feature space in an indirect but very natural way through a so-called kernel
function. The kernel technique introduced in the next chapter makes it
possible to work directly with objects such as biosequences, images, text
data, etc. It also enables us to use feature spaces whose dimensionality is
more than polynomial in the relevant parameters of the system, even though
the computational cost remains polynomial. This ensures that even though
we are using linear functions the flexibility they afford can be arbitrarily
extended.

Our approach is therefore to design a set of efficient pattern analysis algo-
rithms for patterns specified by linear functions in a kernel-defined feature
space. Pattern analysis is then a two-stage process. First we must recode the
data in a particular application so that the patterns become representable
with linear functions. Subsequently, we can apply one of the standard linear
pattern analysis algorithms to the transformed data. The resulting class of
pattern analysis algorithms will be referred to as kernel methods.

1.3 Exploiting patterns

We wish to design pattern analysis algorithms with a view to using them
to make predictions on new previously unseen data. For the purposes of
benchmarking particular algorithms the unseen data usually comes in the
form of a set of data examples from the same source. This set is usually
referred to as the test set. The performance of the pattern function on
random data from the source is then estimated by averaging its performance
on the test set. In a real-world application the resulting pattern function
would of course be applied continuously to novel data as they are received by
the system. Hence, for example in the problem of detecting loan defaulters,



18 Pattern analysis

the pattern function returned by the pattern analysis algorithm would be
used to screen loan applications as they are received by the bank.

We understand by pattern analysis this process in all its various forms
and applications, regarding it as synonymous with Machine Learning, at
other times as Data Mining, Pattern Recognition or Pattern Matching; in
many cases the name just depends on the application domain, type of pat-
tern being sought or professional background of the algorithm designer. By
drawing these different approaches together into a unified framework many
correspondences and analogies will be made explicit, making it possible to
extend the range of pattern types and application domains in a relatively
seamless fashion.

The emerging importance of this approach cannot be over-emphasised.
It is not an exaggeration to say that it has become a standard software
engineering strategy, in many cases being the only known method for solving
a particular problem. The entire Genome Project, for example, relies on
pattern analysis techniques, as do many web applications, optical character
recognition (OCR) systems, marketing analysis techniques, and so on. The
use of such techniques is already very extensive, and with the increase in
the availability of digital information expected in the next years, it is clear
that it is destined to grow even further.

1.3.1 The overall strategy

All the conceptual issues discussed in the previous sections have arisen out of
practical considerations in application domains. We have seen that we must
incorporate some prior insights about the regularities in the source gener-
ating the data in order to be able to reliably detect them. The question
therefore arises as to what assumptions best capture that prior knowledge
and/or expectations. How should we model the data generation process and
how can we ensure we are searching the right class of relations? In other
words, how should we insert domain knowledge into the system, while still
ensuring that the desiderata of efficiency, robustness and stability can be
delivered by the resulting algorithm? There are many different approaches
to these problems, from the inferring of logical rules to the training of neu-
ral networks; from standard statistical methods to fuzzy logic. They all
have shown impressive results for particular types of patterns in particular
domains.

What we will present, however, is a novel, principled and unified approach
to pattern analysis, based on statistical methods that ensure stability and ro-
bustness, optimization techniques that ensure computational efficiency and



1.3 Exploiting patterns 19

enables a straightforward incorporation of domain knowledge. Such algo-
rithms will offer many advantages: from the firm theoretical underpinnings
of their computational and generalization properties, to the software engi-
neering advantages offered by the modularity that decouples the inference
algorithm from the incorporation of prior knowledge into the kernel.

We will provide examples from the fields of bioinformatics, document
analysis, and image recognition. While highlighting the applicability of the
methods, these examples should not obscure the fact that the techniques
and theory we will describe are entirely general, and can in principle be
applied to any type of data. This flexibility is one of the major advantages
of kernel methods.

1.3.2 Common pattern analysis tasks

When discussing what constitutes a pattern in data, we drew attention to
the fact that the aim of pattern analysis is frequently to predict one feature
of the data as a function of the other feature values. It is therefore to be
expected that many pattern analysis tasks isolate one feature that it is their
intention to predict. Hence, the training data comes in the form

(x, y),

where y is the value of the feature that the system aims to predict, and x is
a vector containing the remaining feature values. The vector x is known as
the input, while y is referred to as the target output or label. The test data
will only have inputs since the aim is to predict the corresponding output
values.

Supervised tasks The pattern analysis tasks that have this form are re-
ferred to as supervised, since each input has an associated label. For this
type of task a pattern is sought in the form

f (x, y) = L (y, g (x)) ,

where g is referred to as the prediction function and L is known as a loss
function. Since it measures the discrepancy between the output of the pre-
diction function and the correct value y, we may expect the loss to be close
to zero when a pattern is detected. When new data is presented the target
output is not available and the pattern function is used to predict the value
of y for the given input x using the function g (x). The prediction that
f (x, y) = 0 implies that the discrepancy between g (x) and y is small.

Different supervised pattern analysis tasks are distinguished by the type



20 Pattern analysis

of the feature y that we aim to predict. Binary classification, refering to the
case when y ∈ {−1, 1}, is used to indicate that the input vector belongs to
a chosen category (y = +1), or not (y = −1). In this case we use the so-
called discrete loss function that returns 1 if its two arguments differ and 0
otherwise. Hence, in this case the generalisation error is just the probability
that a randomly drawn test example is misclassified. If the training data is
labelled as belonging to one of N classes and the system must learn to assign
new data points to their class, then y is chosen from the set {1, 2, . . . , N}
and the task is referred to as multiclass classification. Regression refers to
the case of supervised pattern analysis in which the unknown feature is real-
valued, that is y ∈ R. The term regression is also used to describe the case
when y is vector valued, y ∈ R

n, for some n ∈ N, though this can also be
reduced to n separate regression tasks each with one-dimensional output but
with potentially a loss of useful information. Another variant of regression
is time-series analysis. In this case each example consists of a series of
observations and the special feature is the value of the next observation in
the series. Hence, the aim of pattern analysis is to make a forecast based on
previous values of relevant features.

Semisupervised tasks In some tasks the distinguished feature or label is
only partially known. For example in the case of ranking we may only have
available the relative ordering of the the examples in the training set, while
our aim is to enable a similar ordering of novel data. For this problem an
underlying value function is often assumed and inference about its value
for the training data is made during the training process. New data is
then assessed by its value function output. Another situation in which only
partial information is available about the labels is the case of transduction.
Here only some of the data comes with the value of the label instantiated.
The task may be simply to predict the label for the unlabelled data. This
corresponds to being given the test data during the training phase.

Alternatively, the aim may be to make use of the unlabelled data to
improve the ability of the pattern function learned to predict the labels of
new data. A final variant on partial label information is the query scenario
in which the algorithm can ask for an unknown label, but pays a cost for
extracting this information. The aim here is to minimise a combination of
the generalization error and querying cost.

Unsupervised tasks In contrast to supervised learning some tasks do not
have a label that is only available for the training examples and must be
predicted for the test data. In this case all of the features are available in



1.3 Exploiting patterns 21

both training and test data. Pattern analysis tasks that have this form
are referred to as unsupervised. The information or pattern needs to be
extracted without the highlighted ‘external’ information provided by the
label. Clustering is one of the tasks that falls into this category. The aim
here is to find a natural division of the data into homogeneous groups. We
might represent each cluster by a centroid or prototype and measure the
quality of the pattern by the expected distance of a new data point to its
nearest prototype.

Anomaly or novelty-detection is the task of detecting new data points
that deviate from the normal. Here, the exceptional or anomalous data
are not available in the training phase and are assumed not to have been
generated by the same source as the rest of the data. The task is tackled by
finding a pattern function that outputs a low expected value for examples
generated by the data source. If the output generated by a new example
deviates significantly from its expected value, we identify it as exceptional
in the sense that such a value would be very unlikely for the standard data.
Novelty-detection arises in a number of different applications. For example
engine monitoring attempts to detect abnormal engine conditions that may
indicate the onset of some malfunction.

There are further unsupervised tasks that attempt to find low-dimensional
representations of the data. Here the aim is to find a projection function
PV that maps X into a space V of a given fixed dimension k

PV : X −→ V ,

such that the expected value of the residual

f (x) = ‖PV (x) − x‖2

is small, or in other words such that f is a pattern function. The kernel
principal components analysis (PCA) falls into this category.

A related method known as kernel canonical correlation analysis (CCA)
considers data that has separate representations included in each input,
for example x = (xA,xB) for the case when there are two representations.
CCA now seeks a common low-dimensional representation described by two
projections PA

V and PB
V such that the residual

f (x) =
∥
∥PA

V

(
xA

)
− PB

V

(
xB

)∥∥2

is small. The advantage of this method becomes apparent when the two
representations are very distinct but our prior knowledge of the data assures
us that the patterns of interest are detectable in both. In such cases the
projections are likely to pick out dimensions that retain the information of



22 Pattern analysis

interest, while discarding aspects that distinguish the two representations
and are hence irrelevant to the analysis.

Assumptions and notation We will mostly make the statistical assump-
tion that the sample of data is drawn i.i.d. and we will look for statistical
patterns in the data, hence also handling approximate patterns and noise.
As explained above this necessarily implies that the patterns are only identi-
fied with high probability. In later chapters we will define the corresponding
notions of generalization error.

Now we introduce some of the basic notation. We denote the input space
by X and for supervised tasks use Y to denote the target output domain.
The space X is often a subset of R

n, but can also be a general set. Note
that if X is a vector space, the input vectors are given as column vectors. If
we wish to form a row vector for an instance x, we can take the transpose
x′. For a supervised task the training set is usually denoted by

S = {(x1, y1), . . . , (x�, y�)} ⊆ (X × Y )� ,

where � is the number of training examples. For unsupervised tasks this
simplifies to

S = {x1, . . . ,x�} ⊆ X�.

1.4 Summary

• Patterns are regularities that characterise the data coming from a par-
ticular source. They can be exact, approximate or statistical. We have
chosen to represent patterns by a positive pattern function f that has
small expected value for data from the source.

• A pattern analysis algorithm takes a finite sample of data from the source
and outputs a detected regularity or pattern function.

• Pattern analysis algorithms are expected to exhibit three key properties:
efficiency, robustness and stability.

Computational efficiency implies that the performance of the algorithm
scales to large datasets.
Robustness refers to the insensitivity of the algorithm to noise in the
training examples.
Statistical stability implies that the detected regularities should indeed
be patterns of the underlying source. They therefore enable prediction on
unseen data.



1.5 Further reading and advanced topics 23

• Recoding, by for example a change of coordinates, maintains the presence
of regularities in the data, but changes their representation. Some repre-
sentations make regularities easier to detect than others and fixing on one
form enables a standard set of algorithms and analysis to be used.

• We have chosen to recode relations as linear patterns through the use
of kernels that allow arbitrary complexity to be introduced by a natural
incorporation of domain knowledge.

• The standard scenarios in which we want to exploit patterns in data in-
clude binary and multiclass classification, regression, novelty-detection,
clustering, and dimensionality reduction.

1.5 Further reading and advanced topics

Pattern analysis (or recognition, detection, discovery) has been studied in
many different contexts, from statistics to signal processing, to the various
flavours of artificial intelligence. Furthermore, many relevant ideas have
been developed in the neighboring fields of information theory, machine vi-
sion, data-bases, and so on. In a way, pattern analysis has always been a
constant theme of computer science, since the pioneering days. The refer-
ences [39], [40], [46], [14], [108], [38], [45] are textbooks covering the topic
from some of these different fields.

There are several important stages that can be identified in the evolution
of pattern analysis algorithms. Efficient algorithms for detecting linear re-
lations were already used in the 1950s and 1960s, and their computational
and statistical behaviour was well understood [109], [44]. The step to han-
dling nonlinear relations was seen as a major research goal at that time.
The development of nonlinear algorithms that maintain the same level of
efficiency and stability has proven an elusive goal. In the mid 80s the field
of pattern analysis underwent a nonlinear revolution, with the almost simul-
taneous introduction of both backpropagation networks and decision trees
[19], [107], [55]. Although based on simple heuristics and lacking a firm
theoretical foundation, these approaches were the first to make a step to-
wards the efficient and reliable detection of nonlinear patterns. The impact
of that revolution cannot be overemphasized: entire fields such as data-
mining and bioinformatics became possible as a result of it. In the mid
90s, the introduction of kernel-based learning methods [141], [16], [32], [118]
has finally enabled researchers to deal with nonlinear relations, while retain-
ing the guarantees and understanding that have been developed for linear
algorithms over decades of research.

From all points of view, computational, statistical, and conceptual, the



24 Pattern analysis

nonlinear pattern analysis algorithms developed in this third wave are as
efficient and as well-founded as their linear counterparts. The drawbacks
of local minima and incomplete statistical analysis that is typical of neural
networks and decision trees have been circumvented, while their flexibility
has been shown to be sufficient for a wide range of successful applications.
In 1973 Duda and Hart defined statistical pattern recognition in the con-
text of classification in their classical book, now available in a new edition
[40]. Other important references include [135], [46]. Algorithmic informa-
tion theory defines random data as data not containing any pattern, and
provides many insights for thinking about regularities and relations in data.
Introduced by Chaitin [22], it is discussed in the introductory text by Li and
Vitani [90]. A classic introduction to Shannon’s information theory can be
found in Cover and Thomas [29].

The statistical study of pattern recognition can be divided into two main
(but strongly interacting) directions of research. The earlier one is that
presented by Duda and Hart [40], based on bayesian statistics, and also to
be found in the recent book [51]. The more recent method based on empirical
processes, has been pioneered by Vapnik and Chervonenkis’s work since the
1960s, [139], and has recently been greatly extended by several authors.
Easy introductions can be found in [74], [5], [139]. The most recent (and
most effective) methods are based on the notions of sharp concentration [38],
[17] and notions of Rademacher complexity [9], [78], [132], [133].

The second direction will be the one followed in this book for its sim-
plicity, elegance and effectiveness. Other discussions of pattern recognition
via specific algorithms can be found in the following books: [14] and [108]
for neural networks; [107] and [19] for decision trees, [32], and [100] for a
general introduction to the field of machine learning from the perspective of
artificial intelligence.

More information about Kepler’s laws and the process by which he arrived
at them can be found in a book by Arthur Koestler [76].

For constantly updated pointers to online literature and free software see
the book’s companion website: www.kernel-methods.net


