11.1 Exponential family representations

A general representation of an exponential family is given by the following probability density function:

\[p(x|\eta) = h(x) \exp\{\eta^T T(x) - A(\eta)\} \quad (11.1) \]

where \(h(x) \) is called the base density which is always \(\geq 0 \), \(\eta \) is the natural parameter, \(T(x) \) is the sufficient statistic vector and \(A(\eta) \) is the cumulant generating function or the log normalizer. The choice of \(T(x), h(x) \) determines the member of the exponential family. Also we know that since this is a density function,

\[1 = \int h(x) \exp\{\eta^T T(x) - A(\eta)\} dx \quad (11.2) \]

or,

\[A(\eta) = \log \int (h(x) \exp\{\eta^T T(x)\}) dx \quad (11.3) \]

For example, take a Bernoulli distribution. We have \(p(x|\pi) = \pi^x (1 - \pi)^{1-x} \). By some simple adjustments to the density function (apply \(\exp \log p(x|\pi) \)), we can show that \(h(x) = 1, \eta = \log\left(\frac{\pi}{1-\pi}\right), T(x) = x \) and \(A(\eta) = \log(1 + \exp(-\eta)) \) in this case.

For a Gaussian distribution, \(p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{\mu - x}{2\sigma^2}\right)^2 + \frac{\mu^2}{2\sigma^2} - \log \sigma \). In this case, \(h(x) = \frac{1}{\sqrt{2\pi}}, \eta = \left[\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2}\right], T(x) = [x, x^2] \) and \(A(\eta) \) is an exercise left to the reader.

11.1.1 Properties of Exponential Family

Fact 1:

\[\frac{\partial}{\partial \eta} A(\eta) = E_\eta T(x) \quad (11.4) \]

\[\frac{\partial}{\partial \eta} A(\eta) = \frac{\partial}{\partial \eta} \log \int (h(x) \exp\{\eta^T T(x)\}) dx \]

\[= \frac{\int h(x) \exp\{\eta^T T(x)\} dx}{\exp A(\eta)} \]

\[= \int p(x|\eta) T(x) dx \]

\[= E_\eta T(x) \]
Fact 2: \[\frac{\partial^2}{\partial \eta \partial \eta^T} A(\eta) = \text{Var}(T(x)) \] (11.5)

Let's look at an example. If \(x \) is a Bernoulli distribution with parameter \(\pi \), then \[\frac{\partial}{\partial \eta} A(\eta) = \frac{1}{1+exp(-\eta)} = \pi(\eta) = \pi = E(x) = E(T(x)). \] Also, \[\frac{\partial^2}{\partial \eta \partial \eta^T} A(\eta) = \pi(\eta)(1 - \pi(\eta)) = \pi(1 - \pi) = \text{var}(T(x)). \]

In general, we can actually show that the \(m \)-th derivative of the cumulant generating function \(A(\eta) \) is the \(m \)-th cumulant around the mean. This is a very useful result because we have converted the problem of trying to estimate the moments which involves integrating to a problem of differentiating a function. Differentiating is easier and hence it is worthwhile for us to study the properties of this cumulant generating function.

11.1.2 Properties of \(A(\eta) \)

Property 1: Domain of \(A = \{ \eta | A(\eta) < \text{inf} \} \) is a convex set.

Property 2: \(A(\eta) \) is a convex function of \(\eta \). Proof: Note that \[\frac{\partial^2}{\partial \eta \partial \eta^T} A(\eta) = \text{Var}(T(x)) \] which is always positive semi-definite. Q.E.D.

In particular, say \(\text{Var}(T(x)) \) is positive definite, then the relationship \(\mu = E(T(x)) = \frac{\partial}{\partial \eta} A(\eta) \) is invertible. That is, \(\eta = [\frac{\partial}{\partial \eta} A(\eta)]^{-1}(\mu) \). This is due to the fact that the function \(\frac{\partial}{\partial \eta} A(\eta) \) is one-to-one under strict convexity.

11.1.3 Sufficiency

\(T(x) \) is a statistic function of data that does not involve \(\theta \), the parameter of the distribution that generated \(x \). \(T(x) \) is said to be sufficient for \(\theta \) if all info about \(\theta \) contained in \(x \) is also contained in \(T(x) \).

For example, say \(x_n \) are i.i.d with normal distribution \((\mu, 1) \). Then \(T(x_1, ... x_n) = \sum x_i \) is sufficient for \(\mu \). Of course, Bayesians and frequentists have a different way of thinking about this sufficient statistic. For a Bayesian, all \(\theta, x, T(x) \) are random variables. So they define \(T(x) \) as sufficient if \(\theta \perp x|T(x) \). For a frequentist, \(\theta \) is fixed and he defines \(T(x) \) to be sufficient if the conditional distribution of \(x \) given \(T(x) \) does not involve \(\theta \).

11.1.4 Neyman Factorization Theorem

\[T(x) \text{ is sufficient iff } p(x|\theta) = g(T(x), \theta)h(x, T(x)) \] (11.6)

Note: This is automatically true for distributions in the exponential family as \(h(x) = h(x, T(x)) \) and \(g(T(x), \theta) = \exp\{\theta^T T(x) - A(\theta)\} \).

11.1.5 Maximum likelihood estimation in the Exponential Family

Fact: Exponential families are closed under sampling.

Consider i.i.d samples \(x_1, x_2, ... x_n \) which belong to an exponential family \(p(x|\eta) \). Now,

\[p(x_1, x_2, ... x_n|\eta) = \prod_i p(x_i|\eta) \]
\[= \left(\prod_i h(x_i) \right) \exp\{ \eta^T \sum_i T(x_i) - nA(\eta) \} \]

So basically, we can make the following observations: The sufficiency vector doesn’t grow as the number of samples; The density function remains in the exponential family.

11.1.6 Maximum Likelihood Estimation

The likelihood function is:

\[
\begin{align*}
\text{(Likelihood)} \ L(\eta; x_1...x_n) &= \log(p(x_1...x_n|\eta)) \\
&= \log h(x_1...x_n) + \eta^T \sum_i T(x_i) - nA(\eta)
\end{align*}
\]

We can easily infer that this is a concave function and also the domain is convex. Essentially what we are trying to estimate is \(\eta \). If we differentiate with respect to \(\eta \) to find the maximum likelihood, we get:

\[
\frac{\partial}{\partial \eta} l(\eta; x_1...x_n) = \sum_i T(x_i) - n \frac{\partial}{\partial \eta} A(\eta)
\]

(11.9)

To solve for \(\eta_{ml} \), we need to solve,

\[
\frac{\partial}{\partial \eta} A(\eta) = \frac{\sum_i T(x_i)}{n}
\]

(11.10)

That is we get \(E_{\eta_{ml}}(T(x)) = \frac{\sum T(x_i)}{n} \). Recall that \(\mu = \mu(\eta) = \frac{\partial}{\partial \eta} A(\eta) \). Now we have a general question: \(\mu(\eta_{ml}) = \frac{\partial}{\partial \eta_{ml}} A(\eta_{ml}) \)? It turns out that this is true. This is a general solution to the maximum likelihood parameter estimation problem across all members of the exponential family.