Proofs omitted from the main text

A.1 Proof of McDiarmid's theorem

Theorem A.1 (McDiarmid [94]) Let X_1, \ldots, X_n be independent random variables taking values in a set A, and assume that $f : A^n \to \mathbb{R}$ satisfies

 $\sup_{x_1,\dots,x_n,\hat{x}_i \in A} |f(x_1,\dots,x_n) - f(x_1,\dots,\hat{x}_i,x_{i+1},\dots,x_n)| \le c_i, \quad 1 \le i \le n.$

Then for all $\epsilon > 0$,

$$P\left\{f\left(X_{1},\ldots,X_{n}\right)-\mathbb{E}f\left(X_{1},\ldots,X_{n}\right)\geq\epsilon\right\}\leq\exp\left(\frac{-2\epsilon^{2}}{\sum_{i=1}^{n}c_{i}^{2}}\right)$$

Proof Let $V_i = V_i(X_1, \ldots, X_i) = \mathbb{E}[f|X_1, \ldots, X_i] - \mathbb{E}[f|X_1, \ldots, X_{i-1}]$, where we have denoted $f(X_1, \ldots, X_n)$ with a simple f. Hence

$$f - \mathbb{E}[f] = \sum_{i=1}^{n} V_i.$$

We will denote the probability distribution of X_i by P_i , while with P we denote as above the overall distribution. So, for any s > 0, we have

$$P\{f - \mathbb{E}[f] \ge \varepsilon\} = P\left\{\sum_{i=1}^{n} V_i \ge \varepsilon\right\} = P\left\{\exp\left(s\sum_{i=1}^{n} V_i\right) \exp\left(-s\varepsilon\right) \ge 1\right\}$$
$$\le \mathbb{E}\left[\exp\left(s\sum_{i=1}^{n} V_i\right)\right] \exp\left(-s\varepsilon\right)$$
$$= \exp\left(-s\varepsilon\right)\mathbb{E}\left[\prod_{i=1}^{n} \exp\left(sV_i\right)\right]$$

Proofs omitted from the main text

$$= \exp(-s\varepsilon) \mathbb{E}_{X_1...X_{n-1}} \mathbb{E}_{X_n} \left[\prod_{i=1}^n \exp(sV_i) | X_1, \dots, X_{n-1} \right]$$
$$= \exp(-s\varepsilon) \mathbb{E}_{X_1...X_{n-1}} \left(\left[\prod_{i=1}^{n-1} \exp(sV_i) \right] \\ \mathbb{E}_{X_n} \left[\exp(sV_n) | X_1, \dots, X_{n-1} \right] \right),$$
(A.1)

where we have used the independence of the V_i from X_n , for i = 1, ..., n-1and the fact that the expectation of a product of independent variables equals the product of their expectations. The random variables V_i satisfy

$$\mathbb{E}[V_i|X_1, \dots, X_{i-1}] = \mathbb{E}[\mathbb{E}[f|X_1, \dots, X_i]|X_1, \dots, X_{i-1}] - \mathbb{E}[f|X_1, \dots, X_{i-1}] \\ = \mathbb{E}[f|X_1, \dots, X_{i-1}] - \mathbb{E}[f|X_1, \dots, X_{i-1}] = 0.$$

while their range can be bounded by

$$L_{i} = \inf_{a} V_{i}(X_{1}, \dots, X_{i-1}, a) \leq V_{i}(X_{1}, \dots, X_{i}) \leq \sup_{a} V_{i}(X_{1}, \dots, X_{i-1}, a) = U_{i}$$

If a_l and a_u are the values at which the inf and sup are attained, we have

$$\begin{aligned} |U_{i} - L_{i}| \\ &= |\mathbb{E}[f|X_{1}, \dots, X_{i-1}, X_{i} = a_{u}] - \mathbb{E}[f|X_{1}, \dots, X_{i-1}, X_{i} = a_{l}]| \\ &= \left| \int_{A^{n-i}} f\left(X_{1}, \dots, X_{i-1}, a_{u}, x_{i+1}, \dots, x_{n}\right) dP_{i+1}(x_{i+1}) \dots dP_{n}(x_{n}) \right. \\ &- \int_{A^{n-i}} f\left(X_{1}, \dots, X_{i-1}, a_{l}, x_{i+1}, \dots, x_{n}\right) dP_{i+1}(x_{i+1}) \dots dP_{n}(x_{n}) \right| \\ &\leq \int_{A^{n-i}} dP_{i+1}(x_{i+1}) \dots dP_{n}(x_{n}) \left| f\left(X_{1}, \dots, X_{i-1}, a_{u}, x_{i+1}, \dots, x_{n}\right) \right. \\ &- f\left(X_{1}, \dots, X_{i-1}, a_{l}, x_{i+1}, \dots, x_{n}\right) \right| \\ &\leq |c_{i}| \,. \end{aligned}$$

Letting $Z(X_i) = V_i(X_1, \ldots, X_{i-1}, X_i)$ be the random variable depending only on X_i for given fixed values of X_1, \ldots, X_{i-1} , note that

$$\exp(sZ) \le \frac{Z - L_i}{U_i - L_i} \exp(sU_i) + \frac{U_i - Z}{U_i - L_i} \exp(sL_i),$$

by the convexity of the exponential function. Using the fact that

$$\mathbb{E}[Z] = \mathbb{E}[V_i|X_1, \dots, X_{i-1}] = 0,$$

it follows that

$$\mathbb{E}\left[\exp\left(sV_{i}\right)|X_{1},\ldots,X_{i-1}\right] = \mathbb{E}\left[\exp\left(sZ\right)\right]$$

$$\leq \frac{-L_i}{U_i - L_i} \exp(sU_i) + \frac{U_i}{U_i - L_i} \exp(sL_i)$$

= $\exp(\psi(s)),$

where $\psi(s) = \ln(\frac{-L_i}{U_i - L_i} \exp(sU_i) + \frac{U_i}{U_i - L_i} \exp(sL_i))$. It is not hard to check that $\psi(0) = \psi'(0) = 0$, while $\psi''(s) \le 0.25(U_i - L_i)^2 \le 0.25c_i^2$ for $s \ge 0$. Hence, taking three terms of the Taylor series with remainder, we have that

$$\mathbb{E}\left[\exp\left(sV_{i}\right)|X_{1},\ldots,X_{i-1}\right] \leq \exp\left(\frac{s^{2}c_{i}^{2}}{8}\right).$$

Plugging this into inequality (A.1) for i = n gives

$$P\left\{f - \mathbb{E}[f] \ge \varepsilon\right\} \le = \exp\left(-s\varepsilon\right) \exp\left(\frac{s^2 c_n^2}{8}\right) \mathbb{E}_{X_1 \dots X_{n-1}}\left[\prod_{i=1}^{n-1} \exp\left(sV_i\right)\right].$$

By iterating the same argument for n - 1, n - 2, ..., 1, we can show that

$$P\left\{f(X_1, \dots, X_n) - \mathbb{E}f(X_1, \dots, X_n) \ge \epsilon\right\}$$

$$\leq \exp\left(-s\varepsilon\right) \prod_{i=1}^n \exp\left(\frac{s^2 c_i^2}{8}\right)$$

$$= \exp\left(-s\varepsilon + \frac{s^2}{8} \sum_{i=1}^n c_i^2\right)$$

$$= \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right),$$

where we have chosen $s = 4\epsilon \left(\sum_{i=1}^{n} c_i^2\right)^{-1}$ to minimise the expression. \Box

A.2 Stability of principal components analysis

In this appendix we prove the following theorem from Chapter 6.

Theorem A.2 (Theorem 6.14) If we perform PCA in the feature space defined by a kernel $\kappa(\mathbf{x}, \mathbf{z})$ then with probability greater than $1 - \delta$, for any $1 \leq k \leq \ell$, if we project new data onto the space U_k , the expected squared residual is bounded by

$$\mathbb{E}\left[\left\|P_{U_{k}}^{\perp}(\boldsymbol{\phi}(\mathbf{x}))\right\|^{2}\right] \leq \min_{1 \leq t \leq k} \left[\frac{1}{\ell}\lambda^{>t}(S) + \frac{8}{\ell}\sqrt{(t+1)\sum_{i=1}^{\ell}\kappa(\mathbf{x}_{i},\mathbf{x}_{i})^{2}}\right] + 3R^{2}\sqrt{\frac{\ln(2\ell/\delta)}{2\ell}},$$

where the support of the distribution is in a ball of radius R in the feature space.

The observation that makes the analysis possible is contained in the following theorem.

Theorem A.3 The projection norm $||P_{U_k}(\phi(\mathbf{x}))||^2$ is a linear function \hat{f} in a feature space \hat{F} for which the kernel function is given by

$$\hat{\kappa}(\mathbf{x}, \mathbf{z}) = \kappa(\mathbf{x}, \mathbf{z})^2.$$

Furthermore the 2-norm of the function \hat{f} is \sqrt{k} .

Proof Let $\mathbf{X}' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$ be the singular value decomposition of the matrix \mathbf{X}' whose rows are the images of the training examples in the feature space. The projection norm is then given by

$$\hat{f}(\mathbf{x}) = \|P_{U_k}(\boldsymbol{\phi}(\mathbf{x}))\|^2 = \boldsymbol{\phi}(\mathbf{x})' \mathbf{U}_k \mathbf{U}'_k \boldsymbol{\phi}(\mathbf{x}),$$

where \mathbf{U}_k is the matrix containing the first k columns of \mathbf{U} . Hence we can write

$$\|P_{U_k}(\boldsymbol{\phi}(\mathbf{x}))\|^2 = \sum_{i,j=1}^N \alpha_{ij} \boldsymbol{\phi}(\mathbf{x})_i \boldsymbol{\phi}(\mathbf{x})_j = \sum_{i,j=1}^N \alpha_{ij} \hat{\boldsymbol{\phi}}(\mathbf{x})_{ij}$$

where $\hat{\boldsymbol{\phi}}$ is the mapping into the feature space \hat{F} composed of all pairs of F features and $\alpha_{ij} = (\mathbf{U}_k \mathbf{U}'_k)_{ij}$. The standard polynomial construction gives the corresponding kernel $\hat{\kappa}$ as

$$\begin{aligned} \hat{\kappa}(\mathbf{x}, \mathbf{z}) &= \kappa(\mathbf{x}, \mathbf{z})^2 = \left(\sum_{i=1}^N \phi(\mathbf{x})_i \phi(\mathbf{z})_i\right)^2 \\ &= \sum_{i,j=1}^N \phi(\mathbf{x})_i \phi(\mathbf{z})_i \phi(\mathbf{z})_j \phi(\mathbf{z})_j = \sum_{i,j=1}^N (\phi(\mathbf{x})_i \phi(\mathbf{x})_j)(\phi(\mathbf{z})_i \phi(\mathbf{z})_j) \\ &= \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle \,. \end{aligned}$$

It remains to show that the norm of the linear function is \sqrt{k} . The norm satisfies (note that $\|\cdot\|_F$ denotes the Frobenius norm and \mathbf{u}_i , $i = 1, \ldots, N$, the orthonormal columns of **U**)

$$\|\hat{f}\|^{2} = \sum_{i,j=1}^{N} \alpha_{ij}^{2} = \|\mathbf{U}_{k}\mathbf{U}_{k}'\|_{F}^{2} = \left\langle \sum_{i=1}^{k} \mathbf{u}_{i}\mathbf{u}_{i}', \sum_{j=1}^{k} \mathbf{u}_{j}\mathbf{u}_{j}' \right\rangle_{F} = \sum_{i,j=1}^{k} (\mathbf{u}_{i}'\mathbf{u}_{j})^{2} = k,$$

as required.

Since the norm of the residual can be viewed as a linear function we can now apply the methods developed in Chapter 4.

Theorem A.4 If we perform PCA on a training set S of size ℓ in the feature space defined by a kernel $\kappa(\mathbf{x}, \mathbf{z})$ and project new data onto the space U_k spanned by the first k eigenvectors, with probability greater than $1 - \delta$ over the generation of the sample S the expected squared residual is bounded by

$$\mathbb{E}\left[\left\|P_{U_k}^{\perp}(\boldsymbol{\phi}(\mathbf{x}))\right\|^2\right] \le \frac{1}{\ell}\lambda^{>k}(S) + \frac{8}{\ell}\sqrt{(k+1)\sum_{i=1}^{\ell}\kappa(\mathbf{x}_i,\mathbf{x}_i)^2 + 3R^2\sqrt{\frac{\ln(2/\delta)}{2\ell}}},$$

where

$$R^2 = \max_{\mathbf{x} \in \text{supp}(\mathcal{D})} \kappa(\mathbf{x}, \mathbf{x}).$$

Proof Prompted by Theorem A.3 we consider the linear function class

$$\hat{\mathcal{F}}_{\sqrt{k}} = \left\{ \mathbf{x} \to \langle \mathbf{w}, \boldsymbol{\phi} \left(\mathbf{x}
ight)
angle : \| \mathbf{w} \| \leq \sqrt{k}
ight\}$$

with respect to the kernel

$$\hat{\kappa}(\mathbf{x}, \mathbf{z}) = \kappa(\mathbf{x}, \mathbf{z})^2 = \langle \boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{z}) \rangle,$$

with corresponding feature mapping $\hat{\phi}$. However, we further augment the corresponding primal weight vectors with one further dimension while augmenting the corresponding feature vectors with a feature

$$\|\boldsymbol{\phi}(\mathbf{x})\|^2 = \kappa(\mathbf{x}, \mathbf{x}) = \sqrt{\hat{\kappa}(\mathbf{x}, \mathbf{x})} = \|\hat{\boldsymbol{\phi}}(\mathbf{x})\|$$

that is the norm squared in the original feature space. We now apply Theorem 4.9 to the loss class

$$\hat{F}_{\mathcal{L}} = \left\{ f_{\mathcal{L}} : (\hat{\phi}(\mathbf{x}), \|\hat{\phi}(\mathbf{x}))\|) \mapsto \mathcal{A}(\|\hat{\phi}(\mathbf{x}))\| - f(\hat{\phi}(\mathbf{x}))) \mid f \in \hat{\mathcal{F}}_{\sqrt{k}} \right\} \quad (A.2)$$

$$\subseteq \mathcal{A} \circ \hat{\mathcal{F}}'_{\sqrt{k+1}},$$

where $\hat{\mathcal{F}}'_{\sqrt{k+1}}$ is the class of linear functions with norm bounded by $\sqrt{k+1}$ in the feature space defined by the kernel

$$\hat{\kappa}'(\mathbf{x}, \mathbf{z}) = \hat{\kappa}(\mathbf{x}, \mathbf{z}) + \kappa(\mathbf{x}, \mathbf{x})\kappa(\mathbf{z}, \mathbf{z}) = \kappa(\mathbf{x}, \mathbf{z})^2 + \kappa(\mathbf{x}, \mathbf{x})\kappa(\mathbf{z}, \mathbf{z})$$

and \mathcal{A} is the function

$$\mathcal{A}(x) = \begin{cases} 0 & \text{if } x \leq 0; \\ x/R^2 & \text{if } 0 \leq x \leq R^2; \\ 1 & \text{otherwise.} \end{cases}$$

The theorem is applied to the pattern function $\mathcal{A} \circ \hat{f}_{\mathcal{L}}$ where \hat{f} is the projection function of Theorem A.3 and $\hat{f}_{\mathcal{L}}$ is defined in (A.2). We conclude that with probability $1 - \delta$

$$\mathbb{E}_{\mathcal{D}}\left[\mathcal{A}\circ\hat{f}_{\mathcal{L}}(\mathbf{x})\right] \leq \mathbb{E}\left[\mathcal{A}\circ\hat{f}_{\mathcal{L}}(\mathbf{x})\right] + \hat{R}_{\ell}(\mathcal{A}\circ\hat{\mathcal{F}}'_{\sqrt{k+1}}) + 3\sqrt{\frac{\ln(2/\delta)}{2\ell}}.$$
 (A.3)

First note that the left-hand side of the inequality is equal to

 $\frac{1}{R^2} \mathbb{E}\left[\|P_{U_k}^{\perp}(\boldsymbol{\phi}(\mathbf{x}))\|^2 \right],$

since \mathcal{A} acts as the identity in the range achieved by the function $\hat{f}_{\mathcal{L}}$. Hence, to obtain the result it remains to evaluate the first two expressions on the right-hand side of equation (A.3). Again observing that \mathcal{A} acts as the identity in the range achieved, the first is a scaling of the squared residual of the training set when projecting into the space U_k , that is

$$\frac{1}{R^2} \hat{\mathbb{E}} \left[\| P_{U_k}^{\perp}(\phi(\mathbf{x})) \|^2 \right] = \frac{1}{\ell R^2} \sum_{i=k+1}^{\ell} \lambda_i = \frac{1}{\ell R^2} \lambda^{>k}(S).$$

The second expression is $\hat{R}_{\ell}(\mathcal{A} \circ \hat{\mathcal{F}}'_{\sqrt{k+1}})$. Here we apply Theorem 4.12 and Theorem 4.15 part 4 to obtain

$$\hat{R}_{\ell}(\mathcal{A} \circ \hat{\mathcal{F}}_{\sqrt{k+1}}') \leq \frac{4\sqrt{k+1}}{\ell R^2} \sqrt{\operatorname{tr}\left(\hat{\mathbf{K}}'\right)} = \frac{4}{R^2} \sqrt{\frac{k+1}{\ell}} \sqrt{\frac{4}{\ell} \sum_{i=1}^{\ell} \kappa(\mathbf{x}_i, \mathbf{x}_i)^2}.$$

Assembling all the components and multiplying by R^2 gives the result. \Box

We now apply the bound ℓ times to obtain a proof of Theorem 6.14.

Proof [Proof of Theorem 6.14] We apply Theorem A.4 for $k = 1, ..., \ell$, in each case replacing δ by δ/ℓ . This ensures that with probability $1 - \delta$ the assertion holds for all ℓ applications. The result follows from the observation that for $k \ge t$

$$\mathbb{E}\left[\|P_{U_k}^{\perp}(\boldsymbol{\phi}(\mathbf{x}))\|^2\right] \leq \mathbb{E}\left[\|P_{U_t}^{\perp}(\boldsymbol{\phi}(\mathbf{x}))\|^2\right].$$

A.3 Proofs of diffusion kernels

Proposition A.5 Provided $\mu < \|\mathbf{K}\|^{-1} = \|\mathbf{G}\|^{-1}$, the kernel $\hat{\mathbf{K}}$ that solves the recurrences (10.2) is \mathbf{K} times the von Neumann kernel over the base kernel K, while the matrix $\hat{\mathbf{G}}$ satisfies

$$\hat{\mathbf{G}} = \mathbf{G}(\mathbf{I} - \mu \mathbf{G})^{-1}.$$

Proof First observe that

$$\begin{aligned} \mathbf{K}(\mathbf{I} - \mu \mathbf{K})^{-1} &= \mathbf{K}(\mathbf{I} - \mu \mathbf{K})^{-1} - \frac{1}{\mu}(\mathbf{I} - \mu \mathbf{K})^{-1} + \frac{1}{\mu}(\mathbf{I} - \mu \mathbf{K})^{-1} \\ &= -\frac{1}{\mu}(\mathbf{I} - \mu \mathbf{K})(\mathbf{I} - \mu \mathbf{K})^{-1} + \frac{1}{\mu}(\mathbf{I} - \mu \mathbf{K})^{-1} \\ &= \frac{1}{\mu}(\mathbf{I} - \mu \mathbf{K})^{-1} - \frac{1}{\mu}\mathbf{I}. \end{aligned}$$

Now if we substitute the second recurrence into the first we obtain

$$\begin{aligned} \hat{\mathbf{K}} &= \mu^2 \mathbf{D} \mathbf{D}' \hat{\mathbf{K}} \mathbf{D} \mathbf{D}' + \mu \mathbf{D} \mathbf{D}' \mathbf{D} \mathbf{D}' + \mathbf{K} \\ &= \mu^2 \mathbf{K} (\mathbf{K} (\mathbf{I} - \mu \mathbf{K})^{-1}) \mathbf{K} + \mu \mathbf{K}^2 + \mathbf{K} \\ &= \mu^2 \mathbf{K} (\frac{1}{\mu} (\mathbf{I} - \mu \mathbf{K})^{-1} - \frac{1}{\mu} \mathbf{I}) \mathbf{K} + \mu \mathbf{K}^2 + \mathbf{K} \\ &= \mu \mathbf{K} (\mathbf{I} - \mu \mathbf{K})^{-1} \mathbf{K} + \mathbf{K} (\mathbf{I} - \mu \mathbf{K})^{-1} (\mathbf{I} - \mu \mathbf{K}) \\ &= \mathbf{K} (\mathbf{I} - \mu \mathbf{K})^{-1}, \end{aligned}$$

showing that the expression does indeed satisfy the recurrence. Clearly, by the symmetry of the definition the expression for $\hat{\mathbf{G}}$ also satisfies the recurrence.

Proposition A.6 Let $\bar{\mathbf{K}}(\mu) = \mathbf{K} \exp(\mu \mathbf{K})$. Then $\bar{\mathbf{K}}(\mu)$ corresponds to a semantic proximity matrix

$$\exp\left(\frac{\mu}{2}\mathbf{G}\right).$$

Proof Let $\mathbf{D}' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$ be the singular value decomposition of \mathbf{D}' , so that $\mathbf{K} = \mathbf{V} \Lambda \mathbf{V}'$ is the eigenvalue decomposition of \mathbf{K} , where $\Lambda = \mathbf{\Sigma}' \mathbf{\Sigma}$. We can write \mathbf{K} as

$$\bar{\mathbf{K}} = \mathbf{V}\Lambda \exp(\mu\Lambda)\mathbf{V}' = \mathbf{D}\mathbf{U}\boldsymbol{\Sigma}\exp(\mu\Lambda)\boldsymbol{\Sigma}^{-1}\mathbf{U}'\mathbf{D}'$$
$$= \mathbf{D}\mathbf{U}\exp(\mu\Lambda)\mathbf{U}'\mathbf{D}' = \mathbf{D}\exp(\mu\mathbf{G})\mathbf{D}',$$

as required.

443