
Active Learning, 

Experimental Design

CS294 Practical Machine Learning

Daniel Ting

Original Slides by Barbara Engelhardt and Alex Shyr



Motivation

• Better data is often more useful than simply 

more data (quality over quantity)

• Data collection may be expensive

– Cost of time and materials for an experiment

– Cheap vs. expensive data

• Raw images vs. annotated images

• Want to collect best data at minimal cost 



Toy Example: 1D classifier

x x x x x x xxxx

hw(x) = 1 if x > w (0 otherwise)Classifier (threshold function):

Naïve method: choose points to label at random on line
• Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
• Requires O(log n) training data to find underlying classifier

• Exponential reduction in training data size!

Goal: find transition between 0 and 1 labels in minimum steps

Unlabeled data: labels are all 0 then all 1 (left to right)

0 0 0 0 0 1 1 1 1 1



Example: collaborative filtering

• Baseline questionnaires:

– Random: m movies randomly

– Most Popular Movies: m most 

frequently rated movies

• Most popular movies is not better 

than random design!

• Popular movies rated highly by all 

users; do not discriminate tastes
[Yu et al. 2006]

• Users usually rate only a few movies; ratings “expensive”

• Which movies do you show users to best extrapolate 

movie preferences?

• Also known as questionnaire design



Example: Sequencing genomes

• What genome should be 
sequenced next?

• Criteria for selection?

• Optimal species to detect 
phenomena of interest

[McAuliffe et al., 2004]



Example: Improving cell culture 

conditions
• Grow cell culture in bioreactor 

– Concentrations of various things

• Glucose, Lactate, Ammonia, Asparagine, etc.

– Temperature, etc.

• Task: Find optimal growing conditions for a cell 

culture

• Optimal: Perform as few time consuming 

experiments as possible to find the optimal 

conditions.
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Entropy Function

• A measure of information in 
random event X with possible 
outcomes {x1,…,xn}

• Comments on entropy function:
– Entropy of an event is zero when 

the outcome is known

– Entropy is maximal when all 
outcomes are equally likely

• The average minimum number 
of yes/no questions to answer 
some question 
– Related to binary search

H(x) = - Si p(xi) log2 p(xi)

[Shannon, 1948]



Kullback Leibler divergence

• P = true distribution; 

• Q = alternative distribution that is used to encode data 

• KL divergence is the expected extra message length per 
datum that must be transmitted using Q

• Measures how different the two distributions are

DKL(P || Q) = Si P(xi) log (P(xi)/Q(xi))

= Si P(xi) log P(xi) – Si P(xi) log Q(xi)

= H(P,Q) - H(P)

= Cross-entropy - entropy



KL divergence properties

• Non-negative: D(P||Q) ≥ 0

• Divergence 0 if and only if P and Q are equal: 

– D(P||Q) = 0 iff P = Q

• Non-symmetric: D(P||Q) ≠ D(Q||P)

• Does not satisfy triangle inequality

– D(P||Q) ≤ D(P||R) + D(R||Q)



KL divergence properties

• Non-negative: D(P||Q) ≥ 0

• Divergence 0 if and only if P and Q are equal: 

– D(P||Q) = 0 iff P = Q

• Non-symmetric: D(P||Q) ≠ D(Q||P)

• Does not satisfy triangle inequality

– D(P||Q) ≤ D(P||R) + D(R||Q)

Not a distance 

metric



KL divergence as gain

• Modeling the KL divergence of the posteriors measures 

the amount of information gain expected from query 

(where x‟ is the queried data):

• Goal: choose a query that maximizes the KL divergence 

between posterior and prior

• Basic idea: largest KL divergence between updated 

posterior probability and the current posterior probability 

represents largest gain

D( p(q | x, x’) || p(q | x))
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Active learning

• Setup: Given existing knowledge, want to choose where 

to collect more data

– Access to cheap unlabelled points

– Make a query to obtain expensive label

– Want to find labels that are “informative”

• Output: Classifier / predictor trained on less labeled data

• Similar to “active learning” in classrooms

– Students ask questions, receive a response, and ask further 

questions

– vs. passive learning: student just listens to lecturer

• This lecture covers:

– how to measure the value of data 

– algorithms to choose the data



Example: Gene expression and 

Cancer classification
• Active learning takes 31 points to achieve same 

accuracy as passive learning with 174

Liu 2004



Reminder: Risk Function

• Given an estimation procedure / decision function d

• Frequentist risk given the true parameter q is expected 

loss after seeing new data.

• Bayesian integrated risk given a prior  is defined as 

posterior expected loss:

• Loss includes cost of query, prediction error, etc.



Decision theoretic setup 

• Active learner

– Decision d includes which data point q to query

• also includes prediction / estimate / etc.

– Receives a response from an oracle

• Response updates parameters q of the model

• Make next decision as to which point to query 

based on new parameters

• Query selected should minimize risk



Active Learning

• Some computational considerations:

– May be many queries to calculate risk for

• Subsample points

• Probability far from the true min decreases exponentially

– May not be easy to calculate risk R

• Two heuristic methods for reducing risk:

– Select “most uncertain” data point given model and 

parameters

– Select “most informative” data point to optimize 

expected gain



Uncertainty Sampling

• Query the event that the current classifier is 

most uncertain about

• Needs measure of uncertainty, probabilistic 

model for prediction

• Examples:

– Entropy

– Least confident predicted label

– Euclidean distance (e.g. point closest to margin 

in SVM)



Example: Gene expression and 

Cancer classification
• Data: Cancerous Lung tissue samples

– “Cheap” unlabelled data

• gene expression profiles from Affymatrix microarray

– Labeled data: 

• 0-1 label for adenocarcinoma or malignant pleural 

mesothelioma

• Method:

– Linear SVM

– Measure of uncertainty

• distance to SVM hyperplane
Liu 2004



Example: Gene expression and 

Cancer classification
• Active learning takes 31 points to achieve same 

accuracy as passive learning with 174

Liu 2004



Query by Committee

• Which unlabelled point should you choose?



Query by Committee

• Yellow = valid hypotheses



Query by Committee

• Point on max-margin hyperplane does not 

reduce the number of valid hypotheses by much



Query by Committee

• Queries an example based on the degree of 

disagreement between committee of classifiers



Query by Committee

• Prior distribution over classifiers/hypotheses

• Sample a set of classifiers from distribution

• Natural for ensemble methods which are already 

samples

– Random forests, Bagged classifiers, etc.

• Measures of disagreement

– Entropy of predicted responses

– KL-divergence of predictive distributions



Query by Committee Application

• Used naïve Bayes model for text classification in a 

Bayesian learning setting (20 Newsgroups dataset)

[McCallum & 

Nigam, 1998]



Information-based Loss Function

• Previous methods looked at uncertainty at a single point

– Does not look at whether you can actually reduce uncertainty or 

if adding the point makes a difference in the model

• Want to model notions of information gained

– Maximize KL divergence between posterior and prior

– Maximize reduction in model entropy between posterior and 

prior (reduce number of bits required to describe distribution)

• All of these can be extended to optimal design 

algorithms

• Must decide how to handle uncertainty about query 

response, model parameters
[MacKay, 1992]



Other active learning strategies

• Expected model change

– Choose data point that imparts greatest change to model 

• Variance reduction / Fisher Information maximization

– Choose data point that minimizes error in parameter estimation

– Will say more in design of experiments

• Density weighted methods

– Previous strategies use query point and distribution over models

– Take into account data distribution in surrogate for risk.



Active learning warning

• Choice of data is only as good as the model itself

• Assume a linear model, then two data points are sufficient

• What happens when data are not linear?



Break?
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Experimental Design

• Many considerations in designing an experiment

– Dealing with confounders

– Feasibility

– Choice of variables to measure

– Size of experiment ( # of data points )

– Conduction of experiment

– Choice of interventions/queries to make

– Etc.



Experimental Design

• Many considerations in designing an experiment

– Dealing with confounders

– Feasibility

– Choice of variables to measure

– Size of experiment ( # of data points )

– Conduction of experiment

– Choice of interventions/queries to make

– Etc.

• We will only look at one of them



What is optimal experimental 

design?
• Previous slides give 

– General formal definition of the problem to be solved 
(which may be not tractable or not worth the effort)

– heuristics to choose data

• Empirically good performance but

– Not that much theory on how good the heuristics are

• Optimal experimental design gives 

– theoretical credence to choosing a set of points 

– for a specific set of assumptions and objectives

• Theory is good when you only get to run (a series of) 

experiments once



Optimal Experimental Design

• Given a model M with parameters , 

– What queries are maximally informative

i.e. will yield the best estimate of 

• “Best” minimizes variance of estimate

– Equivalently, maximizes the Fisher Information

• Linear models

– Optimal design does not depend on  !

• Non-linear models

– Depends on , but can Taylor expand to linear model 



Optimal Experimental Design

• Assumptions

– Linear model:

– Finite set of queries {F1, …, Fs} that x.j can take.

• Each Fi is set of interventions/measurements

(e.g. F1 =10ml of dopamine on mouse with mutant gene G) 

• mi = # responses for query Fi

– Usual assumptions for linear least squares regression

• Covariance of mle:



Relaxed Experimental Design

• Hard combinatorial problem (FTMF)-1

• The relaxed problem allows wi ≥ 0, Σi wi = 1

• Error covariance matrix becomes (FTWF)-1

• (FTWF)-1 = inverted Hessian of the squared error
• or inverted Fisher information matrix

• minimizing (FTWF)-1 reduces model error, 
• or equivalently maximize information gain

Boolean problem Relaxed problem
N = 3



Experimental Design: Types

• Want to minimize (FTWF)-1 ; need a scalar objective

– A-optimal (average) design minimizes  trace(FTWF)-1 

– D-optimal (determinant) design minimizes log det(FTWF)-1 

– E-optimal (extreme) design minimizes max eigenvalue of (FTWF)-1

– Alphabet soup of other criteria (C-, G-, L-, V-,etc)

• All of these design methods can use convex optimization 
techniques

• Computational complexity polynomial for semi-definite 
programs (A- and E-optimal designs)

[Boyd & Vandenberghe, 2004]



A-Optimal Design

• A-optimal design minimizes the trace of (FTWF)-1 

– Minimizing trace (sum of diagonal elements) essentially 

chooses maximally independent columns

(small correlations between interventions)

• Tends to choose points on the border of the dataset

Example: mixture of four Gaussians

[Yu et al., 2006]



A-Optimal Design

• A-optimal design minimizes the trace of (FTWF)-1 

• Can be cast as a semi-definite program

Example: 20 candidate datapoints, minimal ellipsoid that 

contains all points

[Boyd & Vandenberghe, 2004]



D-Optimal design

• D-optimal design minimizes log determinant of (FTWF)-1

• Equivalent to 

– choosing the confidence ellipsoid with minimum volume

(“most powerful” hypothesis test in some sense)

– Minimizing entropy of the estimated parameters 

• Most commonly used optimal design

[Boyd & Vandenberghe, 2004]



E-Optimal design

• E-optimal design minimizes largest eigenvalue of (FTWF)-1

• Minimax procedure

• Can be cast as a semi-definite program

• Minimizes the diameter of the confidence ellipsoid

[Boyd & Vandenberghe, 2004]



Summary of Optimal Design

[Boyd & Vandenberghe, 2004]



Optimal Design

[Boyd & Vandenberghe, 2004]

• Extract the integral solution from the relaxed problem

• Can simply round the weights to closest multiple of 1/m

– m_j = round(m * w_i), i = 1, …, p



Extensions to optimal design

• Cost associated with each experiment
– Add a cost vector, constrain total cost by a budget B 

(one additional constraint)

• Multiple samples from single experiment
– Each xi is now a matrix instead of a vector

– Optimization (covariance matrix) is identical to before

• Time profile of process
– Add time dimension to each experiment vector xi

[Boyd & Vandenberghe, 2004]
[Atkinson, 1996]
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Optimal design in non-linear models

• Given a non-linear model y = g(x,q)

• Model is described by a Taylor expansion around a 

– aj( x,   ) = ∂ g(x,q) / ∂ qj, evaluated at 

• Maximization of Fisher information matrix is now the 

same as the linear model

• Yields a locally optimal design, optimal for the particular 

value of q

• Yields no information on the (lack of) fit of the model

[Atkinson, 1996]



Optimal design in non-linear models

• Problem: parameter value q, used to choose 

experiments F, is unknown

• Three general techniques to address this problem, useful 

for many possible notions of “gain”

• Sequential experimental design: iterate between 

choosing experiment x and updating parameter 

estimates q

• Bayesian experimental design: put a prior distribution 

on parameter q, choose a best data x

• Maximin experimental design: assume worst case 

scenario for parameter q, choose a best data x



Sequential Experimental Design

• Model parameter values are not known exactly

• Multiple experiments are possible

• Learner assumes that only one experiment is possible; 

makes best guess as to optimal data point for given q

• Each iteration:

– Select data point to collect via experimental design using q

– Single experiment performed

– Model parameters q„ are updated based on all data x‟

• Similar idea to Expectation Maximization

[Pronzato & Thierry, 2000]



Bayesian Experimental Design

• Effective when knowledge of distribution for q is available

• Example: KL divergence between posterior and prior

– ∫x argmaxw ∫qQ D( p(q |w,x) || p(q )) p(x |w) dq dx

• Example: A-optimal design:

– ∫x argminw ∫qQ tr(FTWF)-1p(q | w,x)p(x |w) dq dx

• Often sensitive to distributions

[Chaloner & Verdinelli, 1995]



Maximin Experimental Design

• Maximize the minimum gain

• Example: D-optimal design:

– argmax minqQ I(  ) = argminw maxqQ log det (FTWF)-1

• Example: KL divergence:

– argmaxw minqQ D(p(q |w,x) || p(q))

• Does not require prior/empirical knowledge

• Good when very little is known about distribution of 

parameter q

[Pronzato & Walter, 1988]
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Response Surface Methods

• Estimate effects of local changes to the interventions 

(queries)

– In particular, estimate how to maximize the response

• Applications:

– Find optimal conditions for growing cell cultures

– Develop robust process for chemical manufacturing

• Procedure for maximizing response

– Given a set of datapoints, interpolate a local surface

(This local surface is called the “response surface”)

• Typically use a quadratic polynomial to obtain a Hessian

– Hill-climb or take Newton step on the response surface to find 

next x

– Use next x to interpolate subsequent response surface



Response Surface Modeling
• Goal: Approximate the function f(c) = score(minimize(c))

• 1. Fit a smoothed response surface to the data points

• 2. Minimize response surface to find new candidate

• 3. Use method to find nearby local minimum of score function

• 4. Add candidate to data points

• 5. Re-fit surface, repeat
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[Blum, unpublished]



Related ML Problems

• Reinforcement Learning
– Interaction with the world

– Notion of accumulating rewards 

• Semi-supervised learning
– Use the unlabelled data itself, not just as pool of queries

• Core sets, active sets
– Select small dataset gives nearly same performance as full 

dataset. Fast computation for large scale problems



Summary                       

• Active learning
– Query by committee

– Uncertainty sampling

– Information-based loss functions

• Optimal experimental design
– A-optimal design

– D-optimal design

– E-optimal design

• Non-linear optimal experimental design
• Sequential experimental design

• Bayesian experimental design

• Maximin experimental design

• Response surface methods

Single-shot experiment;

Little known of parameter

distribution (range known)

Single-shot experiment;

Some idea of parameter distribution

Multiple-shot experiments;

Little known of parameter

Distribution over parameter;

Probabilistic; sequential

Predictive distribution on pt;

Distance function; sequential

Maximize gain; sequential

Minimize trace of information matrix

Minimize log det of information matrix

Minimize largest eigenvalue of information matrix

Sequential experiments for optimization


