Appendix A

Proofs omitted from the main text

A. 1 Proof of McDiarmid's theorem

Theorem A. 1 (McDiarmid [94]) Let X_{1}, \ldots, X_{n} be independent random variables taking values in a set A, and assume that $f: A^{n} \rightarrow \mathbb{R}$ satisfies
$\sup _{x_{1}, \ldots, x_{n}, \hat{x}_{i} \in A}\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, \hat{x}_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}, \quad 1 \leq i \leq n$.
Then for all $\epsilon>0$,

$$
P\left\{f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right) \geq \epsilon\right\} \leq \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Proof Let $V_{i}=V_{i}\left(X_{1}, \ldots, X_{i}\right)=\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i}\right]-\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}\right]$, where we have denoted $f\left(X_{1}, \ldots, X_{n}\right)$ with a simple f. Hence

$$
f-\mathbb{E}[f]=\sum_{i=1}^{n} V_{i}
$$

We will denote the probability distribution of X_{i} by P_{i}, while with P we denote as above the overall distribution. So, for any $s>0$, we have

$$
\begin{aligned}
P\{f-\mathbb{E}[f] \geq \varepsilon\} & =P\left\{\sum_{i=1}^{n} V_{i} \geq \varepsilon\right\}=P\left\{\exp \left(s \sum_{i=1}^{n} V_{i}\right) \exp (-s \varepsilon) \geq 1\right\} \\
& \leq \mathbb{E}\left[\exp \left(s \sum_{i=1}^{n} V_{i}\right)\right] \exp (-s \varepsilon) \\
& =\exp (-s \varepsilon) \mathbb{E}\left[\prod_{i=1}^{n} \exp \left(s V_{i}\right)\right]
\end{aligned}
$$

$$
\begin{gather*}
=\exp (-s \varepsilon) \mathbb{E}_{X_{1} \ldots X_{n-1}} \mathbb{E}_{X_{n}}\left[\prod_{i=1}^{n} \exp \left(s V_{i}\right) \mid X_{1}, \ldots, X_{n-1}\right] \\
=\exp (-s \varepsilon) \mathbb{E}_{X_{1} \ldots X_{n-1}}\left(\left[\prod_{i=1}^{n-1} \exp \left(s V_{i}\right)\right]\right. \tag{A.1}\\
\left.\mathbb{E}_{X_{n}}\left[\exp \left(s V_{n}\right) \mid X_{1}, \ldots, X_{n-1}\right]\right),
\end{gather*}
$$

where we have used the independence of the V_{i} from X_{n}, for $i=1, \ldots, n-1$ and the fact that the expectation of a product of independent variables equals the product of their expectations. The random variables V_{i} satisfy

$$
\begin{aligned}
\mathbb{E}\left[V_{i} \mid X_{1}, \ldots, X_{i-1}\right] & =\mathbb{E}\left[\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i}\right] \mid X_{1}, \ldots, X_{i-1}\right]-\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}\right] \\
& =\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}\right]-\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}\right]=0
\end{aligned}
$$

while their range can be bounded by
$L_{i}=\inf _{a} V_{i}\left(X_{1}, \ldots, X_{i-1}, a\right) \leq V_{i}\left(X_{1}, \ldots, X_{i}\right) \leq \sup _{a} V_{i}\left(X_{1}, \ldots, X_{i-1}, a\right)=U_{i}$.
If a_{l} and a_{u} are the values at which the inf and sup are attained, we have

$$
\begin{aligned}
\mid U_{i} & -L_{i} \mid \\
= & \left|\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}, X_{i}=a_{u}\right]-\mathbb{E}\left[f \mid X_{1}, \ldots, X_{i-1}, X_{i}=a_{l}\right]\right| \\
= & \mid \int_{A^{n-i}} f\left(X_{1}, \ldots, X_{i-1}, a_{u}, x_{i+1}, \ldots x_{n}\right) d P_{i+1}\left(x_{i+1}\right) \ldots d P_{n}\left(x_{n}\right) \\
& -\int_{A^{n-i}} f\left(X_{1}, \ldots, X_{i-1}, a_{l}, x_{i+1}, \ldots, x_{n}\right) d P_{i+1}\left(x_{i+1}\right) \ldots d P_{n}\left(x_{n}\right) \mid \\
\leq & \int_{A^{n-i}} d P_{i+1}\left(x_{i+1}\right) \ldots d P_{n}\left(x_{n}\right) \mid f\left(X_{1}, \ldots, X_{i-1}, a_{u}, x_{i+1}, \ldots, x_{n}\right) \\
& \quad-f\left(X_{1}, \ldots, X_{i-1}, a_{l}, x_{i+1}, \ldots, x_{n}\right) \mid \\
\leq & \left|c_{i}\right|
\end{aligned}
$$

Letting $Z\left(X_{i}\right)=V_{i}\left(X_{1}, \ldots, X_{i-1}, X_{i}\right)$ be the random variable depending only on X_{i} for given fixed values of X_{1}, \ldots, X_{i-1}, note that

$$
\exp (s Z) \leq \frac{Z-L_{i}}{U_{i}-L_{i}} \exp \left(s U_{i}\right)+\frac{U_{i}-Z}{U_{i}-L_{i}} \exp \left(s L_{i}\right)
$$

by the convexity of the exponential function. Using the fact that

$$
\mathbb{E}[Z]=\mathbb{E}\left[V_{i} \mid X_{1}, \ldots, X_{i-1}\right]=0
$$

it follows that

$$
\mathbb{E}\left[\exp \left(s V_{i}\right) \mid X_{1}, \ldots, X_{i-1}\right]=\mathbb{E}[\exp (s Z)]
$$

$$
\begin{aligned}
& \leq \frac{-L_{i}}{U_{i}-L_{i}} \exp \left(s U_{i}\right)+\frac{U_{i}}{U_{i}-L_{i}} \exp \left(s L_{i}\right) \\
& =\exp (\psi(s))
\end{aligned}
$$

where $\psi(s)=\ln \left(\frac{-L_{i}}{U_{i}-L_{i}} \exp \left(s U_{i}\right)+\frac{U_{i}}{U_{i}-L_{i}} \exp \left(s L_{i}\right)\right)$. It is not hard to check that $\psi(0)=\psi^{\prime}(0)=0$, while $\psi^{\prime \prime}(s) \leq 0.25\left(U_{i}-L_{i}\right)^{2} \leq 0.25 c_{i}^{2}$ for $s \geq 0$. Hence, taking three terms of the Taylor series with remainder, we have that

$$
\mathbb{E}\left[\exp \left(s V_{i}\right) \mid X_{1}, \ldots, X_{i-1}\right] \leq \exp \left(\frac{s^{2} c_{i}^{2}}{8}\right)
$$

Plugging this into inequality (A.1) for $i=n$ gives

$$
P\{f-\mathbb{E}[f] \geq \varepsilon\} \leq=\exp (-s \varepsilon) \exp \left(\frac{s^{2} c_{n}^{2}}{8}\right) \mathbb{E}_{X_{1} \ldots X_{n-1}}\left[\prod_{i=1}^{n-1} \exp \left(s V_{i}\right)\right]
$$

By iterating the same argument for $n-1, n-2, \ldots, 1$, we can show that

$$
\begin{aligned}
& P\left\{f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right) \geq \epsilon\right\} \\
\leq & \exp (-s \varepsilon) \prod_{i=1}^{n} \exp \left(\frac{s^{2} c_{i}^{2}}{8}\right) \\
= & \exp \left(-s \varepsilon+\frac{s^{2}}{8} \sum_{i=1}^{n} c_{i}^{2}\right) \\
= & \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
\end{aligned}
$$

where we have chosen $s=4 \epsilon\left(\sum_{i=1}^{n} c_{i}^{2}\right)^{-1}$ to minimise the expression.

A. 2 Stability of principal components analysis

In this appendix we prove the following theorem from Chapter 6.
Theorem A. 2 (Theorem 6.14) If we perform PCA in the feature space defined by a kernel $\kappa(\mathbf{x}, \mathbf{z})$ then with probability greater than $1-\delta$, for any $1 \leq k \leq \ell$, if we project new data onto the space U_{k}, the expected squared residual is bounded by

$$
\begin{aligned}
\mathbb{E}\left[\left\|P_{U_{k}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right] \leq \min _{1 \leq t \leq k} & {\left[\frac{1}{\ell} \lambda^{>t}(S)+\frac{8}{\ell} \sqrt{(t+1) \sum_{i=1}^{\ell} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)^{2}}\right] } \\
& +3 R^{2} \sqrt{\frac{\ln (2 \ell / \delta)}{2 \ell}}
\end{aligned}
$$

where the support of the distribution is in a ball of radius R in the feature space.

The observation that makes the analysis possible is contained in the following theorem.

Theorem A. 3 The projection norm $\left\|P_{U_{k}}(\phi(\mathbf{x}))\right\|^{2}$ is a linear function \hat{f} in a feature space \hat{F} for which the kernel function is given by

$$
\hat{\kappa}(\mathbf{x}, \mathbf{z})=\kappa(\mathbf{x}, \mathbf{z})^{2}
$$

Furthermore the 2-norm of the function \hat{f} is \sqrt{k}.
Proof Let $\mathbf{X}^{\prime}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\prime}$ be the singular value decomposition of the matrix \mathbf{X}^{\prime} whose rows are the images of the training examples in the feature space. The projection norm is then given by

$$
\hat{f}(\mathbf{x})=\left\|P_{U_{k}}(\phi(\mathbf{x}))\right\|^{2}=\phi(\mathbf{x})^{\prime} \mathbf{U}_{k} \mathbf{U}_{k}^{\prime} \phi(\mathbf{x})
$$

where \mathbf{U}_{k} is the matrix containing the first k columns of \mathbf{U}. Hence we can write

$$
\left\|P_{U_{k}}(\phi(\mathbf{x}))\right\|^{2}=\sum_{i, j=1}^{N} \alpha_{i j} \phi(\mathbf{x})_{i} \phi(\mathbf{x})_{j}=\sum_{i, j=1}^{N} \alpha_{i j} \hat{\phi}(\mathbf{x})_{i j}
$$

where $\hat{\boldsymbol{\phi}}$ is the mapping into the feature space \hat{F} composed of all pairs of F features and $\alpha_{i j}=\left(\mathbf{U}_{k} \mathbf{U}_{k}^{\prime}\right)_{i j}$. The standard polynomial construction gives the corresponding kernel $\hat{\kappa}$ as

$$
\begin{aligned}
\hat{\kappa}(\mathbf{x}, \mathbf{z}) & =\kappa(\mathbf{x}, \mathbf{z})^{2}=\left(\sum_{i=1}^{N} \phi(\mathbf{x})_{i} \phi(\mathbf{z})_{i}\right)^{2} \\
& =\sum_{i, j=1}^{N} \phi(\mathbf{x})_{i} \phi(\mathbf{z})_{i} \phi(\mathbf{x})_{j} \phi(\mathbf{z})_{j}=\sum_{i, j=1}^{N}\left(\phi(\mathbf{x})_{i} \phi(\mathbf{x})_{j}\right)\left(\phi(\mathbf{z})_{i} \phi(\mathbf{z})_{j}\right) \\
& =\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle
\end{aligned}
$$

It remains to show that the norm of the linear function is \sqrt{k}. The norm satisfies (note that $\|\cdot\|_{F}$ denotes the Frobenius norm and $\mathbf{u}_{i}, i=1, \ldots, N$, the orthonormal columns of \mathbf{U})

$$
\|\hat{f}\|^{2}=\sum_{i, j=1}^{N} \alpha_{i j}^{2}=\left\|\mathbf{U}_{k} \mathbf{U}_{k}^{\prime}\right\|_{F}^{2}=\left\langle\sum_{i=1}^{k} \mathbf{u}_{i} \mathbf{u}_{i}^{\prime}, \sum_{j=1}^{k} \mathbf{u}_{j} \mathbf{u}_{j}^{\prime}\right\rangle_{F}=\sum_{i, j=1}^{k}\left(\mathbf{u}_{i}^{\prime} \mathbf{u}_{j}\right)^{2}=k
$$

as required.

Since the norm of the residual can be viewed as a linear function we can now apply the methods developed in Chapter 4.

Theorem A. 4 If we perform PCA on a training set S of size ℓ in the feature space defined by a kernel $\kappa(\mathbf{x}, \mathbf{z})$ and project new data onto the space U_{k} spanned by the first k eigenvectors, with probability greater than $1-\delta$ over the generation of the sample S the expected squared residual is bounded by
$\mathbb{E}\left[\left\|P_{U_{k}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right] \leq \frac{1}{\ell} \lambda^{>k}(S)+\frac{8}{\ell} \sqrt{(k+1) \sum_{i=1}^{\ell} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)^{2}}+3 R^{2} \sqrt{\frac{\ln (2 / \delta)}{2 \ell}}$,
where

$$
R^{2}=\max _{\mathbf{x} \in \operatorname{supp}(\mathcal{D})} \kappa(\mathbf{x}, \mathbf{x})
$$

Proof Prompted by Theorem A. 3 we consider the linear function class

$$
\hat{\mathcal{F}}_{\sqrt{k}}=\{\mathbf{x} \rightarrow\langle\mathbf{w}, \phi(\mathbf{x})\rangle:\|\mathbf{w}\| \leq \sqrt{k}\}
$$

with respect to the kernel

$$
\hat{\kappa}(\mathbf{x}, \mathbf{z})=\kappa(\mathbf{x}, \mathbf{z})^{2}=\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle
$$

with corresponding feature mapping $\hat{\boldsymbol{\phi}}$. However, we further augment the corresponding primal weight vectors with one further dimension while augmenting the corresponding feature vectors with a feature

$$
\left.\| \phi(\mathbf{x}))\left\|^{2}=\kappa(\mathbf{x}, \mathbf{x})=\sqrt{\hat{\kappa}(\mathbf{x}, \mathbf{x})}=\right\| \hat{\phi}(\mathbf{x})\right) \|
$$

that is the norm squared in the original feature space. We now apply Theorem 4.9 to the loss class

$$
\begin{align*}
\hat{F}_{\mathcal{L}} & \left.\left.=\left\{f_{\mathcal{L}}:(\hat{\boldsymbol{\phi}}(\mathbf{x}), \| \hat{\boldsymbol{\phi}}(\mathbf{x})) \|\right) \mapsto \mathcal{A}(\| \hat{\boldsymbol{\phi}}(\mathbf{x})) \|-f(\hat{\boldsymbol{\phi}}(\mathbf{x}))\right) \mid f \in \hat{\mathcal{F}}_{\sqrt{k}}\right\} \tag{A.2}\\
& \subseteq \mathcal{A} \circ \hat{\mathcal{F}}_{\sqrt{k+1}}^{\prime}
\end{align*}
$$

where $\hat{\mathcal{F}}_{\sqrt{k+1}}^{\prime}$ is the class of linear functions with norm bounded by $\sqrt{k+1}$ in the feature space defined by the kernel

$$
\hat{\kappa}^{\prime}(\mathbf{x}, \mathbf{z})=\hat{\kappa}(\mathbf{x}, \mathbf{z})+\kappa(\mathbf{x}, \mathbf{x}) \kappa(\mathbf{z}, \mathbf{z})=\kappa(\mathbf{x}, \mathbf{z})^{2}+\kappa(\mathbf{x}, \mathbf{x}) \kappa(\mathbf{z}, \mathbf{z})
$$

and \mathcal{A} is the function

$$
\mathcal{A}(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x / R^{2} & \text { if } 0 \leq x \leq R^{2} \\ 1 & \text { otherwise }\end{cases}
$$

The theorem is applied to the pattern function $\mathcal{A} \circ \hat{f}_{\mathcal{L}}$ where \hat{f} is the projection function of Theorem A. 3 and $\hat{f}_{\mathcal{L}}$ is defined in (A.2). We conclude that with probability $1-\delta$

$$
\begin{equation*}
\mathbb{E}_{\mathcal{D}}\left[\mathcal{A} \circ \hat{f}_{\mathcal{L}}(\mathbf{x})\right] \leq \hat{\mathbb{E}}\left[\mathcal{A} \circ \hat{f}_{\mathcal{L}}(\mathbf{x})\right]+\hat{R}_{\ell}\left(\mathcal{A} \circ \hat{\mathcal{F}}_{\sqrt{k+1}}^{\prime}\right)+3 \sqrt{\frac{\ln (2 / \delta)}{2 \ell}} \tag{A.3}
\end{equation*}
$$

First note that the left-hand side of the inequality is equal to

$$
\frac{1}{R^{2}} \mathbb{E}\left[\left\|P_{U_{k}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right]
$$

since \mathcal{A} acts as the identity in the range achieved by the function $\hat{f}_{\mathcal{L}}$. Hence, to obtain the result it remains to evaluate the first two expressions on the right-hand side of equation (A.3). Again observing that \mathcal{A} acts as the identity in the range achieved, the first is a scaling of the squared residual of the training set when projecting into the space U_{k}, that is

$$
\frac{1}{R^{2}} \hat{\mathbb{E}}\left[\left\|P_{U_{k}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right]=\frac{1}{\ell R^{2}} \sum_{i=k+1}^{\ell} \lambda_{i}=\frac{1}{\ell R^{2}} \lambda^{>k}(S)
$$

The second expression is $\hat{R}_{\ell}\left(\mathcal{A} \circ \hat{\mathcal{F}}_{\sqrt{k+1}}^{\prime}\right)$. Here we apply Theorem 4.12 and Theorem 4.15 part 4 to obtain

$$
\hat{R}_{\ell}\left(\mathcal{A} \circ \hat{\mathcal{F}}_{\sqrt{k+1}}^{\prime}\right) \leq \frac{4 \sqrt{k+1}}{\ell R^{2}} \sqrt{\operatorname{tr}\left(\hat{\mathbf{K}}^{\prime}\right)}=\frac{4}{R^{2}} \sqrt{\frac{k+1}{\ell}} \sqrt{\frac{4}{\ell} \sum_{i=1}^{\ell} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)^{2}}
$$

Assembling all the components and multiplying by R^{2} gives the result. \square
We now apply the bound ℓ times to obtain a proof of Theorem 6.14.
Proof [Proof of Theorem 6.14] We apply Theorem A. 4 for $k=1, \ldots, \ell$, in each case replacing δ by δ / ℓ. This ensures that with probability $1-\delta$ the assertion holds for all ℓ applications. The result follows from the observation that for $k \geq t$

$$
\mathbb{E}\left[\left\|P_{U_{k}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right] \leq \mathbb{E}\left[\left\|P_{U_{t}}^{\perp}(\phi(\mathbf{x}))\right\|^{2}\right]
$$

A. 3 Proofs of diffusion kernels

Proposition A. 5 Provided $\mu<\|\mathbf{K}\|^{-1}=\|\mathbf{G}\|^{-1}$, the kernel $\hat{\mathbf{K}}$ that solves the recurrences (10.2) is \mathbf{K} times the von Neumann kernel over the base
kernel \mathbf{K}, while the matrix $\hat{\mathbf{G}}$ satisfies

$$
\hat{\mathbf{G}}=\mathbf{G}(\mathbf{I}-\mu \mathbf{G})^{-1}
$$

Proof First observe that

$$
\begin{aligned}
\mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1} & =\mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1}-\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})^{-1}+\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})^{-1} \\
& =-\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})(\mathbf{I}-\mu \mathbf{K})^{-1}+\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})^{-1} \\
& =\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})^{-1}-\frac{1}{\mu} \mathbf{I} .
\end{aligned}
$$

Now if we substitute the second recurrence into the first we obtain

$$
\begin{aligned}
\hat{\mathbf{K}} & =\mu^{2} \mathbf{D D}^{\prime} \hat{\mathbf{K}} \mathbf{D D}^{\prime}+\mu \mathbf{D D}^{\prime} \mathbf{D D}^{\prime}+\mathbf{K} \\
& =\mu^{2} \mathbf{K}\left(\mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1}\right) \mathbf{K}+\mu \mathbf{K}^{2}+\mathbf{K} \\
& =\mu^{2} \mathbf{K}\left(\frac{1}{\mu}(\mathbf{I}-\mu \mathbf{K})^{-1}-\frac{1}{\mu} \mathbf{I}\right) \mathbf{K}+\mu \mathbf{K}^{2}+\mathbf{K} \\
& =\mu \mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1} \mathbf{K}+\mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1}(\mathbf{I}-\mu \mathbf{K}) \\
& =\mathbf{K}(\mathbf{I}-\mu \mathbf{K})^{-1}
\end{aligned}
$$

showing that the expression does indeed satisfy the recurrence. Clearly, by the symmetry of the definition the expression for $\hat{\mathbf{G}}$ also satisfies the recurrence.

Proposition A. 6 Let $\overline{\mathbf{K}}(\mu)=\mathbf{K} \exp (\mu \mathbf{K})$. Then $\overline{\mathbf{K}}(\mu)$ corresponds to a semantic proximity matrix

$$
\exp \left(\frac{\mu}{2} \mathbf{G}\right)
$$

Proof Let $\mathbf{D}^{\prime}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\prime}$ be the singular value decomposition of \mathbf{D}^{\prime}, so that $\mathbf{K}=\mathbf{V} \Lambda \mathbf{V}^{\prime}$ is the eigenvalue decomposition of \mathbf{K}, where $\Lambda=\boldsymbol{\Sigma}^{\prime} \boldsymbol{\Sigma}$. We can write $\overline{\mathbf{K}}$ as

$$
\begin{aligned}
\overline{\mathbf{K}} & =\mathbf{V} \Lambda \exp (\mu \Lambda) \mathbf{V}^{\prime}=\mathbf{D} \mathbf{U} \boldsymbol{\Sigma} \exp (\mu \Lambda) \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\prime} \mathbf{D}^{\prime} \\
& =\mathbf{D} \mathbf{U} \exp (\mu \Lambda) \mathbf{U}^{\prime} \mathbf{D}^{\prime}=\mathbf{D} \exp (\mu \mathbf{G}) \mathbf{D}^{\prime}
\end{aligned}
$$

as required.

