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The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters
have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with
conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-
Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible
intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods
for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge
regression and a robust variant.
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1. INTRODUCTION

The Lasso of Tibshirani (1996) estimates linear regression
coefficients through L1-constrained least squares. The Lasso
is usually used to estimate the regression parameters β =
(β1, . . . ,βp)! in the model

y = µ1n + Xβ + ε, (1)

where y is the n × 1 vector of responses, µ is the overall mean,
X is the n × p matrix of standardized regressors, and ε is the
n × 1 vector of independent and identically distributed normal
errors with mean 0 and unknown variance σ 2. For convenience,
Lasso estimates often are viewed as L1-penalized least squares
estimates. They achieve

min
β

(ỹ − Xβ)!(ỹ − Xβ) + λ

p∑

j=1

|βj | (2)

for some λ≥ 0, where ỹ = y− ȳ1n. The entire path of Lasso es-
timates for all values of λ can be efficiently computed through
a modification of the LARS algorithm of Efron, Hastie, John-
stone, and Tibshirani (2004) (see also Osborne, Presnell, and
Turlach 2000a).

Noting the form of the penalty term in (2), Tibshirani (1996)
suggested that Lasso estimates can be interpreted as poste-
rior mode estimates when the regression parameters have in-
dependent and identical Laplace (i.e., double-exponential) pri-
ors. Motivated by this connection, several other authors sub-
sequently proposed using Laplace-like priors (e.g., Figueiredo
2003; Bae and Mallick 2004; Yuan and Lin 2005). We con-
sider a fully Bayesian analysis using a conditional Laplace prior
specification of the form

π(β|σ 2) =
p∏

j=1

λ

2
√
σ 2

e−λ|βj |/
√
σ 2

(3)

and the noninformative scale-invariant marginal prior π(σ 2) =
1/σ 2 on σ 2. Conditioning on σ 2 is important, because it guar-
antees a unimodal full posterior (see App. A). Without this, the
posterior may not be unimodal, as shown by example in Ap-
pendix B. Lack of unimodality slows convergence of the Gibbs
sampler and makes point estimates less meaningful.
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Figure 1 compares posterior median estimates for this
Bayesian Lasso model with the ordinary Lasso and ridge re-
gression estimates for the diabetes data of Efron et al. (2004),
which has n = 442 and p = 10. The figure shows the paths of
these estimates as their respective shrinkage parameters are var-
ied. For ease of comparison, each is plotted as a function of its
relative L1 norm. The Bayesian Lasso estimates appear to be a
compromise between the Lasso and ridge regression estimates;
the paths are smooth, like ridge regression, but are more simi-
lar in shape to the Lasso paths, particularly when the L1 norm
is relatively small. Specifically, the Bayesian Lasso appears to
pull the more weakly related parameters to 0 faster than ridge
regression does, indicating a potential advantage of the Laplace
prior over a Gaussian (or a Student-t) prior. The vertical line
in the Lasso panel represents the estimate chosen by n-fold
(leave-one-out) cross-validation (see, e.g., Hastie, Tibshirani,
and Friedman 2001), whereas the vertical line in the Bayesian
Lasso panel represents the estimate chosen by marginal maxi-
mum likelihood (Sec. 3.1).

With λ selected by marginal maximum likelihood, posterior
medians and 95% credible intervals for the diabetes data re-
gression parameters are shown in Figure 2. For comparison, the
least squares estimates and the Lasso estimates for two differ-
ent values of λ are also shown. Although they are not sparse
in the exact sense, the Bayesian posterior medians are remark-
ably similar in value to the Lasso estimates. Moreover, all of the
Lasso estimates are well within the credible intervals, whereas
the least squares estimates are outside for four of the variables,
one of which is significant.

The following sections outline a simple and practical Gibbs
sampler implementation for the Bayesian Lasso and offer meth-
ods that address the choice of λ.

2. HIERARCHICAL MODEL AND GIBBS SAMPLER

The Gibbs sampler for the Bayesian Lasso exploits the fol-
lowing representation of the Laplace distribution as a scale mix-
ture of normals (with an exponential mixing density):

a

2
e−a|z| =

∫ ∞

0

1√
2πs

e−z2/(2s) a
2

2
e−a2s/2 ds, a > 0 (4)
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Figure 1. Lasso (a), Bayesian Lasso (b), and ridge regression (c) trace plots for estimates of the diabetes data regression parameters versus the
relative L1 norm, with vertical lines for the Lasso and Bayesian Lasso indicating the estimates chosen by n-fold cross-validation and marginal
maximum likelihood. The Bayesian Lasso estimates were posterior medians computed over a grid of λ values, using 10,000 consecutive iterations
of the Gibbs sampler of Section 2 (after 1,000 burn-in iterations) for each λ.

(e.g., Andrews and Mallows 1974). This suggests the following
hierarchical representation of the full model:

y|µ,X,β,σ 2 ∼ Nn(µ1n + Xβ,σ 2In),

β|σ 2, τ 2
1 , . . . , τ 2

p ∼ Np(0p,σ 2Dτ ),

Dτ = diag(τ 2
1 , . . . , τ 2

p), (5)

σ 2, τ 2
1 , . . . , τ 2

p ∼ π(σ 2) dσ 2
p∏

j=1

λ2

2
e
−λ2τ 2

j /2
dτ 2

j ,

σ 2, τ 2
1 , . . . , τ 2

p > 0.

(The parameter µ may be given an independent, flat prior.)
After integrating out τ 2

1 , . . . , τ 2
p , the conditional prior on β

has the desired form (3). We use the improper prior density
π(σ 2) = 1/σ 2, but any inverse-gamma prior for σ 2 also would
maintain conjugacy.

Similar hierarchies based on (4) have been used by other au-
thors. Figueiredo (2003) used such a hierarchy in conjunction
with an EM algorithm to compute a marginal posterior mode.
Bae and Mallick (2004) proposed a variant of this hierarchy
and a corresponding Gibbs sampler for probit binary regression
(which does not need a separate variance parameter).

Because the columns of X are centered, it is easy to analyti-
cally integrate µ from the joint posterior under its independent,

flat prior. Because µ is rarely of interest, we marginalize it out
in the interest of simplicity and speed. If desired, it can be rein-
troduced with a full conditional distribution that is normal with
mean y and variance σ 2/n.

Marginalizing over µ does not affect conjugacy. The full con-
ditional distributions of β , σ 2, and τ 2

1 , . . . , τ 2
p are still easy

to sample, and they depend on the centered response vec-
tor ỹ. The full conditional for β is multivariate normal with
mean A−1X!ỹ and variance σ 2 A−1, where A = X!X + D−1

τ .
The full conditional for σ 2 is inverse-gamma with shape pa-
rameter (n − 1)/2 + p/2 and scale parameter (ỹ − Xβ)!(ỹ −
Xβ)/2+β!D−1

τ β/2, and τ 2
1 , . . . , τ 2

p are conditionally indepen-
dent, with 1/τ 2

j conditionally inverse-Gaussian with parameters

µ′ =
√
λ2σ 2

β2
j

and λ′ = λ2

in the parameterization of the inverse-Gaussian density given
by

f (x) =
√

λ′

2π
x−3/2 exp

{
−λ′(x − µ′)2

2(µ′)2x

}
, x > 0

(Chhikara and Folks 1989). These full conditionals form the
basis for an efficient Gibbs sampler, with block updating of β
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Figure 2. Posterior median Bayesian Lasso estimates (⊕) and cor-
responding 95% credible intervals (equal-tailed) with λ selected ac-
cording to marginal maximum likelihood (Sec. 3.1). Overlaid are
the least squares estimates (×), Lasso estimates based on n-fold
cross-validation (*), and Lasso estimates chosen to match the L1
norm of the Bayes estimates (+). The variables were described by
Efron et al. (2004): (1) age, (2) sex, (3) bmi, (4) map, (5) tc, (6) ldl,
(7) hdl, (8) tch, (9) ltg, and (10) glu.

and (τ 2
1 , . . . , τ 2

p). Our experience suggests that convergence is
reasonably fast.

3. CHOOSING THE BAYESIAN LASSO PARAMETER

The parameter of the ordinary Lasso can be chosen by cross-
validation, generalized cross-validation, and ideas based on
Stein’s unbiased risk estimate (Tibshirani 1996). The Bayesian
Lasso also offers some uniquely Bayesian alternatives: empiri-
cal Bayes through marginal maximum likelihood and use of an
appropriate hyperprior.

3.1 Empirical Bayes by Marginal Maximum Likelihood

Casella (2001) proposed a Monte Carlo EM algorithm that
complements a Gibbs sampler and provides marginal maxi-
mum likelihood estimates of hyperparameters. For the Bayesian
Lasso, each iteration of the algorithm involves running the
Gibbs sampler using a λ value estimated from the sample of
the previous iteration. Specifically, iteration k uses the Gibbs
sampler of Section 2 with hyperparameter λ(k−1) (i.e., the es-
timate from iteration k − 1) to approximate the ideal updated
estimate,

λ(k) =
√

2p
∑p

j=1 Eλ(k−1)[τ 2
j |ỹ] ,

by replacing the conditional expectations with averages from
the Gibbs sample. (A derivation is provided in App. C.) We
suggest the initial value

λ(0) = p

√
σ̂ 2

LS

/ p∑

j=1

|β̂LS
j |,

where σ̂ 2
LS and β̂LS

j are estimates from the usual least squares
procedure. This empirical estimate tends to be smaller than the
maximizing λ, but our experience suggests that only extreme
initial overestimates of λ lead to slow convergence. Because
the expectations are estimated from the Gibbs sampler, the suc-
cessive λ estimates will not quite converge, but will eventually
drift randomly about the true maximum likelihood estimate,
with less drift if more Gibbs samples are taken in each itera-
tion.

When applied to the diabetes data, this algorithm yields an
optimal λ of approximately .237. The corresponding vector of
medians for β has an L1 norm of approximately .59 relative to
least squares (as indicated in Fig. 1). Figure 2 shows that these
posterior median estimates are very similar to certain Lasso es-
timates.

A Gibbs sample can be used with importance sampling meth-
ods for ratios of normalizing constants to approximate the like-
lihood ratio surface for λ near the maximizer. For the diabetes
data, we used this method to obtain the approximate 95% likeli-
hood ratio confidence interval (.125, .430) for λ, using the usual
chi-squared approximation.

3.2 Hyperpriors for the Lasso Parameter

An alternative to choosing λ explicitly is to give it a diffuse
hyperprior. We consider the class of gamma priors on λ2 (not λ)
of the form

π(λ2) = δr

'(r)
(λ2)r−1e−δλ2

, λ2 > 0 (r > 0, δ > 0), (6)

because the resulting conjugacy allows easy extension of the
Gibbs sampler. The improper scale-invariant prior 1/λ2 for λ2

(r = 0, δ = 0) is tempting, but it leads to an improper posterior.
Moreover, scale invariance is not a very compelling criterion,
because λ is unitless.

When prior (6) is used in the hierarchy of (5), the full condi-
tional distribution of λ2 is gamma with shape parameter p + r

and rate parameter
∑p

j=1 τ
2
j /2 + δ. With this specification, λ2

can simply join the other parameters in the Gibbs sampler, be-
cause the full conditional distributions of the other parameters
do not change.

The prior density for λ2 should approach 0 sufficiently fast
as λ2 → ∞ (to avoid mixing problems) but should be relatively
flat and place high probability near the maximum likelihood es-
timate. For the diabetes data, if we run this augmented Gibbs
sampler with r = 1 and δ = 1.78 (so that the prior on λ2 is
exponential with mean equal to about 10 times the maximum
likelihood estimate), then the posterior median for λ is approx-
imately .279, and a 95% equal-tailed posterior credible interval
for λ is approximately (.139, .486). Posterior medians and 95%
credible intervals for the regression coefficients are practically
identical to those shown in Figure 2.

4. EXTENSIONS

Hierarchies based on various scale mixtures of normals have
been used in Bayesian analysis both to produce priors with use-
ful properties and to robustify error distributions (West 1984).
The hierarchy specified in Section 2 can be used to mimic or
implement many other methods through modifications of the
priors on τ 2

1 , . . . , τ 2
p and σ 2. One trivial special case is ridge
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regression, in which all of the τ 2
j ’s are given degenerate dis-

tributions at the same constant value. We next briefly describe
Bayesian alternatives to two other Lasso-related methods.

4.1 Bridge Regression

One direct generalization of the Lasso (and ridge regression)
is penalized regression by solving (Frank and Friedman 1993)

min
β

(ỹ − Xβ)!(ỹ − Xβ) + λ

p∑

j=1

|βj |q

for some q ≥ 0 (with the q = 0 case corresponding to best-
subset regression). (See also Hastie et al. 2001, sec. 3.4.5,
Knight and Fu 2000, and Fu 1998, in which this is termed
“bridge regression,” at least in the case where q ≥ 1.) Of course,
q = 1 is the ordinary Lasso, and q = 2 is ridge regression.

The Bayesian analog of this penalization involves using a
prior on β of the form

π(β) ∝
p∏

j=1

e−λ|βj |q ,

although, in keeping with (3), we would instead use

π(β|σ 2) ∝
p∏

j=1

e−λ(|βj |/
√
σ 2)q .

Thus the elements of β have (conditionally) independent pri-
ors from the exponential power distribution, although techni-
cally this term is reserved for the case where q ≥ 1. Whenever
0 < q ≤ 2, this distribution may be represented by a scale mix-
ture of normals; indeed, for 0 < q < 2,

e−|z|q ∝
∫ ∞

0

1√
2πs

e−z2/(2s) 1
s3/2 gq/2

(
1
2s

)
ds,

where gq/2 is the density of a positive stable random variable
with index q/2 (West 1987; Gneiting 1997), which generally
does not have a closed-form expression. A hierarchy of the
type discussed in Section 2 is applicable by placing appropri-
ate independent distributions on τ 2

1 , . . . , τ 2
p . Their resulting full

conditional distributions are closely related to certain exponen-
tial dispersion models (Jørgensen 1987). Whether an efficient
Gibbs sampler can be based on this hierarchy is not clear, how-
ever.

4.2 The “Huberized Lasso”

Rosset and Zhu (2004) illustrated that the Lasso may be made
more robust by using loss functions that are less severe than the
quadratic. They studied estimates that solve

min
β

n∑

i=1

L(ỹi − x!
i β) + λ

p∑

j=1

|βj |,

where L is a once-differentiable piecewise quadratic Huber-
type loss function that is quadratic in a neighborhood of 0 and
linearly increases away from 0 outside of that neighborhood.
Implementing an exact Bayesian analog is not easy, but it is
possible to implement a Bayesian analog of a similar hyper-
bolic loss,

L(d) =
√
η(η + d2/ρ2),

for some parameters η > 0 and ρ2 > 0. Note that this is almost
quadratic near d = 0 and asymptotically approaches linearity as
|d| →∞ .

The key idea for robustification is to replace the usual linear
regression model with

y|µ,X,β,σ 2
1 , . . . ,σ 2

n ∼ Nn(µ1n + Xβ,Dσ ),

where Dσ = diag(σ 2
1 , . . . ,σ 2

n ). (The parameter µ can be safely
given an independent, flat prior as before, but marginalizing
over µ is not as easy in this case.) Then independent and iden-
tical priors are placed on σ 2

1 , . . . ,σ 2
n . To mimic the hyperbolic

loss, an appropriate prior for (σ 2
1 , . . . ,σ 2

n ) is

n∏

i=1

1
2K1(η)ρ2 exp

(
−η

2

(
σ 2

i

ρ2 + ρ2

σ 2
i

))
,

where K1 is the modified Bessel K function with index 1, η > 0
is a shape parameter, and ρ2 > 0 is a scale parameter. The scale
parameter ρ2 can be given the noninformative scale-invariant
prior 1/ρ2, and the prior (5) on β would use ρ2 in place of σ 2.
On applying this prior and integrating out σ 2

1 , . . . ,σ 2
n , the con-

ditional density of the observations given the remaining para-
meters is

n∏

i=1

1

2K1(η)
√
ηρ2

exp
(
−

√
η
(
η + (yi − µ − x!

i β)2/ρ2
))

(Gneiting 1997), which has the desired hyperbolic form. The
Gibbs sampler is easy to implement because the full conditional
distributions of the σ 2

i ’s are reciprocal inverse-Gaussian, and
the full conditional distribution of ρ2 is in the class of general-
ized inverse-Gaussian distributions, for which reasonably effi-
cient simulation algorithms exist (Atkinson 1982).

5. DISCUSSION

For the diabetes data, results from the Bayesian Lasso are
strikingly similar to those from the ordinary Lasso. Although
more computationally intensive, the Bayesian Lasso is simi-
larly easy to implement and automatically provides interval es-
timates for all parameters, including the error variance.

The various proposed standard error estimators for the Lasso
are not considered fully satisfactory. Approximate analytical
methods proposed by Tibshirani (1996) and Fan and Li (2001),
for example, fail to provide reasonable standard error estimates
for the parameters estimated to be 0. The method of Osborne et
al. (2000b) avoids this problem but is still based on a smooth
approximation.

The methods of Section 3 for choosing λ are not intended for
direct application to the ordinary Lasso, because λ serves the
Bayesian Lasso in a somewhat different capacity. But they po-
tentially could aid in choosing λ for the Lasso. The Lasso para-
meter is generally chosen using cross-validation, but the n-fold
cross-validation choice is often unstable. For the diabetes data
of Section 1, it was in fact rather poorly defined. (More general
K-fold cross-validation may be more stable, but at the price of
some bias.) Choosing the Lasso parameter so that the estimates
resemble those of the Bayesian Lasso (by, e.g., choosing them
to match in L1 norm, as in Fig. 2) could result in more stable
Lasso estimates.
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The extension of the Bayesian Lasso to generalized linear
models (GLMs) may yield further advantages. The Bayesian
Lasso may be more computationally competitive relative to the
Lasso in this context, because the fast special algorithms for the
Lasso apply only to the linear case. Lasso algorithms for GLMs
are generally much slower, making cross-validation compu-
tationally demanding. Extending the Bayesian Lasso will re-
quire methodological modifications, as demonstrated by Bae
and Mallick (2004) for probit regression, as well as reintroduc-
tion of the intercept parameter µ (because it is unlikely to be
analytically integrable from the posterior). But with careful im-
plementation, the Bayesian Lasso need not require much more
computation for GLMs than for linear models.

APPENDIX A: UNIMODALITY UNDER PRIOR (3)

Here we demonstrate that the joint posterior distribution π(β,σ 2|ỹ)

of β and σ 2 > 0 under the prior

π(β,σ 2) = π(σ 2)

p∏

j=1

λ

2
√
σ 2

e−λ|βj |/
√
σ 2

is unimodal for typical choices of π(σ 2) and any choice of λ ≥ 0, in
the sense that for every c > 0, the upper level set

{
(β,σ 2)|π(β,σ 2|ỹ) > c,σ 2 > 0

}

is connected. The log posterior is

ln(π(σ 2)) − n + p − 1
2

ln(σ 2) − 1

2σ 2 ‖ỹ − Xβ‖2
2 − λ‖β‖1/

√
σ 2

(A.1)

after dropping all terms that involve neither β nor σ 2. The coordinate
transformation defined by

φ ↔ β/
√
σ 2, ρ ↔ 1/

√
σ 2

is continuous with a continuous inverse when 0 < σ 2 < ∞, and thus
unimodality in the original coordinates is equivalent to unimodal-
ity in these transformed coordinates. In the transformed coordinates,
(A.1) becomes

ln(π(1/ρ2)) + (n + p − 1) ln(ρ) − 1
2
‖ρỹ − Xφ‖2

2 − λ‖φ‖1. (A.2)

The second and fourth terms are clearly concave in (φ,ρ), and the
third term is a concave quadratic in (φ,ρ). Thus (A.2) is concave, and
hence the posterior is unimodal, provided that ln(π(1/ρ2)) is concave.
The function ln(π(1/ρ2)) is concave if, for instance, σ 2 has the scale-
invariant prior 1/σ 2 or any inverse-gamma prior.

APPENDIX B: BIMODALITY UNDER THE
UNCONDITIONAL PRIOR

If instead of (3), the unconditional Laplace prior

π(β) =
p∏

j=1

λ

2
e−λ|βj | (B.1)

is specified, with some independent prior π(σ 2) on σ 2, then the joint
posterior distribution of β and σ 2 is proportional to

π(σ 2)(σ 2)−(n−1)/2

× exp

{

− 1

2σ 2 (ỹ − Xβ)!(ỹ − Xβ) − λ

p∑

j=1

|βj |
}

. (B.2)

Figure B.1. Contour plot of an artificially generated posterior den-
sity of (β, ln(σ 2)) of the form (B.2) that manifests bimodality. The
logarithm of σ 2 is used only because it provides better visual scaling.

(Note that in this case, λ has units that are the reciprocal of the units
of the response, and any change in units will require a corresponding
change in λ to produce the equivalent Bayesian solution.)

In Appendix A it was shown that using the conditional prior (3)
leads to a unimodal posterior for any choice of λ ≥ 0, for many rea-
sonable choices of π(σ 2). In contrast, posteriors of the form (B.2) can
easily have more than one mode. For example, Figure B.1 shows the
contours of a bimodal joint density of β and ln(σ 2) when p = 1 and
π(σ 2) is the scale-invariant prior 1/σ 2. [Similar bimodality can occur
even if π(σ 2) is proper.] This particular example results from taking
p = 1, n = 10, X!X = 1, X!ỹ = 5, ỹ!ỹ = 26, and λ = 3. The mode
on the lower right is near the least squares solution β = 5,σ 2 = 1/8,
whereas that on the upper left is near the values β = 0 and σ 2 = 26/9,
which would be estimated for the selected model in which β is set
to 0. The crease in the upper left mode along the line β = 0 is a feature
produced by the “sharp corners” of the L1 penalty. Not surprisingly,
the marginal posterior density of β alone is also bimodal (results not
shown). We have not thoroughly investigated the case where p > 1,
but perhaps an example of a joint posterior with more than two modes
might be possible in that case, with the modes corresponding to setting
various subsets of the elements of β to 0.

APPENDIX C: EMPIRICAL BAYES UPDATE

The Monte Carlo EM method for empirical Bayes estimation of hy-
perparameters proposed by Casella (2001) essentially treats the para-
meters as “missing data” and then uses the EM algorithm to iteratively
approximate the hyperparameters, substituting Monte Carlo estimates
for any expected values that cannot be computed explicitly. For the
Bayesian Lasso, the Gibbs sampler is used to estimate the expected
values.

The hierarchy of Section 2 with the conjugate inverse-gamma prior

π(σ 2) = γ a

'(a)
(σ 2)−a−1e−γ /σ 2

, σ 2 > 0 (a > 0,γ > 0),



686 Journal of the American Statistical Association, June 2008

yields the “complete-data” log-likelihood

−((n + p − 1)/2 + a + 1) ln(σ 2) − 1

σ 2 (‖ỹ − Xβ‖2
2/2 + γ )

− 1
2

p∑

j=1

ln(τ2
j ) − 1

2

p∑

j=1

β2
j

σ 2τ2
j

+ p ln(λ2) − λ2

2

p∑

j=1

τ2
j

(after dropping constant terms not involving λ). The scale-invariant
prior 1/σ 2, formally obtained by taking a = 0 and γ = 0, alternatively
can be used without invalidating any of the following discussion.

Iteration k makes use of the estimate λ(k−1) from the previous iter-
ation (or the initial value, if k = 1). Ideally, the E-step involves taking
the expected value of the log-likelihood, conditional on ỹ and under
λ(k−1), to get

Q
(
λ|λ(k−1)) = p ln(λ2) − λ2

2

p∑

j=1

Eλ(k−1) [τ2
j |ỹ]

+ terms not involving λ

(in the usual notation associated with EM). The M-step maximizes this
expression over λ to produce the next estimate, λ(k). In this case there
is a simple analytical solution,

λ(k) =
√

2p
∑p

j=1 Eλ(k−1) [τ2
j |ỹ]

.

Of course, the conditional expectations are just the posterior expecta-
tions under the hyperparameter λ(k−1), and thus they can be estimated
using the sample averages from a run of the Gibbs sampler described
in Section 2.

[Received October 2007. Revised January 2008.]
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