Active Learning, Experimental Design

CS294 Practical Machine Learning

Daniel Ting

Original Slides by Barbara Engelhardt and Alex Shyr

Motivation

- Better data is often more useful than simply more data (quality over quantity)
- Data collection may be expensive
 - Cost of time and materials for an experiment
 - Cheap vs. expensive data
 - Raw images vs. annotated images
- Want to collect best data at minimal cost

Toy Example: 1D classifier

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier (threshold function): $h_w(x) = 1$ if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Naïve method: choose points to label at random on line

Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1

- Requires O(log n) training data to find underlying classifier
- Exponential reduction in training data size!

Example: collaborative filtering

- Users usually rate only a few movies; ratings "expensive"
- Which movies do you show users to best extrapolate movie preferences?
 - Also known as questionnaire design
- Baseline questionnaires:
 - Random: *m* movies randomly
 - Most Popular Movies: m most frequently rated movies
- Most popular movies is **not** better than random design!
- Popular movies rated highly by all users; do not discriminate tastes

Example: Sequencing genomes

- What genome should be sequenced next?
- Criteria for selection?
- Optimal species to detect phenomena of interest

Example: Improving cell culture conditions

- Grow cell culture in bioreactor
 - Concentrations of various things
 - Glucose, Lactate, Ammonia, Asparagine, etc.
 - Temperature, etc.
- Task: Find optimal growing conditions for a cell culture
- Optimal: Perform as few time consuming experiments as possible to find the optimal conditions.

Topics for today

- Introduction: Information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Summary

Topics for today

- Introduction: Information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Summary

Entropy Function

 A measure of information in random event X with possible outcomes {x₁,...,x_n}

$$H(x) = - \sum_{i} p(x_i) \log_2 p(x_i)$$

- Comments on entropy function:
 - Entropy of an event is zero when the outcome is known
 - Entropy is maximal when all outcomes are equally likely
- The average minimum number of yes/no questions to answer some question
 - Related to binary search

Kullback Leibler divergence

- *P* = true distribution;
- Q = alternative distribution that is used to encode data
- KL divergence is the expected extra message length per datum that must be transmitted using Q

$$D_{KL}(P \parallel Q) = \Sigma_i P(x_i) \log (P(x_i)/Q(x_i))$$

$$= \Sigma_i P(x_i) \log P(x_i) - \Sigma_i P(x_i) \log Q(x_i)$$

$$= H(P,Q) - H(P)$$

$$= Cross-entropy - entropy$$

Measures how different the two distributions are

KL divergence properties

- Non-negative: $D(P||Q) \ge 0$
- Divergence 0 if and only if P and Q are equal:
 - -D(P||Q) = 0 iff P = Q
- Non-symmetric: $D(P||Q) \neq D(Q||P)$
- Does not satisfy triangle inequality
 - $D(P||Q) \nleq D(P||R) + D(R||Q)$

KL divergence properties

- Non-negative: D(P||Q) ≥ 0
- Divergence 0 if and only if P and Q are equal:

$$-D(P||Q) = 0 \text{ iff } P = Q$$

- Non-symmetric: D(P||Q) ≠ D(Q||P)
- Does not satisfy triangle inequality
 - $D(P||Q) \nleq D(P||R) + D(R||Q)$

Not a distance metric

KL divergence as gain

 Modeling the KL divergence of the posteriors measures the amount of information gain expected from query (where x' is the queried data):

$$D(p(\theta \mid x, x') \mid\mid p(\theta \mid x))$$

- Goal: choose a query that maximizes the KL divergence between posterior and prior
- Basic idea: largest KL divergence between updated posterior probability and the current posterior probability represents largest gain

Topics for today

- Introduction: information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Summary

Active learning

- Setup: Given existing knowledge, want to choose where to collect more data
 - Access to cheap unlabelled points
 - Make a query to obtain expensive label
 - Want to find labels that are "informative"
- Output: Classifier / predictor trained on less labeled data
- Similar to "active learning" in classrooms
 - Students ask questions, receive a response, and ask further questions
 - vs. passive learning: student just listens to lecturer
- This lecture covers:
 - how to measure the value of data
 - algorithms to choose the data

Example: Gene expression and Cancer classification

 Active learning takes 31 points to achieve same accuracy as passive learning with 174

Reminder: Risk Function

- Given an estimation procedure / decision function d
- Frequentist risk given the true parameter θ is expected loss after seeing new data.

$$R(\theta, d) = \sum_{\theta} L(\theta, d(x_{new})) p(x_{new} | \theta)$$

• Bayesian integrated risk given a prior π is defined as posterior expected loss:

$$R(\pi, d|x) = \sum_{\theta} L(\theta, d(x)) p(\theta|x, \pi)$$

Loss includes cost of query, prediction error, etc.

Decision theoretic setup

- Active learner
 - Decision d includes which data point q to query
 - also includes prediction / estimate / etc.
 - Receives a response from an oracle
- Response updates parameters θ of the model
- Make next decision as to which point to query based on new parameters

Query selected should minimize risk

$$\min_{query} R(\theta, query)$$

Active Learning

- Some computational considerations:
 - May be many queries to calculate risk for
 - Subsample points
 - Probability far from the true min decreases exponentially
 - May not be easy to calculate risk R
- Two heuristic methods for reducing risk:
 - Select "most uncertain" data point given model and parameters
 - Select "most informative" data point to optimize expected gain

Uncertainty Sampling

 Query the event that the current classifier is most uncertain about

- Needs measure of uncertainty, probabilistic model for prediction
- Examples:
 - Entropy
 - Least confident predicted label

$$x^* = \arg\min_{x} P(\hat{y}|x, \theta) = \arg\min_{x} \max_{y} P(y|x, \theta)$$

Euclidean distance (e.g. point closest to margin in SVM)

Example: Gene expression and Cancer classification

- Data: Cancerous Lung tissue samples
 - "Cheap" unlabelled data
 - gene expression profiles from Affymatrix microarray
 - Labeled data:
 - 0-1 label for adenocarcinoma or malignant pleural mesothelioma
- Method:
 - Linear SVM
 - Measure of uncertainty
 - distance to SVM hyperplane

Example: Gene expression and Cancer classification

 Active learning takes 31 points to achieve same accuracy as passive learning with 174

Which unlabelled point should you choose?

Yellow = valid hypotheses

 Point on max-margin hyperplane does not reduce the number of valid hypotheses by much

 Queries an example based on the degree of disagreement between committee of classifiers

- Prior distribution over classifiers/hypotheses
- Sample a set of classifiers from distribution
- Natural for ensemble methods which are already samples
 - Random forests, Bagged classifiers, etc.
- Measures of disagreement
 - Entropy of predicted responses
 - KL-divergence of predictive distributions

Query by Committee Application

 Used naïve Bayes model for text classification in a Bayesian learning setting (20 Newsgroups dataset)

[McCallum & Nigam, 1998]

Information-based Loss Function

- Previous methods looked at uncertainty at a single point
 - Does not look at whether you can actually reduce uncertainty or if adding the point makes a difference in the model
- Want to model notions of information gained
 - Maximize **KL divergence** between posterior and prior $KL(P||\pi) = \#$ of bits gained about model
 - Maximize reduction in model entropy between posterior and prior (reduce number of bits required to describe distribution)
- All of these can be extended to optimal design algorithms
- Must decide how to handle uncertainty about query response, model parameters

[MacKay, 1992]

Other active learning strategies

- Expected model change
 - Choose data point that imparts greatest change to model
- Variance reduction / Fisher Information maximization
 - Choose data point that minimizes error in parameter estimation
 - Will say more in design of experiments
- Density weighted methods
 - Previous strategies use query point and distribution over models
 - Take into account data distribution in surrogate for risk.

Active learning warning

- Choice of data is only as good as the model itself
- Assume a linear model, then two data points are sufficient
- What happens when data are not linear?

Break?

Topics for today

- Introduction: information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Summary

Experimental Design

- Many considerations in designing an experiment
 - Dealing with confounders
 - Feasibility
 - Choice of variables to measure
 - Size of experiment (# of data points)
 - Conduction of experiment
 - Choice of interventions/queries to make
 - Etc.

Experimental Design

- Many considerations in designing an experiment
 - Dealing with confounders
 - Feasibility
 - Choice of variables to measure
 - Size of experiment (# of data points)
 - Conduction of experiment
 - Choice of interventions/queries to make
 - Etc.
- We will only look at one of them

What is optimal experimental design?

- Previous slides give
 - General formal definition of the problem to be solved (which may be not tractable or not worth the effort)
 - heuristics to choose data
- Empirically good performance but
 - Not that much theory on how good the heuristics are
- Optimal experimental design gives
 - theoretical credence to choosing a set of points
 - for a specific set of assumptions and objectives
- Theory is good when you only get to run (a series of) experiments once

Optimal Experimental Design

- Given a model M with parameters β ,
 - What queries are maximally informative i.e. will yield the best estimate of β
- "Best" minimizes variance of estimate $\hat{\beta}$
 - Equivalently, maximizes the Fisher Information

$$I(\beta) \approx var(\hat{\beta})^{-1}$$
 if $\hat{\beta}$ is the mle

- Linear models
 - Optimal design does not depend on β !
- Non-linear models
 - Depends on β , but can Taylor expand to linear model

Optimal Experimental Design

Assumptions

- Linear model: $Y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik} + \epsilon_i$
- Finite set of queries {F₁, ..., F_s} that x_{.j} can take.
 - Each F_i is set of interventions/measurements
 (e.g. F₁ =10ml of dopamine on mouse with mutant gene G)
 - m_i = # responses for query F_i
- Usual assumptions for linear least squares regression

$$E\epsilon_i = 0$$
 (Unbiased)
 $Var(\epsilon_i) = \sigma^2$ (Constant variance/Homoskedastic)
 $E\epsilon_i\epsilon_j = 0$ (Uncorrelated)

• Covariance of mle: $Var(\hat{\beta}) = (F^T M F)^{-1}$

Relaxed Experimental Design

- Hard combinatorial problem (F^TMF)⁻¹
- The *relaxed* problem allows $w_i \ge 0$, $\sum_i w_i = 1$
- Error covariance matrix becomes (F^TWF)-1
- $(F^TWF)^{-1}$ = inverted Hessian of the squared error
 - or inverted Fisher information matrix
- minimizing (F^TWF)⁻¹ reduces model error,
 - or equivalently maximize information gain

Boolean problem

N = 3

Relaxed problem

Experimental Design: Types

- Want to minimize (F^TWF)⁻¹; need a scalar objective
 - A-optimal (average) design minimizes trace (F^TWF)⁻¹
 - D-optimal (determinant) design minimizes log det(F^TWF)⁻¹
 - E-optimal (extreme) design minimizes max eigenvalue of (F^TWF)⁻¹
 - Alphabet soup of other criteria (C-, G-, L-, V-,etc)
- All of these design methods can use convex optimization techniques
- Computational complexity polynomial for semi-definite programs (A- and E-optimal designs)

A-Optimal Design

- A-optimal design minimizes the trace of (F^TWF)-1
 - Minimizing trace (sum of diagonal elements) essentially chooses maximally independent columns (small correlations between interventions)
- Tends to choose points on the border of the dataset
 Example: mixture of four Gaussians

A-optimal design [Yu et al., 2006]

A-Optimal Design

- A-optimal design minimizes the trace of (F^TWF)⁻¹
 - Can be cast as a semi-definite program

Example: 20 candidate datapoints, minimal ellipsoid that contains all points

D-Optimal design

- D-optimal design minimizes log determinant of (F^TWF)-1
- Equivalent to
 - choosing the confidence ellipsoid with minimum volume ("most powerful" hypothesis test in some sense)
 - Minimizing entropy of the estimated parameters $\hat{\beta}$
- Most commonly used optimal design

E-Optimal design

- E-optimal design minimizes largest eigenvalue of (F^TWF)⁻¹
- Minimax procedure

$$\min_{W} \max \ eigenvalues(F^TWF)^{-1}$$

- Can be cast as a semi-definite program
- Minimizes the diameter of the confidence ellipsoid

Summary of Optimal Design

Optimal Design

- Extract the integral solution from the relaxed problem
- Can simply round the weights to closest multiple of 1/m

```
- m_j = round(m * w_i), i = 1, ..., p
```

Extensions to optimal design

- Cost associated with each experiment
 - Add a cost vector, constrain total cost by a budget B (one additional constraint)
- Multiple samples from single experiment
 - Each x_i is now a matrix instead of a vector
 - Optimization (covariance matrix) is identical to before
- Time profile of process
 - Add time dimension to each experiment vector x_i

Topics for today

- Introduction: information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Summary

Optimal design in non-linear models

- Given a non-linear model $y = g(x, \theta)$
- Model is described by a Taylor expansion around a $\widehat{ heta}$

$$-a_{j}(x,\hat{\theta}) = \partial g(x,\theta) / \partial \theta_{j}, \text{ evaluated at } \hat{\theta}$$

$$Y_{i} = g(x,\hat{\theta}) + (\theta_{1} - \hat{\theta}_{1})a_{1}(x,\hat{\theta}) + ... + (\theta_{k} - \hat{\theta}_{k})a_{k}(x,\hat{\theta})$$

- Maximization of Fisher information matrix is now the same as the linear model
- Yields a locally optimal design, optimal for the particular value of θ
- Yields no information on the (lack of) fit of the model

Optimal design in non-linear models

- *Problem*: parameter value θ , used to choose experiments F, is unknown
- Three general techniques to address this problem, useful for many possible notions of "gain"
- Sequential experimental design: iterate between choosing experiment x and updating parameter estimates θ
- Bayesian experimental design: put a prior distribution on parameter θ, choose a best data x
- Maximin experimental design: assume worst case scenario for parameter θ, choose a best data x

Sequential Experimental Design

- Model parameter values are not known exactly
- Multiple experiments are possible
- Learner assumes that only one experiment is possible;
 makes best guess as to optimal data point for given θ
- Each iteration:
 - Select data point to collect via experimental design using θ
 - Single experiment performed
 - Model parameters θ are updated based on all data x'
- Similar idea to Expectation Maximization

Bayesian Experimental Design

- Effective when knowledge of distribution for θ is available
- Example: KL divergence between posterior and prior

$$-\int_{x} \operatorname{argmax}_{w} \int_{\theta \in \Theta} D(p(\theta | w, x) || p(\theta)) p(x | w) d\theta dx$$

- Example: A-optimal design:
 - $-\int_{x} \operatorname{argmin}_{w} \int_{\theta \in \Theta} \operatorname{tr}(F^{T}WF)^{-1} p(\theta \mid w,x) p(x \mid w) d\theta dx$
- Often sensitive to distributions

Maximin Experimental Design

- Maximize the minimum gain
- Example: D-optimal design:
 - $\operatorname{argmax} \min_{\theta \in \Theta} I(\hat{\theta}) = \operatorname{argmin}_{\theta} \max_{\theta \in \Theta} \log \det (F^T W F)^{-1}$
- Example: KL divergence:
 - $\operatorname{argmax}_{w} \min_{\theta \in \Theta} D(p(\theta | w, x) || p(\theta))$
- Does not require prior/empirical knowledge
- Good when very little is known about distribution of parameter $\boldsymbol{\theta}$

Topics for today

- Introduction: information theory
- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental design
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Response surface models
- Summary

Response Surface Methods

- Estimate effects of local changes to the interventions (queries)
 - In particular, estimate how to maximize the response
- Applications:
 - Find optimal conditions for growing cell cultures
 - Develop robust process for chemical manufacturing
- Procedure for maximizing response
 - Given a set of datapoints, interpolate a local surface (This local surface is called the "response surface")
 - Typically use a quadratic polynomial to obtain a Hessian
 - Hill-climb or take Newton step on the response surface to find next x
 - Use next x to interpolate subsequent response surface

Response Surface Modeling

Goal: Approximate the function f(c) = score(minimize(c))

- 1. Fit a smoothed response surface to the data points
- 2. Minimize response surface to find new candidate
- 3. Use method to find nearby local minimum of score function
- 4. Add candidate to data points
- 5. Re-fit surface, repeat

Related ML Problems

- Reinforcement Learning
 - Interaction with the world
 - Notion of accumulating rewards
- Semi-supervised learning
 - Use the unlabelled data itself, not just as pool of queries
- Core sets, active sets
 - Select small dataset gives nearly same performance as full dataset. Fast computation for large scale problems

Summary

Distribution over parameter; Probabilistic; sequential

- Active learning
 - Query by committee
 - Uncertainty sampling
 - Information-based loss functions

Predictive distribution on pt; Distance function; sequential

Maximize gain; sequential

- Optimal experimental
 - A-optimal design
 - D-optimal design
 - E-optimal design
- Non-linear optimal experimental
 - Sequential experimental design
 - Bayesian experimental design
 - Maximin experimental design
- Response surface methods

Minimize trace of information matrix

Minimize log det of information matrix

Minimize largest eigenvalue of information matrix

Multiple-shot experiments; Little known of parameter

Single-shot experiment;

Some idea of parameter distribution

Single-shot experiment;

Little known of parameter distribution (range known)

Sequential experiments for optimization