Feature Engineering and Selection

CS 294: Practical Machine Learning
October 1st, 2009

Alexandre Bouchard-Côté
Abstract supervised setup

• Training: \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)

• \(x_i \): input vector

\[
\begin{bmatrix}
 x_{i,1} \\
 x_{i,2} \\
 \vdots \\
 x_{i,n}
\end{bmatrix}, \quad x_{i,j} \in \mathbb{R}
\]

• \(y \): response variable
 - \(y \in \{-1, 1\} \): binary classification
 - \(y \in \mathbb{R} \): regression
 - what we want to be able to predict, having observed some new \(x \).
Concrete setup

Input

Output

“Danger”
Featurization

Input

Features

Output

“Danger”

Input

Output

HOT OR NOT
Over 12 Billion votes counted & 25,987,000 photos submitted.
Official Rating

8.9

Based on 4984 votes
Outline

• Today: how to featurize effectively
 – Many possible featurizations
 – Choice can drastically affect performance

• Program:
 – Part I: Handcrafting features: examples, bag of tricks (feature engineering)
 – Part II: Automatic feature selection
Part I: Handcrafting Features

Machines still need us
Example 1: email classification

- Input: a email message
- Output: is the email...
 - spam,
 - work-related,
 - personal, ...

PERSONAL
Basics: bag of words

• Input: \(\mathbf{x} \) (email-valued)
• Feature vector:

\[
\begin{bmatrix}
 f_1(\mathbf{x}) \\
 f_2(\mathbf{x}) \\
 \vdots \\
 f_n(\mathbf{x})
\end{bmatrix}, \quad \text{e.g. } f_1(\mathbf{x}) = \begin{cases}
1 & \text{if the email contains "Viagra"} \\
0 & \text{otherwise}
\end{cases}
\]

• Learn one weight vector for each class:

\(w_y \in \mathbb{R}^n, \ y \in \{\text{SPAM, WORK, PERS}\} \)

• Decision rule: \(\hat{y} = \arg\max_y \langle w_y, f(\mathbf{x}) \rangle \)
Implementation: exploit sparsity

Feature vector hashtable

```java
extractFeature(Email e) {
    result <- hashtable
    for (String word : e.getWordsInBody())
        result.put("UNIGRAM:" + word, 1.0)
    String previous = 
    for (String word : e.getWordsInBody()) {
        result.put("BIGRAM:" + previous + " " + word, 1.0)
        previous = word
    }
    return result
}
```

Feature template 1: UNIGRAM:Viagra

Feature template 2: BIGRAM:Cheap Viagra
Features for multitask learning

• Each user inbox is a separate learning problem
 – E.g.: Pfizer drug designer’s inbox
• Most inbox has very few training instances, but all the learning problems are clearly related
Features for multitask learning
[e.g.: Daumé 06]

- Solution: include both user-specific and global versions of each feature. E.g.:
 - UNIGRAM: Viagra
 - USER_id4928-UNIGRAM: Viagra

- Equivalent to a Bayesian hierarchy under some conditions (Finkel et al. 2009)
In multiclass classification, output space often has known structure as well.

Example: a hierarchy:

- **Emails**
 - **Spam**
 - Advance fee frauds
 - Spam advertised sites
 - Backscatter
 - **Ham**
 - Work
 - **Personal**
 - Mailing lists
Structure on the output space

- Slight generalization of the learning/prediction setup: allow features to depend both on the input x and on the class y

<table>
<thead>
<tr>
<th>Before:</th>
<th>• One weight/class: $w_y \in \mathbb{R}^n$,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Decision rule: $\hat{y} = \text{argmax}_y \langle w_y, f(x) \rangle$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After:</th>
<th>• Single weight: $w \in \mathbb{R}^m$,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• New rule: $\hat{y} = \text{argmax}_y \langle w, f(x, y) \rangle$</td>
</tr>
</tbody>
</table>
Structure on the output space

• At least as expressive: conjoin each feature with all output classes to get the same model

• E.g.: UNIGRAM:Viagra becomes
 – UNIGRAM:Viagra AND CLASS=FRAUD
 – UNIGRAM:Viagra AND CLASS=ADVERTISE
 – UNIGRAM:Viagra AND CLASS=WORK
 – UNIGRAM:Viagra AND CLASS=LIST
 – UNIGRAM:Viagra AND CLASS=PERSONAL
Exploit the information in the hierarchy by activating both coarse and fine versions of the features on a given input:

\[
\begin{align*}
X & \rightarrow \quad & UNIGRAM: Alex \ AND \ CLASS = \text{PERSONAL} \\
X & \rightarrow \quad & UNIGRAM: Alex \ AND \ CLASS = \text{HAM}
\end{align*}
\]
Structure on the output space

• Not limited to hierarchies
 – multiple hierarchies
 – in general, arbitrary featurization of the output

• Another use:
 – want to model that if no words in the email were seen in training, it’s probably spam
 – add a bias feature that is activated only in SPAM subclass (ignores the input):
 CLASS=SPAM
Dealing with continuous data

- Full solution needs HMMs (a sequence of correlated classification problems): Alex Simma will talk about that on Oct. 15
- Simpler problem: identify a single sound unit (phoneme)
Dealing with continuous data

• Step 1: Find a coordinate system where similar input have similar coordinates
 – Use Fourier transforms and knowledge about the human ear

Time domain:

Frequency domain:
Dealing with continuous data

• Step 2 (optional): Transform the continuous data into discrete data
 – Bad idea: COORDINATE=(9.54,8.34)
 – Better: Vector quantization (VQ)
 – Run k-mean on the training data as a preprocessing step
 – Feature is the index of the nearest centroid

 CLUSTER=1

 CLUSTER=2
Dealing with continuous data

Important special case: integration of the output of a black box

– Back to the email classifier: assume we have an executable that returns, given an email \(e \), its belief \(B(e) \) that the email is spam

– We want to model monotonicity

– Solution: thermometer feature

\[
\begin{align*}
B(e) > 0.4 & \text{ AND } \quad \text{CLASS=} \text{SPAM} \\
B(e) > 0.6 & \text{ AND } \quad \text{CLASS=} \text{SPAM} \\
B(e) > 0.8 & \text{ AND } \quad \text{CLASS=} \text{SPAM} \\
\text{...} & \quad \text{...} \\
\end{align*}
\]
Dealing with continuous data

Another way of integrating a qualibrated black box as a feature:

\[
f_i(x, y) = \begin{cases}
\log B(e) & \text{if } y = \text{SPAM} \\
0 & \text{otherwise}
\end{cases}
\]

Recall: votes are combined additively
Part II: (Automatic) Feature Selection
What is feature selection?

• Reducing the feature space by throwing out some of the features

• Motivating idea: try to find a simple, “parsimonious” model
 – Occam’s razor: simplest explanation that accounts for the data is best
What is feature selection?

Task: classify emails as spam, work, ...
Data: presence/absence of words

Task: predict chances of lung disease
Data: medical history survey

- UNIGRAM: Viagra
- UNIGRAM: the
- BIGRAM: the presence
- BIGRAM: hello Alex
- UNIGRAM: Alex
- UNIGRAM: of
- BIGRAM: absence of
- BIGRAM: classify email
- BIGRAM: free Viagra
- BIGRAM: predict the
- ...
- BIGRAM: emails as

Reduced X

Vegetarian
Plays video games
Family history
Athletic
Smoker
Gender
Lung capacity
Hair color
Car
...
Weight

Reduced X
Outline

• Review/introduction
 – What is feature selection? Why do it?
• Filtering
• Model selection
 – Model evaluation
 – Model search
• Regularization
• Summary recommendations
Why do it?

- **Case 1**: We’re interested in features—we want to know which are relevant. If we fit a model, it should be *interpretable*.

- **Case 2**: We’re interested in *prediction*; features are not interesting in themselves, we just want to build a good classifier (or other kind of predictor).
Why do it? **Case 1.**

We want to know which features are relevant; we don’t necessarily want to do prediction.

- **What causes lung cancer?**
 - Features are aspects of a patient’s medical history
 - Binary response variable: did the patient develop lung cancer?
 - Which features best predict whether lung cancer will develop? Might want to legislate against these features.

- **What causes a program to crash?** [Alice Zheng ’03, ’04, ‘05]
 - Features are aspects of a single program execution
 - Which branches were taken?
 - What values did functions return?
 - Binary response variable: did the program crash?
 - Features that predict crashes well are probably bugs
Why do it? **Case 2.**

We want to build a good predictor.

- **Common practice:** coming up with as many features as possible (e.g. $> 10^6$ not unusual)
 - Training might be too expensive with all features
 - The presence of irrelevant features hurts generalization.
- **Classification of leukemia tumors from microarray gene expression data** [Xing, Jordan, Karp ’01]
 - 72 patients (data points)
 - 7130 features (expression levels of different genes)
- **Embedded systems with limited resources**
 - Classifier must be compact
 - Voice recognition on a cell phone
 - Branch prediction in a CPU
- **Web-scale systems with zillions of features**
 - user-specific n-grams from gmail/yahoo spam filters
Get at **Case 1** through **Case 2**

- Even if we just want to identify features, it can be useful to *pretend* we want to do prediction.
- Relevant features are (typically) exactly those that most aid prediction.
- But not always. Highly correlated features may be redundant but both interesting as “causes”.
 - e.g. smoking in the morning, smoking at night
Feature selection vs. Dimensionality reduction

- Removing features:
 - Equivalent to projecting data onto lower-dimensional linear subspace perpendicular to the feature removed
- Percy’s lecture: dimensionality reduction
 - allow other kinds of projection.
- The machinery involved is very different
 - Feature selection can be faster at test time
 - Also, we will assume we have labeled data. Some dimensionality reduction algorithm (e.g. PCA) do not exploit this information
Outline

• Review/introduction
 – What is feature selection? Why do it?

• Filtering

• Model selection
 – Model evaluation
 – Model search

• Regularization

• Summary
Filtering

Simple techniques for weeding out irrelevant features without fitting model
Filtering

• Basic idea: assign heuristic score to each feature f to filter out the “obviously” useless ones.
 – Does the individual feature seems to help prediction?
 – Do we have enough data to use it reliably?
 – Many popular scores [see Yang and Pederson ’97]
 • Classification with categorical data: Chi-squared, information gain, document frequency
 • Regression: correlation, mutual information
 • They all depend on one feature at the time (and the data)

• Then somehow pick how many of the highest scoring features to keep
Comparison of filtering methods for text categorization [Yang and Pederson ’97]

Figure 1. Average precision of kNN vs. unique word count
Filtering

• Advantages:
 – Very fast
 – Simple to apply

• Disadvantages:
 – Doesn’t take into account interactions between features: Apparently useless features can be useful when grouped with others

• Suggestion: use light filtering as an efficient initial step if running time of your fancy learning algorithm is an issue
Outline

• Review/introduction
 – What is feature selection? Why do it?
• Filtering
• Model selection
 – Model evaluation
 – Model search
• Regularization
• Summary
Model Selection

• Choosing between possible models of varying complexity
 – In our case, a “model” means a set of features
• Running example: linear regression model
Linear Regression Model

Input : \(\mathbf{x} \in \mathbb{R}^d \)

Parameters: \(\mathbf{w} \in \mathbb{R}^{d+1} \)

Response : \(y \in \mathbb{R} \)

Prediction : \(y = \mathbf{w}^\top \mathbf{x} \)

- Recall that we can fit (learn) the model by minimizing the squared error:

\[
\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2
\]
Least Squares Fitting
(Fabian’s slide from 3 weeks ago)

Observation y
Prediction \hat{y}

Error or “residual”

Sum squared error: $L(w) = \sum_{i=1}^{n} (y_i - w^\top x_i)^2$
Naïve training error is misleading

Input : $x \in \mathbb{R}^d$

Parameters: $w \in \mathbb{R}^{d+1}$

Response : $y \in \mathbb{R}$

Prediction : $y = w^\top x$

• Consider a reduced model with only those features x_f for $f \in s \subseteq \{1, 2, \ldots, d\}$
 – Squared error is now $L_s(w_s) = \sum_{i=1}^{n} (y_i - w_s^\top x_{i,s})^2$

• Is this new model better? Maybe we should compare the training errors to find out?

• Note $\min_{w_s} L_s(w_s) \geq \min_w L(w)$
 – Just zero out terms in w to match w_s.

• Generally speaking, training error will only go up in a simpler model. So why should we use one?
Overfitting example 1

- This model is too rich for the data
- Fits training data well, but doesn’t generalize.

(From Fabian’s lecture)
Overfitting example 2

- Generate 2000 $\mathbf{x}_i \in \mathbb{R}^{1000}$, $\mathbf{x}_i \sim \mathcal{N}(0, I)$ i.i.d.
- Generate 2000 $y_i \in \mathbb{R}$, $y_i \sim \mathcal{N}(0, 1)$ i.i.d. completely independent of the \mathbf{x}_i’s
 - We shouldn’t be able to predict y at all from \mathbf{x}
- Find $\hat{\mathbf{w}} = \text{argmin}_{\mathbf{w}} L(\mathbf{w})$
- Use this to predict y_i for each \mathbf{x}_i by $\hat{y}_i = \mathbf{w}^\top \mathbf{x}_i$

It really looks like we’ve found a relationship between \mathbf{x} and y! But no such relationship exists, so $\hat{\mathbf{w}}$ will do no better than random on new data.
Model evaluation

• **Moral 1**: In the presence of many irrelevant features, we might just fit noise.

• **Moral 2**: Training error can lead us astray.

• To evaluate a feature set s, we need a better scoring function $K(s)$.

• We’re not ultimately interested in *training* error; we’re interested in *test* error (error on new data).

• We can estimate test error by pretending we haven’t seen some of our data.

 – Keep some data aside as a *validation set*. If we don’t use it in training, then it’s a better test of our model.
K-fold cross validation

• A technique for estimating test error
• Uses all of the data to validate
• Divide data into K groups \(\{X_1, X_2, \ldots, X_K\} \).
• Use each group as a validation set, then average all validation errors

\[
L_1 = \sum_{(x,y) \in X_1} (y - \hat{w}^\top x)
\]
K-fold cross validation

- A technique for estimating test error
- Uses *all* of the data to validate
- Divide data into K groups \(\{X_1, X_2, \ldots, X_K\} \).
- Use each group as a validation set, then average all validation errors

\[
L_2 = \sum_{(x,y) \in X_2} (y - \hat{w}^\top x)
\]
K-fold cross validation

- A technique for estimating test error
- Uses *all* of the data to validate
- Divide data into K groups $\{X_1, X_2, \ldots, X_K\}$.
- Use each group as a validation set, then average all validation errors
K-fold cross validation

• A technique for estimating test error
• Uses *all* of the data to validate
• Divide data into K groups \(\{X_1, X_2, \ldots, X_K\} \).
• Use each group as a validation set, then average all validation errors

\[
CV(s) = \frac{1}{K} \sum_{i=1}^{K} L_i
\]
Model Search

• We have an objective function $K(s) = CV(s)$
 – Time to search for a good model.
• This is known as a “wrapper” method
 – Learning algorithm is a black box
 – Just use it to compute objective function, then do search
• Exhaustive search expensive
 – for n features, 2^n possible subsets s
• Greedy search is common and effective
Model search

Forward selection

Initialize $s = \{\}$

Do:

 Add feature to s
 which improves $K(s)$ most

While $K(s)$ can be improved

Backward elimination

Initialize $s = \{1, 2, \ldots, n\}$

Do:

 remove feature from s
 which improves $K(s)$ most

While $K(s)$ can be improved

• Backward elimination tends to find better models
 – Better at finding models with interacting features
 – But it is frequently too expensive to fit the large models at the beginning of search

• Both can be too greedy.
Model search

- More sophisticated search strategies exist
 - Best-first search
 - Stochastic search
 - See "Wrappers for Feature Subset Selection", Kohavi and John 1997

- For many models, search moves can be evaluated quickly without refitting
 - E.g. linear regression model: add feature that has most covariance with current residuals

- YALE can do feature selection with cross-validation and either forward selection or backwards elimination.

- Other objective functions exist which add a model-complexity penalty to the training error
 - AIC: add penalty d to log-likelihood (number of features).
 - BIC: add penalty $d \log n$ (n is the number of data points)
Outline

• Review/introduction
 – What is feature selection? Why do it?
• Filtering
• Model selection
 – Model evaluation
 – Model search
• Regularization
• Summary
Regularization

• In certain cases, we can move model selection *into* the induction algorithm

• This is sometimes called an *embedded* feature selection algorithm
Regularization

- Regularization: add model complexity penalty to training error.
 \[J(w) = L(w) + C\|w\|_p = \sum_{i=1}^{n}(y_i - w^\top x_i)^2 + C\|w\|_p \]
 for some constant C
- Find \(\hat{w} = \arg\min_w J(w) \)
- Regularization forces weights to be small, but does it force weights to be exactly zero?
 \(- w_f = 0 \) is equivalent to removing feature f from the model
- Depends on the value of \(p \) ...
p metrics and norms

- $p = 2$: Euclidean
 \[||\mathbf{w}||_2 = \sqrt{w_1^2 + \cdots + w_n^2} \]

- $p = 1$: Taxicab or Manhattan
 \[||\mathbf{w}||_1 = |w_1| + \cdots + |w_n| \]

- General case: $0 < p \leq \infty$
 \[||\mathbf{w}||_p = p\sqrt[|w_1|^p + \cdots + |w_n|^p} \]
Univariate case: intuition

Penalty

Feature weight value
Univariate case: intuition

L1 penalizes more than L2 when the weight is small.
Univariate example: L_2

- Case 1: there is a lot of data supporting our hypothesis

Regularization term

Data likelihood
By itself, minimized by $w=1.1$

Objective function
Minimized by $w=0.95$
Univariate example: L_2

- Case 2: there is NOT a lot of data supporting our hypothesis

Regularization term + Data likelihood By itself, minimized by $w=1.1$ = Objective function Minimized by $w=0.36$
Univariate example: L_1

- Case 1, when there is a lot of data supporting our hypothesis:
 - Almost the same resulting w as L_2
- Case 2, when there is NOT a lot of data supporting our hypothesis
- Get $w =$ exactly zero

Regularization term \[+\] Data likelihood
By itself, minimized by $w=1.1$ \[=\] Objective function
Minimized by $w=0.0$
Level sets of L_1 vs L_2 (in 2D)

$$\| \mathbf{w} \|_1 = \sum_{f=0}^{d} |w_f|$$

$$\| \mathbf{w} \|_2 = \sqrt{\sum_{f=0}^{d} w_f^2}$$

Weight of feature #1

Weight of feature #2

$$\| \mathbf{w} \|_1 = 1$$

$$\| \mathbf{w} \|_2 = 1$$
Multivariate case: w gets cornered

- To minimize $J(w) = L(w) + \|w\|_p$, we can solve $\frac{\partial J}{\partial w} = 0$ by (e.g.) gradient descent.

- Minimization is a tug-of-war between the two terms
To minimize $J(w) = L(w) + \|w\|_p$, we can solve by (e.g.) gradient descent.

Minimization is a tug-of-war between the two terms.
Multivariate case: w gets cornered

- To minimize $J(w) = L(w) + \|w\|_p$, we can solve $\frac{\partial J}{\partial w} = 0$ by (e.g.) gradient descent.

- Minimization is a tug-of-war between the two terms.
Multivariate case: w gets cornered

- To minimize $J(w) = L(w) + \|w\|_p$, we can solve $\frac{\partial J}{\partial w} = 0$ by (e.g.) gradient descent.

- Minimization is a tug-of-war between the two terms
- w is forced into the corners—components are zeroed
 - Solution is often *sparse*
L_2 does not zero components
L₂ does not zero components

• L₂ regularization does not promote sparsity
• **Even without sparsity**, regularization promotes generalization—limits expressiveness of model
Lasso Regression [Tibshirani ‘94]

- Simply linear regression with an L_1 penalty for sparsity.

$$\hat{w} = \arg\min_w \sum_{i=1}^{n} (y_i - w^\top x_i)^2 + C||w||_1$$

- Compare with ridge regression (introduced by Fabian 3 weeks ago):

$$\hat{w} = \arg\min_w \sum_{i=1}^{n} (y_i - w^\top x_i)^2 + C||w||_2^2$$
Lasso Regression [Tibshirani ‘94]

- Simply linear regression with an L_1 penalty for sparsity.

\[\hat{w} = \arg\min_w \sum_{i=1}^{n} (y_i - w^\top x_i)^2 + C ||w||_1 \]

- Two questions:
 - 1. How do we perform this minimization?
 - Difficulty: not differentiable everywhere
 - 2. How do we choose C?
 - Determines how much sparsity will be obtained
 - C is called an hyperparameter
Question 1: Optimization/learning

- Set of discontinuity has Lebesgue measure zero, but optimizer WILL hit them.

- Several approaches, including:
 - Projected gradient, stochastic projected subgradient, coordinate descent, interior point, orthan-wise L-BFGS [Friedman 07, Andrew et. al. 07, Koh et al. 07, Kim et al. 07, Duchi 08]
 - More on that on the John’s lecture on optimization
 - Open source implementation: `edu.berkeley.nlp.math.OW_LBFGSMinimizer` in `http://code.google.com/p/berkeleyparser/`
Question 2: Choosing C

- Up until a few years ago this was not trivial
 - Fitting model: optimization problem, harder than least-squares
 - Cross validation to choose C: must fit model for every candidate C value

- Not with LARS! (Least Angle Regression, Hastie et al, 2004)
 - Find trajectory of w for all possible C values simultaneously, as efficiently as least-squares
 - Can choose exactly how many features are wanted

Figure taken from Hastie et al (2004)
• Not to be confused: two orthogonal uses of L1 for regression:
 – lasso for **sparsity**: what we just described
 \[\hat{w} = \arg\min_w \sum_{i=1}^{n} (y_i - w^T x_i)^2 + C \sum_{f=1}^{d} |w_f| \]
 – L1 loss: for **robustness** (Fabian’s lecture).
 \[\hat{w} = \arg\min_w \sum_{i=1}^{n} |y_i - w^T x_i| + C \|w\|_p \]
Intuition

L1 penalizes more than L2 when x is small (use this for sparsity)

L1 penalizes less than L2 when x is big (use this for robustness)
Remarks

- L1 penalty can be viewed as a laplace prior on the weights, just as L2 penalty can viewed as a normal prior
 - Side note: also possible to learn C efficiently when the penalty is L2 (Foo, Do, Ng, ICML 09, NIPS 07)
- Not limited to regression: can be applied to classification, for example
L₁ Vs L₂ [Gao et al ‘07]

- For large scale problems, performance of L₁ and L₂ is very similar (at least in NLP)
 - A slight advantage of L₂ over L₁ in accuracy
 - But solution is 2 orders of magnitudes sparser!
- Parsing reranking task:

(Higher F₁ is better)
When can feature selection hurt?

- NLP example: back to the email classification task
- Zipf law: frequency of a word is inversely proportional to its frequency rank.
 - Fat tail: many n-grams are seen only once in the training
 - Yet they can be very useful predictors
 - E.g. 8-gram “today I give a lecture on feature selection” occurs only once in my mailbox, but it’s a good predictor that the email is WORK
Outline

• Review/introduction
 – What is feature selection? Why do it?
• Filtering
• Model selection
 – Model evaluation
 – Model search
• Regularization
• Summary
Summary: feature engineering

• Feature engineering is often crucial to get good results

• Strategy: overshoot and regularize
 – Come up with lots of features: better to include irrelevant features than to miss important features
 – Use regularization or feature selection to prevent overfitting
 – Evaluate your feature engineering on DEV set. Then, when the feature set is frozen, evaluate on TEST to get a final evaluation (Daniel will say more on evaluation next week)
Summary: feature selection

When should you do it?

- If the only concern is accuracy, and the whole dataset can be processed, feature selection not needed (as long as there is regularization)
- If computational complexity is critical (embedded device, web-scale data, fancy learning algorithm), consider using feature selection
 - But there are alternatives: e.g. the Hash trick, a fast, non-linear dimensionality reduction technique [Weinberger et al. 2009]
- When you care about the feature themselves
 - Keep in mind the correlation/causation issues
 - See [Guyon et al., Causal feature selection, 07]
Summary: how to do feature selection

- Filtering
- L_1 regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
 - Other search
- Exhaustive

Computational cost
Summary: how to do feature selection

- **Filtering**
 - L₁ regularization (embedded methods)
- **Wrappers**
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive
- Good preprocessing step
- Fails to capture relationship between features

Computational cost
Summary: how to do feature selection

- Filtering
- L_1 regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive
- Fairly efficient
 - LARS-type algorithms now exist for many linear models.
Summary: how to do feature selection

- Filtering
- L_1 regularization (embedded methods)
- **Wrappers**
 - Forward selection
 - Backward selection
 - Other search
 - Exhaustive

- Most directly optimize prediction performance
- Can be very expensive, even with greedy search methods
- Cross-validation is a good objective function to start with
Summary: how to do feature selection

- Filtering
- L_1 regularization (embedded methods)
- Wrappers
 - Forward selection
 - Backward selection
- Other search
- Exhaustive

- Too greedy—ignore relationships between features
- Easy baseline
- Can be generalized in many interesting ways
 - Stagewise forward selection
 - Forward-backward search
 - Boosting

Computational cost
• Filtering
• L_1 regularization (embedded methods)
• Wrappers
 • Forward selection
 • Backward selection
 • Other search
• Exhaustive

• Generally more effective than greedy
Summary: how to do feature selection

• Filtering
• L_1 regularization (embedded methods)
• Wrappers
 • Forward selection
 • Backward selection
• Other search
 • Exhaustive

• The “ideal”
• Very seldom done in practice
• With cross-validation objective, there’s a chance of over-fitting
 – Some subset might randomly perform quite well in cross-validation
Extra slides
Feature engineering case study: Modeling language change [Bouchard et al. 07,09]

<table>
<thead>
<tr>
<th>Language</th>
<th>‘fish’</th>
<th>‘fear’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaiian</td>
<td>iʔa</td>
<td>makaʔu</td>
</tr>
<tr>
<td>Samoan</td>
<td>iʔa</td>
<td>mataʔu</td>
</tr>
<tr>
<td>Tongan</td>
<td>ika</td>
<td>mataku</td>
</tr>
<tr>
<td>Maori</td>
<td>ika</td>
<td>mataku</td>
</tr>
</tbody>
</table>
Feature engineering case study: Modeling language change [Bouchard et al. 07,09]

Tasks:
- Proto-word reconstruction
- Infer sound changes

<table>
<thead>
<tr>
<th></th>
<th>‘fish’</th>
<th>‘fear’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaiian</td>
<td>iʔa</td>
<td>makaʔu</td>
</tr>
<tr>
<td>Samoan</td>
<td>iʔa</td>
<td>mataʔu</td>
</tr>
<tr>
<td>Tongan</td>
<td>ika</td>
<td></td>
</tr>
<tr>
<td>Maori</td>
<td>ika</td>
<td>mataku</td>
</tr>
</tbody>
</table>

Proto-Oceanic

* k > ?
Feature engineering case study: Modeling language change [Bouchard et al. 07,09]

• Featurize sound changes
 – E.g.: substitution are generally more frequent than insertions, deletions, changes are branch specific, but there are cross-linguistic universal, etc.

• Particularity: unsupervised learning setup
 – We covered feature engineering for supervised setups for pedagogical reasons; most of what we have seen applies to the unsupervised setup
What is a protein?
- A protein is a chain of amino acids.

Proteins fold into a 3D conformation by minimizing energy
- “Native” conformation (the one found in nature) is the lowest energy state
- We would like to find it using only computer search.
- Very hard, need to try several initialization in parallel

Regression problem:
- Input: many different conformation of the same sequence
- Output: energy

Features derived from:
\(\phi \) and \(\psi \) torsion angles.

Restrict next wave of search to agree with features that predicted high energy
Featurization

- Torsion angle features can be binned

<table>
<thead>
<tr>
<th>φ₁</th>
<th>ψ₁</th>
<th>φ₂</th>
<th>ψ₂</th>
<th>φ₃</th>
<th>ψ₄</th>
<th>φ₅</th>
<th>ψ₅</th>
<th>φ₆</th>
<th>ψ₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75.3</td>
<td>-61.6</td>
<td>-24.8</td>
<td>-68.6</td>
<td>-51.9</td>
<td>-63.3</td>
<td>-37.6</td>
<td>-62.8</td>
<td>-42.3</td>
</tr>
</tbody>
</table>

- Bins in the Ramachandran plot correspond to common structural elements
 - Secondary structure: alpha helices and beta sheets
Results of LARS for predicting protein energy

- One column for each torsion angle feature
- Colors indicate frequencies in data set
 - Red is high, blue is low, 0 is very low, white is never
 - Framed boxes are the correct native features
 - “-” indicates negative LARS weight (stabilizing), “+” indicates positive LARS weight (destabilizing)
Other things to check out

• Bayesian methods
 – David MacKay: Automatic Relevance Determination
 • originally for neural networks
 – Mike Tipping: Relevance Vector Machines
 • http://research.microsoft.com/mlp/rvm/

• Miscellaneous feature selection algorithms
 – Winnow
 • Linear classification, provably converges in the presence of exponentially many irrelevant features
 – Optimal Brain Damage
 • Simplifying neural network structure

• Case studies
 – See papers linked on course webpage.
Acknowledgments

• Useful comments by Mike Jordan, Percy Liang
• A first version of these slides was created by Ben Blum