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1 Hilbert Space

A Hilbert space is essentially an infinite-dimensional Euclidean space. It is a vector space (i.e., is closed
under addition and scalar multiplication, obeys the distributive and associative laws, etc.). It is also endowed
with an inner product 〈·, ·〉; a bilinear form obeying the following conditions:

〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉

〈αx, y〉 = α〈x, y〉

〈x, y〉 = 〈y, x〉

〈x, x〉 ≥ 0

〈x, x〉 = 0 → x = 0

From 〈·, ·〉 we get a norm ‖ · ‖ via ‖ x ‖= 〈x, x〉1/2. This norm allows us to define notions of convergence.
Adding all limit points of Cauchy sequences to our space yields a Hilbert space—a complete inner product
space.

1.1 Examples

• Rn: 〈x, y〉 = xT y

• L2: 〈x, y〉 =
∫

x(t)y(t)dt

• l2: 〈x, y〉 =
∑

∞

i=1
xiyi

The Cauchy-Schwartz lemma:
〈x, y〉 ≤‖ x ‖‖ y ‖

is easily proved for any Hilbert space.

2 Reproducing kernel Hilbert spaces

The Hilbert space L2 is too “big” for our purposes, containing too many non-smooth functions. One approach
to obtaining restricted, smooth spaces is the Reproducing Kernel Hilbert Space (RKHS) approach. A RKHS
is “smaller” than a general Hilbert space.

Given a kernel k(x, x′), we will construct a Hilbert space such that k is a dot product in that space. First
define the Gram matrix. Given points x1, x2, x3, ...xn, define:

Kij = k(xi, xj)
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2 Reproducing Kernel Hilbert Spaces

We say that the kernel k is positive definite if its Gram matrix is positive definite for all x1, x2, ..., xn.

The Cauchy-Schwartz inequality holds for kernels:

k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2)

Proof : Form a Gram matrix of the two points x1 and x2:

K =

(

k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

)

For K to be positive definite as a matrix, the determinant of K must be nonnegative:

=⇒ k(x1, x1)k(x2, x2) − k(x2, x1)k(x1, x2) ≥ 0,

which implies Cauchy-Schwartz.

Define the following reproducing kernel map:

Φ : x −→ k(·, x).

I.e., to each point x in the original space we associate a function k(·, x).

Example: Gaussian kernel. Each point x maps to a Gaussian centered at that point. Intuitively this captures
the similarity of x to all other points.

We now construct a vector space containing all linear combinations of the functions k(·, x):

f(·) =

m
∑

i=1

αik(·, xi).

This will be our RKHS.

We now define an inner product. Let g(·) =
∑m′

j=1
βjk(·, x

′

j), and define:

〈f, g〉 =

m
∑

i=1

m′

∑

j=1

αiβjk(xi, x
′

j)

We need to verify that this in fact defines an inner product. Symmetry is obvious: 〈f, g〉 = 〈g, f〉. Linearity
is easy to show. We focus on the key property: 〈f, f〉 = 0 =⇒ f = 0.

Note first that for any f(·) =
∑m

i=1
αik(·, xi), we have:

〈k(·, x), f〉 =

m
∑

i=1

αik(xi, x) = f(x),

which shows that the kernel is the representer of evaluation.

Kernels are analogs of Dirac delta functions. Consider L2 (which is not a RKHS). We have:

f(x) =

∫

f(t)δ(t, x)dt,

where δ(t, x) is the Dirac delta function. The Dirac delta function is the representer of evaluation for L2,
but of course it is not itself in L2. (Which is consistent with the fact that L2 is not a RKHS).
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Suppose that we plug the kernel in for f in Eq. 2:

〈k(·, x), k(·, x′)〉 = k(x, x′).

This is the reproducing property of the kernel.

From Cauchy-Schwartz we can prove the following:

f(x)2 = 〈k(·, x), f〉2 ≤ k(x, x)〈f, f〉

and (finally) this implies that if 〈f, f〉 = 0, then f ≡ 0.

We complete the space that we have constructed to obtain a Hilbert space. This is our RKHS.

3 Mercer’s theorem and RKHS

Recall the following condition for Mercer’s theorem:
∫

k(x, x′)f(x)f(x′)dxdx′ ≥ 0.

Given this condition, we can expand the function k(x, x′) in its eigenfunctions:

k(x, x′) =
∞
∑

j=1

λjψj(x)ψj(x
′). (1)

where
∫

k(x, x′)ψ(x′)dx′ = λjψj(x);

i.e., ψj(x
′) is an eigenfunction.

We now construct a RKHS via Mercer as a linear combination of these eigenfunctions. This is a different
approach to constructing a RKHS that our earlier kernel map. We have:

H =







∞
∑

j=1

cnψn(x)







.

In particular, the kernel is in this space since it is a linear combination of the eigenfunctions (cf. Eq. 1).

Define a dot product 〈·, ·〉:
〈

∑

n

cnψn(x),
∑

n

dnψn(x)
〉

=
∑

n

cndn

λn
.

Note that dividing by the eigenvalue, λn, makes H different from l2. Dividing by these eigenvalues in effect
amounts to imposing a smoothness condition on the space; for a function to be in H the coefficients cn must
go to zero quickly (so that the norm

∑

n c
2

nλn is finite).

Now verify we have a RKHS:

〈f(·), k(·, x′)〉 =
∑

n

cnλnψn(x′)

λn

=
∑

n

cnψn(x′)

= f(x′).

In summary, Mercer’s theorem provides a concrete way to construct a RKHS. In essence, Mercer’s theorem
provides a coordinate basis representation of an RKHS.


