Appendix A

Proofs omitted from the main text

A.1 Proof of McDiarmid’s theorem

Theorem A.1 (McDiarmid [94]) Let X1, ..., X, be independent random
variables taking values in a set A, and assume that f : A™ — R satisfies

sup If(x1, . zn) — flx1, ooy Ty Tig 1y ooy )| < ¢y, 1< <.

T1yee T, L €A

Then for all € > 0,

P{f(Xl,...,Xn)Ef(Xl,...,X)>e}<exp(%>.

i=1 65

Proof Let V; = V; (X1,...,X;) = E[f|X1,..., Xi]-E[f| X1, ..., X;—1], where
we have denoted f(Xi,...,X,) with a simple f. Hence

—E[f] =) Vi
=1

We will denote the probability distribution of X; by P;, while with P we
denote as above the overall distribution. So, for any s > 0, we have

P{zn:w > s} :P{exp Gév) exp (—se) > 1}
exp( Zv)

H exp (sV;)
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= exp(—se)Ex,. x, ,Ex,
=1

[Texp (svi) 1 x1, ... ,X,H]

n—1
— exp(—s2) Exy.x, ( [H exp (V) (A1)
i=1
Exn [exp (SVn) |X1, e 7Xn—1]) N
where we have used the independence of the V; from X,,, fori=1,...,n—1

and the fact that the expectation of a product of independent variables
equals the product of their expectations. The random variables V; satisfy

E[Vi|Xy,...,Xi1] = E[E[f|Xy,..., Xi]|Xq,..., Xiq] = E[f[X1,..., X;4]
= E[f|X1,...,Xi—1] — E[f|X1,..., X;-1] = 0.

while their range can be bounded by

Li = inf%(Xl, . ,Xi,l,a) < V; (Xl, PN ,XZ) < supVi(Xl, PN ,Xi,l,a) = Ul

If a; and a, are the values at which the inf and sup are attained, we have

Ui — Li
= |E[f|X1, . ,Xifl,Xi = au] *E[!ﬂXl, e ,Xifl,Xi = CLZH

/ ‘ f (Xl, e ’Xi—l, Ay Ti41y - - l‘n) d-F)i+1(33i+1) e dPn(LEn)
Anfz

- (X X an i, - 20) AP (iga) - d P (20)
An—z

S / ‘ dPi+1(xi+1) e dPn(xn) |f (Xl, e ,Xl-,l,au,xzqu, ey Qj‘n)
Anfz

—f (Xl, e ,Xl',l,al,l'i+1, . ,;L‘n)|
< e -

Letting Z(X;) = Vi(X1,...,Xi—1,X;) be the random variable depending

only on X; for given fixed values of X1,...,X;_1, note that
Z —L; i — 7
exp (sZ) < 0= in exp(sU;) + U;— I exp(sL;),

by the convexity of the exponential function. Using the fact that
E[Z] = E[V;|X1,...,Xi—1] =0,
it follows that

Elexp (sV;)|X1,...,Xi—1] = Elexp(sZ)]
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— 1 %

< UL exp(sU;) + UL, exp(sL;)
= exp(1)(s)),
where 1(s) = In( U:—Liz exp(sU;) + % exp(sL;)). It is not hard to check

that 1(0) = ¢/(0) = 0, while ¢"(s) < 0.25(U; — L;)? < 0.25¢2 for s > 0.
Hence, taking three terms of the Taylor series with remainder, we have that

s2¢2
E [exp (sV;) | X1,. .., Xi—1] < exp < 81> .

Plugging this into inequality (A.1) for i = n gives

n—1
PU—Elf] 2 <) = ew (s (52 Exix, [Hl exp (sV)

By iterating the same argument for n — 1,n — 2,...,1, we can show that

P{f(X1,....Xp) —Ef(X1,...,Xpn) > €}

° s%c?
< exp(—se) Hexp (#)
i=1

52

= exp (—sa + ) Z cf)
i=1
= expl|l—=—3)>

2im1 G
where we have chosen s = 4e (37, c?)f1 to minimise the expression.  [J

A.2 Stability of principal components analysis

In this appendix we prove the following theorem from Chapter 6.

Theorem A.2 (Theorem 6.14) If we perform PCA in the feature space
defined by a kernel k(x,z) then with probability greater than 1 — 6, for any
1 <k < £, if we project new data onto the space Uy, the expected squared
residual is bounded by

14

E{HP&@(X))HQ] < min %A>t(5)+% (t+1) > Kl xi)?
- =1

In(2¢/6)
2, [M(2£/0)
43R 2,
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where the support of the distribution is in a ball of radius R in the feature
space.

The observation that makes the analysis possible is contained in the fol-
lowing theorem.

Theorem A.3 The projection norm || Py, (¢(x))||? is a linear function fin
a feature space F for which the kernel function is given by

k(x,2) = k(x,2)°

Furthermore the 2-norm of the function f is Vk.

Proof Let X’ = UXV’ be the singular value decomposition of the matrix
X’ whose rows are the images of the training examples in the feature space.
The projection norm is then given by

F(x) = ||Py, (¢(x))[I> = ¢(x)' U, Up(x),

where Uy, is the matrix containing the first £ columns of U. Hence we can
write

N
[Py, (9(x))])* = Z Qi d(x)ip(x); = Y aij(x)i,
7] 1 Z,]:].

where (2) is the mapping into the feature space F composed of all pairs of F'
features and o;; = (UkU;C)ij. The standard polynomial construction gives
the corresponding kernel & as

N 2
IAQ(X,Z) = H(X¢Z)2:<Z¢(X)i¢(z)i>
=1

N N
= ) ¢(x)id(2)id(x);$(2); = Y _ (6(x)ip(x);)(b(2)i(2);)
i,j=1 6,j=1

= (9(x),6(2)) .

It remains to show that the norm of the linear function is v/k. The norm
satisfies (note that || - || denotes the Frobenius norm and u;, i = 1,..., N,
the orthonormal columns of U)

k

=S e —uukukuF—<zm z,zuj > S () —

3,j=1 P obj=1

as required. O
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Since the norm of the residual can be viewed as a linear function we can
now apply the methods developed in Chapter 4.

Theorem A.4 If we perform PCA on a training set S of size { in the
feature space defined by a kernel k(x,z) and project new data onto the space
Ui spanned by the first k eigenvectors, with probability greater than 1 — ¢
over the generation of the sample S the expected squared residual is bounded

by

1 2 L sk 8 9 2 [In(2/9)
< Z z R
E [I1Pg, (6(0) 2] < 5275(9) + 7 (1) 3 w02 4 3RY =50
where
R’ = max k(x,X).
x€supp(D)

Proof Prompted by Theorem A.3 we consider the linear function class
Fop={x— w0 (0): Iwl < vk}
with respect to the kernel

R(x,2) = v(x,2)° = (¢(x), d(2)) .

with corresponding feature mapping qAb However, we further augment the
corresponding primal weight vectors with one further dimension while aug-
menting the corresponding feature vectors with a feature

lep@x)? = r(x,x) = Va(x, x) = [|$(x))]

that is the norm squared in the original feature space. We now apply The-
orem 4.9 to the loss class

Fr = e @016 = ANISEN] —~ F(Sx) | € F e} (A2)

C Aoﬁ\//ma

where F’ ) is the class of linear functions with norm bounded by vk + 1
in the feature space defined by the kernel

i (x,2) = k(x,2) + k(x,X)k(2,2) = k(X,2)% + K(X,X)k (2, 2)
and A is the function

0 if z<0;
A(x) = z/R?> if 0 <z < R?%
1 otherwise.
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The theorem is applied to the pattern function Ao fg where f is the projec-
tion function of Theorem A.3 and f, is defined in (A.2). We conclude that
with probability 1 — ¢

In(2/5)
2

Ep [Ao fo(x)] < E [ Ao fo(x)] + Ri(Ao Flpp) +3 (A3)

First note that the left-hand side of the inequality is equal to

2 [P (66 ]
since A acts as the identity in the range achieved by the function fg. Hence,
to obtain the result it remains to evaluate the first two expressions on the
right-hand side of equation (A.3). Again observing that A acts as the iden-
tity in the range achieved, the first is a scaling of the squared residual of the
training set when projecting into the space Uy, that is

L
L 1 2| _ 1 L 1 >k
=E [P (@0)I?| = 75 20 h= )

The second expression is Ry(A o ]:"i/m) Here we apply Theorem 4.12 and
Theorem 4.15 part 4 to obtain

. . 4k +1 ) 4 [k+1 |4
Re( Ao F ) < W\/“ (RY) = J\ | 7 2 i i)

=1

Assembling all the components and multiplying by R? gives the result. [

We now apply the bound ¢ times to obtain a proof of Theorem 6.14.

Proof [Proof of Theorem 6.14] We apply Theorem A4 for k = 1,...,¢, in
each case replacing ¢ by §/¢. This ensures that with probability 1 — ¢ the
assertion holds for all £ applications. The result follows from the observation
that for k > ¢

E|IP4,(6())I?| < E |I1P5(#(x)?] -

A.3 Proofs of diffusion kernels

Proposition A.5 Provided i < |K|~! = ||G||!, the kernel K that solves
the recurrences (10.2) is K times the von Neumann kernel over the base
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kernel K, while the matriz G satisfies

G=GI-uG)™".
Proof First observe that
1 1
KI-pK)™' = KI-uK)™' - L pK) !+ L pK) !

1 1
= ——(I—pK)(I—pK) '+ —(I—pK)™"
1t [
1 1
= —(I-puK)!'--IL
1 I
Now if we substitute the second recurrence into the first we obtain

A

K = u’DD'KDD’+ ;DD'DD’ + K
= ’KEK{I-pK) HK 4+ uK? + K
1 1
= MQK(;(I — uK)"t - ;I)K +uK? + K
= uK@I - pK) 7K+ K(I - pK) " (I - pK)
= K(I - MK)_la

showing that the expression does indeed satisfy the recurrence. Clearly,
by the symmetry of the definition the expression for G also satisfies the
recurrence. L

Proposition A.6 Let K(u) = Kexp(uK). Then K(u) corresponds to a
semantic proximity matric
exp <HG) .

2

Proof Let D' = UXV’ be the singular value decomposition of D’, so that
K = VAV’ is the eigenvalue decomposition of K, where A = ¥'3. We can
write K as
K = VAexp(uA)V' = DU exp(pA)X~U'D’
= DUexp(uA)U'D' = Dexp(uG)D/,

as required. O



