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Motivation

« Better data Is often more useful than simply
more data (quality over quantity)

« Data collection may be expensive
— Cost of time and materials for an experiment

— Cheap vs. expensive data
* Raw images vs. annotated images

« Want to collect best data at minimal cost



Toy Example: 1D classifier
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Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier (threshold function): h,(x) = 1 if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Naive method: choose points to label at random on line
* Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
* Requires O(log n) training data to find underlying classifier
« Exponential reduction in training data size!



Example: collaborative filtering

Users usually rate only a few movies; ratings “expensive”

Which movies do you show users to best extrapolate
movie preferences?

« Also known as questionnaire design
Raviaws More Datails

Baseline questionnaires: 0¥ou Uk 1 ook (WS
— Random: m movies randomly =

— Most Popular Movies: m most
frequently rated movies

Most popular movies is not better
than random design!

Popular movies rated highly by all
users; do not discriminate tastes

[Yu et al. 2006]
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Criteria for selection?

« What genome should be
sequenced next?

Archosaunia

« Optimal species to detect

Diapsida

Reptilia

phenomena of interest

Amniota

etrapoda
hoanata
arcopterygii

Osteichthyes
Gnathostomata
Vertebrata

raniata
uchordata

Chordata

[McAuliffe et al., 2004]



Example: Improving cell culture
conditions

 Grow cell culture In bioreactor

— Concentrations of various things
* Glucose, Lactate, Ammonia, Asparagine, etc.

— Temperature, etc.

« Task: Find optimal growing conditions for a cell
culture

« Optimal: Perform as few time consuming
experiments as possible to find the optimal
conditions.
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Entropy Function

* A measure of information in
random event X with possible
outcomes {Xy, ..., X}

H(X) = - %; p(x;) log, p(x))

« Comments on entropy function:

— Entropy of an event is zero when
the outcome is known

— Entropy is maximal when all
outcomes are equally likely 0l , ,
« The average minimum number 0 03 1.0
of yes/no questions to answer Bt =1}
some guestion
— Related to binary search

[Shannon, 1948]



Kullback Leibler divergence

P = true distribution;
Q = alternative distribution that is used to encode data

KL divergence is the expected extra message length per
datum that must be transmitted using Q

D (P || Q) = Z; P(x)) log (P(x))/Q(x))
=% P(X)) log P(x)) — Zi P(x;) log Q(x;)
= H(P,.Q) - H(P)
= Cross-entropy - entropy

Measures how different the two distributions are



KL divergence properties

* Non-negative: D(P||Q) 2 0

* Divergence O if and only if P and Q are equal:

— D(P||Q)=01iff P=0Q

« Non-symmetric: D(P||Q) # D(Q||P)

« Does not satisfy triangle inequality

- D(P||Q) X D(P|IR) + D(R||Q)



KL divergence properties
Non-negative: D(P||Q) =2 0

Divergence O if and only if P and Q are equal:
— D(P|IQ)=0iff P=Q

Non-symmetric: D(P||Q) # D(Q||P) ]

Not a distance
Does not satisfy triangle inequality [ metric

- D(P||Q) X D(P|IR) + D(R||Q)




KL divergence as gain

« Modeling the KL divergence of the posteriors measures
the amount of information gain expected from query
(where X’ is the queried data):

D(p(@] x, x) || p(€] X))

« Goal: choose a query that maximizes the KL divergence
between posterior and prior

« Basic idea: largest KL divergence between updated
posterior probability and the current posterior probability
represents largest gain
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Active learning

Setup: Given existing knowledge, want to choose where
to collect more data

— Access to cheap unlabelled points

— Make a query to obtain expensive label

— Want to find labels that are “informative”

Output: Classifier / predictor trained on less labeled data

Similar to “active learning” in classrooms

— Students ask questions, receive a response, and ask further
guestions

— VS. passive learning: student just listens to lecturer
This lecture covers:

— how to measure the value of data
— algorithms to choose the data



Example: Gene expression and
Cancer classification

« Active learning takes 31 points to achieve same
accuracy as passive learning with 174

# of labeled examples

# of positives selected
nJ
o

C

0 20 40 60 80 100 120 140 160 180

# of labeled examples

+— |deal —a— Active Leaming (m = 1)
—a— Passive Leamning —e— Active Leaming (m = 5)

Liu 2004



Reminder: Risk Function

Given an estimation procedure / decision function d

Freqguentist risk given the true parameter 0 is expected
loss after seeing new data.

— Z L(@, d(aznew))p(iﬁnew’@)

Bayesian integrated risk given a prior «t is defined as
posterior expected loss:

7w, d|z) = ZL 0, d(z))p(6|z, )

Loss includes cost of query, prediction error, etc.



Decision theoretic setup

Active learner

— Decision d includes which data point g to query
« also includes prediction / estimate / etc.

— Receives a response from an oracle
Response updates parameters 0 of the model

Make next decision as to which point to query
based on new parameters

Query selected should minimize risk
min R(6, query)

query



Active Learning

« Some computational considerations:

— May be many queries to calculate risk for
« Subsample points
* Probability far from the true min decreases exponentially

— May not be easy to calculate risk R

« Two heuristic methods for reducing risk:

— Select “most uncertain” data point given model and
parameters

— Select “most informative” data point to optimize
expected gain



Uncertainty Sampling

Query the event that the current classifier is
most uncertain about

Needs measure of uncertainty, probabilistic
model for prediction

Examples:
— Entropy
— Least confident predicted label
r" = arg mxin P(y|x,0) = arg mmin mex P(y|z,0)

— Euclidean distance (e.g. point closest to margin
iIn SVM)



Example: Gene expression and
Cancer classification

« Data: Cancerous Lung tissue samples

— “Cheap” unlabelled data
« gene expression profiles from Affymatrix microarray

— Labeled data:

» 0-1 label for adenocarcinoma or malignant pleural
mesothelioma

 Method:
— Linear SVM

— Measure of uncertainty

« distance to SVM hyperplane LU 2004



Example: Gene expression and
Cancer classification

« Active learning takes 31 points to achieve same
accuracy as passive learning with 174

# of labeled examples

# of positives selected
nJ
o

C
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# of labeled examples

+— |deal —a— Active Leaming (m = 1)
—a— Passive Leamning —e— Active Leaming (m = 5)

Liu 2004



Query by Committee

* Which unlabelled point should you choose?

e




Query by Committee

* Yellow = valid hypotheses




Query by Committee

* Point on max-margin hyperplane does not
reduce the number of valid hypotheses by much

e




Query by Committee

* Queries an example based on the degree of
disagreement between committee of classifiers

e




Query by Committee

Prior distribution over classifiers/hypotheses
Sample a set of classifiers from distribution

Natural for ensemble methods which are already
samples

— Random forests, Bagged classifiers, etc.

Measures of disagreement
— Entropy of predicted responses
— KL-divergence of predictive distributions



Query by Committee Application

« Used naive Bayes model for text classification in a
Bayesian learning setting (20 Newsgroups dataset)

Accuracy

90%
80% r
70% r
60%
50%
40%

30% L

QBC-then-EM —— -
(Interleaved) QBC-with-EM -----
Random-then-EM -------

0

| | | | | | | | | |
100 200 300 400 500 600 700 800 900 1000
Number of Training Docs

[McCallum &
Nigam, 1998]



Information-based Loss Function

* Previous methods looked at uncertainty at a single point

— Does not look at whether you can actually reduce uncertainty or
If adding the point makes a difference in the model

« Want to model notions of information gained
— Maximize KL divergence between posterior and prior

K L(P||m) = # of bits gained about model

— Maximize reduction in model entropy between posterior and
prior (reduce number of bits required to describe distribution)

« All of these can be extended to optimal design
algorithms

« Must decide how to handle uncertainty about query
response, model parameters

[MacKay, 1992]



Other active learning strategies

« Expected model change
— Choose data point that imparts greatest change to model

« Variance reduction / Fisher Information maximization
— Choose data point that minimizes error in parameter estimation
— Will say more in design of experiments

« Density weighted methods

— Previous strategies use query point and distribution over models
— Take into account data distribution in surrogate for risk.




Active learning warning

* Choice of data is only as good as the model itself
« Assume a linear model, then two data points are sufficient
« What happens when data are not linear?

x
x




Break?
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Experimental Design

« Many considerations in designing an experiment
— Dealing with confounders
— Feasiblility
— Choice of variables to measure
— Size of experiment ( # of data points )
— Conduction of experiment
— Choice of interventions/queries to make
— Etc.



Experimental Design

« Many considerations in designing an experiment
— Dealing with confounders
— Feasibllity
— Choice of variables to measure
— Size of experiment ( # of data points )
— Conduction of experiment
— Choice of interventions/queries to make
— Etc.

* We will only look at one of them



What Is optimal experimental
design?

Previous slides give

— General formal definition of the problem to be solved
(which may be not tractable or not worth the effort)

— heuristics to choose data

Empirically good performance but
— Not that much theory on how good the heuristics are

Optimal experimental design gives
— theoretical credence to choosing a set of points
— for a specific set of assumptions and objectives

Theory is good when you only get to run (a series of)
experiments once



Optimal Experimental Design

Given a model M with parameters g,

— What queries are maximally informative
l.e. will yield the best estimate of g

“Best” minimizes variance of estimate 3

— Equivalently, maximizes the Fisher Information
I(B) ~var(B)~" if 3 is the mle

Linear models

— Optimal design does not depend on f!

Non-linear models
— Depends on g, but can Taylor expand to linear model



Optimal Experimental Design

« Assumptions
— Linear model: Yi=fo + fizi1 + ... + Bewik + €

— Finite set of queries {F,, ..., F¢} that x; can take.

« Each F, is set of interventions/measurements
(e.g. F; =10ml of dopamine on mouse with mutant gene G)

* m, = # responses for query F,
— Usual assumptions for linear least squares regression

Fe; =0 (Unbiased)
Var(e;) = o° (Constant variance/Homoskedastic)
Eeie; =0 (Uncorrelated)

« Covariance of mle: Var(B) = (FTMF)™!



Relaxed Experimental Design

Hard combinatorial problem (FTMF)-

The relaxed problem allows w. 20, 2w, = 1
Error covariance matrix becomes (FTWF)

(FTWF)! = inverted Hessian of the squared error
* orinverted Fisher information matrix

minimizing (FTWF)-1 reduces model error,

* or equivalently maximize information gain

VAR |
L7

Boolean problem

Relaxed problem



Experimental Design: Types

Want to minimize (FTWF)! ; need a scalar objective

— A-optimal (average) design minimizes trace(FTWF)1

— D-optimal (determinant) design minimizes log det(FTWF)-*

— E-optimal (extreme) design minimizes max eigenvalue of (FTWF)!
— Alphabet soup of other criteria (C-, G-, L-, V-,etc)

All of these design methods can use convex optimization
techniques

Computational complexity polynomial for semi-definite
programs (A- and E-optimal designs)

[Boyd & Vandenberghe, 2004]



A-Optimal Design

« A-optimal design minimizes the trace of (FTWF)-1

— Minimizing trace (sum of diagonal elements) essentially
chooses maximally independent columns
(small correlations between interventions)

« Tends to choose points on the border of the dataset
Example: mixture of four Gaussians

s . 3 . 3 4 ' L) I ’ . J 3 4

(@) Data set (b) A-optimal design v, et a1, 2006]



A-Optimal Design

« A-optimal design minimizes the trace of (FTWF)-
« Can be cast as a semi-definite program

Example: 20 candidate datapoints, minimal ellipsoid that
contains all points
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[Boyd & Vandenberghe, 2004]



D-Optimal design

 D-optimal design minimizes log determinant of (FTWF)*

« Equivalent to

— choosing the confidence ellipsoid with minimum volume
(“most powerful” hypothesis test in some sense)

— Minimizing entropy of the estimated parameters;3
* Most commonly used optimal design
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[Boyd & Vandenberghe, 2004]



E-Optimal design

E-optimal design minimizes largest eigenvalue of (FTWF)-1
Minimax procedure

mﬂi/n max eigenvalues(FTW F)™!

Can be cast as a semi-definite program

Minimizes the diameter of the confidence ellipsoid

-

[Boyd & Vandenberghe, 2004]



Summary of Optimal Design

»uniform

[Boyd & Vandenberghe, 2004]



Optimal Design

« Extract the integral solution from the relaxed problem

« Can simply round the weights to closest multiple of 1/m

— m_j=roundim*w_i),i=1,...,p

[Boyd & Vandenberghe, 2004]



Extensions to optimal design

« Cost associated with each experiment

— Add a cost vector, constrain total cost by a budget B
(one additional constraint)

« Multiple samples from single experiment
— Each x; Is now a matrix instead of a vector
— Optimization (covariance matrix) is identical to before

« Time profile of process
— Add time dimension to each experiment vector x;

[Atkinson, 1996]
[Boyd & Vandenberghe, 2004]
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Optimal design in non-linear models

Given a non-linear model y = g(x, 0
Model is described by a Taylor expansion around a ¢
—a(x,9)=09(x,6) /0 g, evaluated at ¢

Y; = g(x,0) + (01 — 01)as(x,0) + ... + (0 — 0i)ax(x,0)

Maximization of Fisher information matrix is now the
same as the linear model

Yields a locally optimal design, optimal for the particular
value of 0

Yields no information on the (lack of) fit of the model

[Atkinson, 1996]



Optimal design in non-linear models

Problem: parameter value &, used to choose
experiments F, is unknown

Three general technigues to address this problem, useful
for many possible notions of “gain”

Sequential experimental design: iterate between
choosing experiment x and updating parameter
estimates 0

Bayesian experimental design: put a prior distribution
on parameter 6, choose a best data x

Maximin experimental design: assume worst case
scenario for parameter 0, choose a best data x



Sequential Experimental Design

 Model parameter values are not known exactly
* Multiple experiments are possible

« Learner assumes that only one experiment is possible;
makes best guess as to optimal data point for given 6

« Each iteration:
— Select data point to collect via experimental design using 0
— Single experiment performed
— Model parameters 6° are updated based on all data x’

« Similar idea to Expectation Maximization

[Pronzato & Thierry, 2000]



Bayesian Experimental Design

Effective when knowledge of distribution for @ is available

Example: KL divergence between posterior and prior
— [ argmax,, Jo.o D( (6 (W) || p(6)) p(x w) dOdx

Example: A-optimal design:
— |, argmin,, [;_e tr(FTWF)1p(8| w,x)p(x [w) d&dx

Often sensitive to distributions

[Chaloner & Verdinelli, 1995]



Maximin Experimental Design

Maximize the minimum gain

Example: D-optimal design:

— argmax min,_g () = argmin,, max,_g log det (FTWF)*
Example: KL divergence:

— argmax,, ming_o D(p(&|w,x) || p(8))

Does not require prior/empirical knowledge

Good when very little is known about distribution of
parameter 0

[Pronzato & Walter, 1988]
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Response Surface Methods

« Estimate effects of local changes to the interventions
(queries)
— In particular, estimate how to maximize the response

« Applications:
— Find optimal conditions for growing cell cultures
— Develop robust process for chemical manufacturing

* Procedure for maximizing response

— Given a set of datapoints, interpolate a local surface
(This local surface is called the “response surface”)

« Typically use a quadratic polynomial to obtain a Hessian

— Hill-climb or take Newton step on the response surface to find
next x

— Use next x to interpolate subsequent response surface



Response Surface Modeling

» Goal: Approximate the function f(c) = score(minimize(c))

-80

_90 _

-100 -

-110 ~

Energy score

-120 -

-130 -

-140
« 1. Fit a smoothed response surface to the data points

« 2. Minimize response surface to find new candidate

« 3. Use method to find nearby local minimum of score function

« 4. Add candidate to data points

« 5. Re-fit surface, repeat [Blum, unpublished]



Related ML Problems

* Reinforcement Learning
— Interaction with the world
— Notion of accumulating rewards

« Semi-supervised learning
— Use the unlabelled data itself, not just as pool of queries

« Core sets, active sets

— Select small dataset gives nearly same performance as full
dataset. Fast computation for large scale problems



Summary

« Active learning
— Query by committee
— Uncertainty sampling \

Maximize ain; sequential
— Information-based loss functions 9 q )

« Optimal experimental Minimize trace of information matrix i

Distribution over parameter;
Probabilistic; sequential

N
Predictive distribution on pt;

Distance function; sequential
J

— A-optimal design Minimize log det of information matrix ]
— D-optimal design Minimize largest eigenvalue of information matrix

— E-optimal design Multiple-shot experiments)

- Non-linear optimal experiment Little known of parameter

. Sequential experimental design _J S"d\e-Shot experiment;
; P 9 Some idea of parameter distribution

*  Maximin experimental de3|gn Little known of parameter

- Bayesian experimental deS|g Single-shot experiment;
distribution (range known)

* Response surface methods

[Sequential experiments for optimization]




