
Appendix A

Proofs omitted from the main text

A.1 Proof of McDiarmid’s theorem

Theorem A.1 (McDiarmid [94]) Let X1, . . . , Xn be independent random
variables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then for all ε > 0,

P {f (X1, . . . , Xn) − Ef (X1, . . . , Xn) ≥ ε} ≤ exp
( −2ε2∑n

i=1 c
2
i

)
.

Proof Let Vi = Vi (X1, . . . , Xi) = E[f |X1, . . . , Xi]−E[f |X1, . . . , Xi−1], where
we have denoted f(X1, . . . , Xn) with a simple f . Hence

f − E[f ] =
n∑

i=1

Vi.

We will denote the probability distribution of Xi by Pi, while with P we
denote as above the overall distribution. So, for any s > 0, we have

P {f − E[f ] ≥ ε} = P

{
n∑

i=1

Vi ≥ ε

}
= P

{
exp

(
s

n∑
i=1

Vi

)
exp (−sε) ≥ 1

}

≤ E

[
exp

(
s

n∑
i=1

Vi

)]
exp (−sε)

= exp (−sε) E

[
n∏

i=1

exp (sVi)

]

437
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= exp (−sε) EX1...Xn−1EXn

[
n∏

i=1

exp (sVi) |X1, . . . , Xn−1

]

= exp (−sε) EX1...Xn−1

([
n−1∏
i=1

exp (sVi)

]
(A.1)

EXn [exp (sVn) |X1, . . . , Xn−1]) ,

where we have used the independence of the Vi from Xn, for i = 1, . . . , n−1
and the fact that the expectation of a product of independent variables
equals the product of their expectations. The random variables Vi satisfy

E[Vi|X1, . . . , Xi−1] = E[E[f |X1, . . . , Xi]|X1, . . . , Xi−1] − E[f |X1, . . . , Xi−1]

= E[f |X1, . . . , Xi−1] − E[f |X1, . . . , Xi−1] = 0.

while their range can be bounded by

Li = inf
a
Vi(X1, . . . , Xi−1, a) ≤ Vi (X1, . . . , Xi) ≤ sup

a
Vi(X1, . . . , Xi−1, a) = Ui.

If al and au are the values at which the inf and sup are attained, we have

|Ui − Li|
= |E[f |X1, . . . , Xi−1, Xi = au] − E[f |X1, . . . , Xi−1, Xi = al]|

=
∣∣∣∣
∫
An−i

f (X1, . . . , Xi−1, au, xi+1, . . . xn) dPi+1(xi+1) . . . dPn(xn)

−
∫
An−i

f (X1, . . . , Xi−1, al, xi+1, . . . , xn) dPi+1(xi+1) . . . dPn(xn)
∣∣∣∣

≤
∫
An−i

dPi+1(xi+1) . . . dPn(xn) |f (X1, . . . , Xi−1, au, xi+1, . . . , xn)

−f (X1, . . . , Xi−1, al, xi+1, . . . , xn)|
≤ |ci| .

Letting Z(Xi) = Vi(X1, . . . , Xi−1, Xi) be the random variable depending
only on Xi for given fixed values of X1, . . . , Xi−1, note that

exp (sZ) ≤ Z − Li

Ui − Li
exp(sUi) +

Ui − Z

Ui − Li
exp(sLi),

by the convexity of the exponential function. Using the fact that

E[Z] = E[Vi|X1, . . . , Xi−1] = 0,

it follows that

E [exp (sVi) |X1, . . . , Xi−1] = E[exp (sZ)]
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≤ −Li

Ui − Li
exp(sUi) +

Ui

Ui − Li
exp(sLi)

= exp(ψ(s)),

where ψ(s) = ln( −Li
Ui−Li

exp(sUi) + Ui
Ui−Li

exp(sLi)). It is not hard to check
that ψ(0) = ψ′(0) = 0, while ψ′′(s) ≤ 0.25(Ui − Li)2 ≤ 0.25c2i for s ≥ 0.
Hence, taking three terms of the Taylor series with remainder, we have that

E [exp (sVi) |X1, . . . , Xi−1] ≤ exp
(
s2c2i
8

)
.

Plugging this into inequality (A.1) for i = n gives

P {f − E[f ] ≥ ε} ≤= exp (−sε) exp
(
s2c2n

8

)
EX1...Xn−1

[
n−1∏
i=1

exp (sVi)

]
.

By iterating the same argument for n− 1, n− 2, . . . , 1, we can show that

P {f(X1, . . . , Xn) − Ef(X1, . . . , Xn) ≥ ε}

≤ exp (−sε)
n∏

i=1

exp
(
s2c2i
8

)

= exp

(
−sε +

s2

8

n∑
i=1

c2i

)

= exp
(
− 2ε2∑n

i=1 c
2
i

)
,

where we have chosen s = 4ε
(∑n

i=1 c
2
i

)−1 to minimise the expression.

A.2 Stability of principal components analysis

In this appendix we prove the following theorem from Chapter 6.

Theorem A.2 (Theorem 6.14) If we perform PCA in the feature space
defined by a kernel κ(x, z) then with probability greater than 1 − δ, for any
1 ≤ k ≤ �, if we project new data onto the space Uk, the expected squared
residual is bounded by

E

[∥∥∥P⊥
Uk

(φ(x))
∥∥∥2
]

≤ min
1≤t≤k


1
�
λ>t(S) +

8
�

√√√√(t + 1)
�∑

i=1

κ(xi,xi)2




+3R2

√
ln(2�/δ)

2�
,
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where the support of the distribution is in a ball of radius R in the feature
space.

The observation that makes the analysis possible is contained in the fol-
lowing theorem.

Theorem A.3 The projection norm ‖PUk
(φ(x))‖2 is a linear function f̂ in

a feature space F̂ for which the kernel function is given by

κ̂(x, z) = κ(x, z)2.

Furthermore the 2-norm of the function f̂ is
√
k.

Proof Let X′ = UΣV′ be the singular value decomposition of the matrix
X′ whose rows are the images of the training examples in the feature space.
The projection norm is then given by

f̂(x) = ‖PUk
(φ(x))‖2 = φ(x)′UkU′

kφ(x),

where Uk is the matrix containing the first k columns of U. Hence we can
write

‖PUk
(φ(x))‖2 =

N∑
i,j=1

αijφ(x)iφ(x)j =
N∑

i,j=1

αijφ̂(x)ij ,

where φ̂ is the mapping into the feature space F̂ composed of all pairs of F
features and αij = (UkU′

k)ij . The standard polynomial construction gives
the corresponding kernel κ̂ as

κ̂(x, z) = κ(x, z)2 =

(
N∑
i=1

φ(x)iφ(z)i

)2

=
N∑

i,j=1

φ(x)iφ(z)iφ(x)jφ(z)j =
N∑

i,j=1

(φ(x)iφ(x)j)(φ(z)iφ(z)j)

= 〈φ(x),φ(z)〉 .

It remains to show that the norm of the linear function is
√
k. The norm

satisfies (note that ‖ · ‖F denotes the Frobenius norm and ui, i = 1, . . . , N ,
the orthonormal columns of U)

‖f̂‖2 =
N∑

i,j=1

α2
ij = ‖UkU′

k‖2
F =

〈
k∑

i=1

uiu′
i,

k∑
j=1

uju′
j

〉
F

=
k∑

i,j=1

(u′
iuj)2 = k,

as required.
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Since the norm of the residual can be viewed as a linear function we can
now apply the methods developed in Chapter 4.

Theorem A.4 If we perform PCA on a training set S of size � in the
feature space defined by a kernel κ(x, z) and project new data onto the space
Uk spanned by the first k eigenvectors, with probability greater than 1 − δ

over the generation of the sample S the expected squared residual is bounded
by

E

[
‖P⊥

Uk
(φ(x))‖2

]
≤ 1

�
λ>k(S) +

8
�

√√√√(k + 1)
�∑

i=1

κ(xi,xi)2 + 3R2

√
ln(2/δ)

2�
,

where

R2 = max
x∈supp(D)

κ(x,x).

Proof Prompted by Theorem A.3 we consider the linear function class

F̂√
k =

{
x → 〈w,φ (x)〉 : ‖w‖ ≤

√
k
}

with respect to the kernel

κ̂(x, z) = κ(x, z)2 = 〈φ(x),φ(z)〉 ,
with corresponding feature mapping φ̂. However, we further augment the
corresponding primal weight vectors with one further dimension while aug-
menting the corresponding feature vectors with a feature

‖φ(x))‖2 = κ(x,x) =
√
κ̂(x,x) = ‖φ̂(x))‖

that is the norm squared in the original feature space. We now apply The-
orem 4.9 to the loss class

F̂L =
{
fL : (φ̂(x), ‖φ̂(x))‖) �→ A(‖φ̂(x))‖ − f(φ̂(x))) | f ∈ F̂√

k

}
(A.2)

⊆ A ◦ F̂ ′√
k+1

,

where F̂ ′√
k+1

is the class of linear functions with norm bounded by
√
k + 1

in the feature space defined by the kernel

κ̂′(x, z) = κ̂(x, z) + κ(x,x)κ(z, z) = κ(x, z)2 + κ(x,x)κ(z, z)

and A is the function

A(x) =




0 if x ≤ 0;
x/R2 if 0 ≤ x ≤ R2;
1 otherwise.
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The theorem is applied to the pattern function A◦ f̂L where f̂ is the projec-
tion function of Theorem A.3 and f̂L is defined in (A.2). We conclude that
with probability 1 − δ

ED
[
A ◦ f̂L(x)

]
≤ Ê

[
A ◦ f̂L(x)

]
+ R̂�(A ◦ F̂ ′√

k+1
) + 3

√
ln(2/δ)

2�
. (A.3)

First note that the left-hand side of the inequality is equal to

1
R2

E

[
‖P⊥

Uk
(φ(x))‖2

]
,

since A acts as the identity in the range achieved by the function f̂L. Hence,
to obtain the result it remains to evaluate the first two expressions on the
right-hand side of equation (A.3). Again observing that A acts as the iden-
tity in the range achieved, the first is a scaling of the squared residual of the
training set when projecting into the space Uk, that is

1
R2

Ê

[
‖P⊥

Uk
(φ(x))‖2

]
=

1
�R2

�∑
i=k+1

λi =
1

�R2
λ>k(S).

The second expression is R̂�(A ◦ F̂ ′√
k+1

). Here we apply Theorem 4.12 and
Theorem 4.15 part 4 to obtain

R̂�(A ◦ F̂ ′√
k+1

) ≤ 4
√
k + 1
�R2

√
tr
(
K̂′
)

=
4
R2

√
k + 1
�

√√√√4
�

�∑
i=1

κ(xi,xi)2.

Assembling all the components and multiplying by R2 gives the result.

We now apply the bound � times to obtain a proof of Theorem 6.14.

Proof [Proof of Theorem 6.14] We apply Theorem A.4 for k = 1, . . . , �, in
each case replacing δ by δ/�. This ensures that with probability 1 − δ the
assertion holds for all � applications. The result follows from the observation
that for k ≥ t

E

[
‖P⊥

Uk
(φ(x))‖2

]
≤ E

[
‖P⊥

Ut
(φ(x))‖2

]
.

A.3 Proofs of diffusion kernels

Proposition A.5 Provided µ < ‖K‖−1 = ‖G‖−1, the kernel K̂ that solves
the recurrences (10.2) is K times the von Neumann kernel over the base
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kernel K, while the matrix Ĝ satisfies

Ĝ = G(I − µG)−1.

Proof First observe that

K(I − µK)−1 = K(I − µK)−1 − 1
µ

(I − µK)−1 +
1
µ

(I − µK)−1

= − 1
µ

(I − µK)(I − µK)−1 +
1
µ

(I − µK)−1

=
1
µ

(I − µK)−1 − 1
µ
I.

Now if we substitute the second recurrence into the first we obtain

K̂ = µ2DD′K̂DD′ + µDD′DD′ + K

= µ2K(K(I − µK)−1)K + µK2 + K

= µ2K(
1
µ

(I − µK)−1 − 1
µ
I)K + µK2 + K

= µK(I − µK)−1K + K(I − µK)−1(I − µK)

= K(I − µK)−1,

showing that the expression does indeed satisfy the recurrence. Clearly,
by the symmetry of the definition the expression for Ĝ also satisfies the
recurrence.

Proposition A.6 Let K̄(µ) = K exp(µK). Then K̄(µ) corresponds to a
semantic proximity matrix

exp
(µ

2
G
)
.

Proof Let D′ = UΣV′ be the singular value decomposition of D′, so that
K = VΛV′ is the eigenvalue decomposition of K, where Λ = Σ′Σ. We can
write K̄ as

K̄ = VΛ exp(µΛ)V′ = DUΣ exp(µΛ)Σ−1U′D′

= DU exp(µΛ)U′D′ = D exp(µG)D′,

as required.


