
CS 281A/Stat 241A Homework Assignment 5 (due November 29)

1. Relationship between Gibbs sampling and mean-field.

Suppose we have a probability model p(x1, . . . , xn). Let x
−i = (x1, . . . , xi−1, xi+1, . . . ). Recall

that in Gibbs sampling, we draw xi ∼ p(xi | x
−i). Consider a naive mean-field approximation

where q(x) =
∏n

i=1 qi(xi). Recall that in mean-field variational inference, we try to minimize
KL(q(x)||p(x)). Derive a general form for the mean-field update for qi(xi) in terms of p(xi | x

−i)
and qj(xj), j 6= i. (Hint: use the fact that KL-divergence is minimized when the two arguments
are equal).

2. Latent Dirichlet allocation.

Latent Dirichlet allocation (LDA) is a model for discovering topics in sets of documents. Simplifying
slightly, the model is as follows:
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(a) For each document, m = 1, . . . ,M

i. Draw topic probabilities θm ∼ p(θ|α)

ii. For each of the N words:

A. Draw a topic zmn ∼ p(z|θm)

B. Draw a word wmn ∼ p(w|zmn, β),

where p(θ|α) is a Dirichlet distribution, and where p(z|θm) and p(w|zmn, β) are multinomial dis-
tributions. Treat α and β as fixed hyperparameters. Note that β is a matrix, with one column
per topic, and the multinomial variable zmn selects one of the columns of β to yield multinomial
probabilities for wmn. (See the paper “Latent Dirichlet allocation” on the course website for more
details if needed).

(a) Write down a Gibbs sampler for the LDA model. (I.e., write down the set of conditional
probabilities for the sampler).

(b) Write down a collapsed Gibbs sampler for the LDA model, where you integrate out the topic
probabilities θm.

3. Rasch Model and Metropolis within Gibbs.

Consider the following model:
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This is a hierarchical Bayesian version of the Rasch model. The Rasch model is an important model
in educational testing where zij is binary, and zij = 1 if student j answers question i correctly; θi

represents question difficulty; and βj represents student ability.

We wish to derive an MCMC sampler for the posterior distribution of the parameters. Let Θ(t)

denote the current value of the parameters.

(a) For most of the parameters, the hierarchical nature of the model and the choice of priors make
a Gibbs sampler a natural choice. In particular, what is the conditional distribution of τθ given

everything else? I.e., what is the distribution of τθ|~z,Θ(t)\{τ
(t)
θ }? (Give the family it belongs

to and specify the parameters). Likewise τβ and µ have simple conditionals given everything
else. State what family each belongs to. (No need to perform calculations or specify parameter
values).

(b) The β’s and θ’s do not have as nice a form. Specify, up to a normalizing constant, the
conditional density of θj given everything else. I.e., find gj such that

p(θj |~z,Θ(t)\{θ
(t)
j }) ∝ gj(θj).

Derive a quadratic approximation to log gj . Taking the exponential of this quadratic approx-
imation gives us something proportional to the density of some normal density fj . (Hint:
Note that the Rasch model is a hierarchical logistic model. Recall that IRLS was based on a
quadratic approximation to the log-likelihood).

(c) Instead of sampling exactly from the full conditional for θj given everything else, we may treat
the normal density fj as an approximation to the full conditional and use it as a proposal
density for Metropolis-Hastings. (This is sometimes called “Metropolis within Gibbs.”) Show
that we need not express the acceptance probability ρ in terms of the full posterior density
and fj , but that it simplifies to an expression in terms of gj and fj .

(d) One may also perform the Gibbs step for θj using slice sampling. Give a decomposition
gj(θj) =

∏

i gij(θj) where each gij is unimodal. (Hint: assign a small part of the prior p(θ|τθ)
to each gij).

Let Ai(w) = {y : gij(y) ≥ w}. Use the inequality log(1 + ex) > x to derive a region Bi(w)
such that Ai(w) ⊂ Bi(w). Combine this with rejection sampling to obtain a slice sampler for
θj .


