CS 281A/Stat 241A Homework Assignment 5 (due November 29)

1. Relationship between Gibbs sampling and mean-field.

Suppose we have a probability model $p(x_1, \ldots, x_n)$. Let $\mathbf{x}_{-i} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots)$. Recall that in Gibbs sampling, we draw $x_i \sim p(x_i | \mathbf{x}_{-i})$. Consider a naive mean-field approximation where $q(\mathbf{x}) = \prod_{i=1}^n q_i(x_i)$. Recall that in mean-field variational inference, we try to minimize $\mathrm{KL}(q(\mathbf{x})||p(\mathbf{x}))$. Derive a general form for the mean-field update for $q_i(x_i)$ in terms of $p(x_i | \mathbf{x}_{-i})$ and $q_j(x_j), j \neq i$. (Hint: use the fact that KL-divergence is minimized when the two arguments are equal).

2. Latent Dirichlet allocation.

Latent Dirichlet allocation (LDA) is a model for discovering topics in sets of documents. Simplifying slightly, the model is as follows:

- (a) For each document, $m = 1, \ldots, M$
 - i. Draw topic probabilities $\theta_m \sim p(\theta|\alpha)$
 - ii. For each of the ${\cal N}$ words:
 - A. Draw a topic $z_{mn} \sim p(z|\theta_m)$
 - B. Draw a word $w_{mn} \sim p(w|z_{mn},\beta)$,

where $p(\theta|\alpha)$ is a Dirichlet distribution, and where $p(z|\theta_m)$ and $p(w|z_{mn},\beta)$ are multinomial distributions. Treat α and β as fixed hyperparameters. Note that β is a matrix, with one column per topic, and the multinomial variable z_{mn} selects one of the columns of β to yield multinomial probabilities for w_{mn} . (See the paper "Latent Dirichlet allocation" on the course website for more details if needed).

- (a) Write down a Gibbs sampler for the LDA model. (I.e., write down the set of conditional probabilities for the sampler).
- (b) Write down a collapsed Gibbs sampler for the LDA model, where you integrate out the topic probabilities θ_m .
- 3. Rasch Model and Metropolis within Gibbs.

Consider the following model:

$$\begin{array}{rcccc} \tau_{\theta}^2 & \sim & Gamma(\alpha_{\theta}, \eta_{\theta}) \\ \tau_{\beta}^2 & \sim & Gamma(\alpha_{\beta}, \eta_{\beta}) \\ \mu | \tau_{\beta}^2 & \sim & N(0, 1/c\tau_{\beta}^2) \\ \theta_i | \tau_{\theta}^2 & \sim & N(0, 1/\tau_{\theta}^2) \\ \beta_j | \tau_{\beta}^2, \mu & \sim & N(\mu, 1/\tau_{\beta}^2) \\ z_{ij} | \theta_i, \beta_j & \sim & Bernoulli \left(\frac{1}{1 + \exp(\theta_i - \beta_j)} \right) \end{array}$$

This is a hierarchical Bayesian version of the *Rasch model*. The Rasch model is an important model in educational testing where z_{ij} is binary, and $z_{ij} = 1$ if student j answers question i correctly; θ_i represents question difficulty; and β_j represents student ability.

We wish to derive an MCMC sampler for the posterior distribution of the parameters. Let $\Theta^{(t)}$ denote the current value of the parameters.

- (a) For most of the parameters, the hierarchical nature of the model and the choice of priors make a Gibbs sampler a natural choice. In particular, what is the conditional distribution of τ_{θ} given everything else? I.e., what is the distribution of $\tau_{\theta} | \vec{z}, \Theta^{(t)} \setminus \{\tau_{\theta}^{(t)}\}$? (Give the family it belongs to and specify the parameters). Likewise τ_{β} and μ have simple conditionals given everything else. State what family each belongs to. (No need to perform calculations or specify parameter values).
- (b) The β 's and θ 's do not have as nice a form. Specify, up to a normalizing constant, the conditional density of θ_j given everything else. I.e., find g_j such that

$$p(\theta_j | \vec{z}, \Theta^{(t)} \setminus \{\theta_j^{(t)}\}) \propto g_j(\theta_j).$$

Derive a quadratic approximation to $\log g_j$. Taking the exponential of this quadratic approximation gives us something proportional to the density of some normal density f_j . (Hint: Note that the Rasch model is a hierarchical logistic model. Recall that IRLS was based on a quadratic approximation to the log-likelihood).

- (c) Instead of sampling exactly from the full conditional for θ_j given everything else, we may treat the normal density f_j as an approximation to the full conditional and use it as a proposal density for Metropolis-Hastings. (This is sometimes called "Metropolis within Gibbs.") Show that we need not express the acceptance probability ρ in terms of the full posterior density and f_j , but that it simplifies to an expression in terms of g_j and f_j .
- (d) One may also perform the Gibbs step for θ_j using slice sampling. Give a decomposition $g_j(\theta_j) = \prod_i g_{ij}(\theta_j)$ where each g_{ij} is unimodal. (Hint: assign a small part of the prior $p(\theta|\tau_{\theta})$ to each g_{ij}).

Let $A_i(w) = \{y : g_{ij}(y) \ge w\}$. Use the inequality $\log(1 + e^x) > x$ to derive a region $B_i(w)$ such that $A_i(w) \subset B_i(w)$. Combine this with rejection sampling to obtain a slice sampler for θ_j .