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Variable selection in the linear regression model takes many apparent
faces from both frequentist and Bayesian standpoints. In this paper we
introduce a variable selection method referred to as a rescaled spike and
slab model. We study the importance of prior hierarchical specifications
and draw connections to frequentist generalized ridge regression estimation.
Specifically, we study the usefulness of continuous bimodal priors to model
hypervariance parameters, and the effect scaling has on the posterior mean
through its relationship to penalization. Several model selection strategies,
some frequentist and some Bayesian in nature, are developed and studied
theoretically. We demonstrate the importance of selective shrinkage for
effective variable selection in terms of risk misclassification, and show this
is achieved using the posterior from a rescaled spike and slab model. We
also show how to verify a procedure’s ability to reduce model uncertainty in
finite samples using a specialized forward selection strategy. Using this tool,
we illustrate the effectiveness of rescaled spike and slab models in reducing
model uncertainty.

1. Introduction. We consider the long-standing problem of selecting vari-
ables in a linear regression model. That is, given n independent responses Yi , with
corresponding K-dimensional covariates xi = (xi,1, . . . , xi,K)t , the problem is to
find the subset of nonzero covariate parameters from β = (β1, . . . ,βK)t , where
the model is assumed to be

Yi = α0 + β1xi,1 + · · · + βKxi,K + εi = α0 + xt
iβ + εi , i = 1, . . . , n.(1)

The εi are independent random variables (but not necessarily identically distrib-
uted) such that E(εi ) = 0 and E(ε2

i ) = σ 2. The variance σ 2 > 0 is assumed to be
unknown.

The true value for β will be denoted by β0 = (β1,0, . . . ,βK,0)
t and the true

variance of εi by σ 2
0 > 0. The complexity, or true dimension, is the number of βk,0

coefficients that are nonzero, which we denote by k0. We assume that 1 ≤ k0 ≤ K ,
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where K , the total number of covariates, is a fixed value. For convenience, and
without loss of generality, we assume that covariates have been centered and
rescaled so that

∑n
i=1 xi,k = 0 and

∑n
i=1 x2

i,k = n for each k = 1, . . . ,K . Because
we can define α0 = "Y , the mean of the Yi responses, and replace Yi by the centered
values Yi − "Y , we can simply assume that α0 = 0. Thus, we remove α0 throughout
our discussion.

The classical variable selection framework involves identification of the nonzero
elements of β0 and sometimes, additionally, estimation of k0. Information-
theoretic approaches [see, e.g., Shao (1997)] consider all 2K models and select the
model with the best fit according to some information based criteria. These have
been shown to have optimal asymptotic properties, but finite sample performance
has suffered [Bickel and Zhang (1992), Rao (1999), Shao and Rao (2000) and
Leeb and Pötscher (2003)]. Furthermore, such methods become computationally
infeasible even for relatively small K . Some solutions have been proposed [see,
e.g., Zheng and Loh (1995, 1997)] where a data-based ordering of the elements
of β is used in tandem with a complexity recovery criterion. Unfortunately, the
asymptotic rates that need to be satisfied serve only as a guide and can prove
difficult to implement in practice.

Bayesian spike and slab approaches to variable selection (see Section 2) have
also been proposed [Mitchell and Beauchamp (1988), George and McCulloch
(1993), Chipman (1996), Clyde, DeSimone and Parmigiani (1996), Geweke (1996)
and Kuo and Mallick (1998)]. These involve designing a hierarchy of priors
over the parameter and model spaces of (1). Gibbs sampling is used to identify
promising models with high posterior probability of occurrence. The choice of
priors is often tricky, although empirical Bayes approaches can be used to deal
with this issue [Chipman, George and McCulloch (2001)]. With increasing K ,
however, the task becomes more difficult. Furthermore, Barbieri and Berger (2004)
have shown that in many circumstances the high frequency model is not the
optimal predictive model and that the median model (the model consisting of those
variables which have overall posterior inclusion probability greater than or equal
to 50%) is predictively optimal.

In recent work, Ishwaran and Rao (2000, 2003, 2005) used a modified
rescaled spike and slab model that makes use of continuous bimodal priors for
hypervariance parameters (see Section 3). This method proved particularly suitable
for regression settings with very large K . Applications of this work included
identifying differentially expressing genes from DNA microarray data. It was
shown that this could be cast as a special case of (1) under a near orthogonal
design for two group problems [Ishwaran and Rao (2003)], and as an orthogonal
design for general multiclass problems [Ishwaran and Rao (2005)]. Along the
lines of Barbieri and Berger (2004), attention was focused on processing posterior
information for β (in this case by considering posterior mean values) rather than
finding high frequency models. This is because in high-dimensional situations it
is common for there to be no high frequency model (in the microarray examples



732 H. ISHWARAN AND J. S. RAO

considered K was on the order of 60,000). Improved performance was observed
over traditional methods and attributed to the procedure’s ability to maintain a
balance between low false detection and high statistical power. A partial theoretical
analysis was carried out and connections to frequentist shrinkage made. The
improved performance was linked to selective shrinkage in which only truly zero
coefficients were shrunk toward zero from their ordinary least squares (OLS)
estimates. In addition, a novel shrinkage plot which allowed adaptive calibration
of significance levels to account for multiple testing under the large K setup was
developed.

1.1. Statement of main results. In this article we provide a general analysis of
the spike and slab approach. A key ingredient to our approach involves drawing
upon connections between the posterior mean, the foundation of our variable
selection approach, and frequentist generalized ridge regression estimation. Our
primary findings are summarized as follows:

1. The use of a spike and slab model with a continuous bimodal prior for
hypervariances has distinct advantages in terms of calibration. However, like
any prior, its effect becomes swamped by the likelihood as the sample size n
increases, thus reducing the potential for the prior to impact model selection
relative to a frequentist method. Instead, we introduce a rescaled spike and
slab model defined by replacing the Y -responses with

√
n-rescaled values. This

makes it possible for the prior to have a nonvanishing effect, and so is a type of
sample size universality for the prior.

2. This rescaling is accompanied by a variance inflation parameter λn. It is shown
through the connection to generalized ridge regression that λn controls the
amount of shrinkage the posterior mean exhibits relative to the OLS, and
thus can be viewed as a penalization effect. Theorem 2 of Section 3 shows
that if λn satisfies λn → ∞ and λn/n → 0, then the effect of shrinkage
vanishes asymptotically and the posterior mean (after suitable rescaling) is
asymptotically equivalent to the OLS (and, therefore, is consistent for β0).

3. While consistency is important from an estimation perspective, we show for
model selection purposes that the most interesting case occurs when λn = n.
At this level of penalization, at least for orthogonal designs, the posterior mean
achieves an oracle risk misclassification performance relative to the OLS under
a correctly chosen value for the hypervariance (Theorem 5 of Section 5). While
this is an oracle result, we show that similar risk performance is achieved using
a continuous bimodal prior. Continuity of the prior will be shown to be essential
for the posterior mean to identify nonzero coefficients, while bimodality of the
prior will enable the posterior mean to identify zero coefficients (Theorem 6 of
Section 5).

4. Thus, the use of a rescaled spike and slab model, in combination with
a continuous bimodal prior, has the effect of turning the posterior mean into
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a highly effective Bayesian test statistic. Unlike the analogous frequentist
test statistic based on the OLS, the posterior mean takes advantage of model
averaging and the benefits of shrinkage through generalized ridge regression
estimation. This leads to a type of “selective shrinkage” where the posterior
mean is asymptotically biased and shrunk toward zero for coefficients that are
zero (see Theorem 6 for an explicit finite sample description of the posterior).
The exact nature of performance gains compared to standard OLS model
selection procedures has to do primarily with this selective shrinkage.

5. Information from the posterior could be used in many ways to select variables;
however, by using a local asymptotic argument, we show that the posterior is
asymptotically maximized by the posterior mean (see Section 4). This naturally
suggests the use of the posterior mean, especially when combined with a
reliable thresholding rule. Such a rule, termed “Zcut”, is motivated by a ridge
distribution that appears in the limit in our analysis. Also suggested from this
analysis is a new multivariate null distribution for testing if a coefficient is zero
(Section 5).

6. We introduce a forward stepwise selection strategy as an empirical tool
for verifying the ability of a model averaging procedure to reduce model
uncertainty. If a procedure is effective, then its data based version of the forward
stepwise procedure should outperform an OLS model estimator. See Section 6
and Theorem 8.

1.2. Selective shrinkage. A common thread underlying the article, and key
to most of the results just highlighted, is the selective shrinkage ability of the
posterior. It is worthwhile, therefore, to briefly amplify what we mean by this.
Figure 1 serves as an illustration of the idea. There Z-test statistics Ẑk,n estimated
by OLS under the full model are plotted against the corresponding posterior mean
values β̂∗

k,n under our rescaled spike and slab model (the notation used will be
explained later in the paper). As mentioned, these rescaled models are derived
under a

√
n-rescaling of the data, which forces the posterior mean onto a

√
n-scale.

This is why we plot the posterior mean against a test statistic. The results depicted
in Figure 1 are based on a simulation, as in Breiman (1992), for an uncorrelated
(near-orthogonal) design where k0 = 105, K = 400 and n = 800 (see Section 8 for
details). Selective shrinkage has to do with shrinkage for the zero βk,0 coefficients,
and is immediately obvious from Figure 1. Note how the β̂∗

k,n are shrunken toward
a cluster of values near zero for many of the zero coefficients, but are similar to the
frequentist Z-tests for many of the nonzero coefficients. It is precisely this effect
we refer to as selective shrinkage.

In fact, this kind of selective shrinkage is not unique to the Bayesian variable
selection framework. Shao (1993, 1996) and Zhang (1993) studied cross-validation
and bootstrapping for model selection and discovered that to achieve optimal
asymptotic performance, a nonvanishing bias term was needed, and this could be
constructed by modifying the resampling scheme (see the references for details).



734 H. ISHWARAN AND J. S. RAO

FIG. 1. Selective shrinkage. Z-test statistics Ẑk,n versus posterior mean values β̂∗
k,n (blue circles

are zero coefficients, red triangles nonzero coefficients). Result from Breiman simulation of Section 8
with an uncorrelated design matrix, k0 = 105, K = 400 and n = 800.

Overfit models (ones with too many parameters) are preferentially selected without
this bias term. As a connection to this current work, this amounts to detecting zero
coefficients—which is a type of selective shrinkage.

1.3. Organization of the article. The article is organized as follows. Section 2
presents an overview of spike and slab models. Section 3 introduces our rescaled
models and discusses the universality of priors, the role of rescaling and
generalized ridge regression. Section 4 examines the optimality of the posterior
mean under a local asymptotics framework. Section 5 introduces the Zcut selection
strategy. Its optimality in terms of risk performance and complexity recovery is
discussed. Section 6 uses a special paradigm in which β0 is assumed ordered a
priori, and derives both forward and backward selection strategies in the spirit of
Leeb and Pötscher (2003). These are used to study the effects of model uncertainty.
Sections 7 and 8 present a real data analysis and simulation.

2. Spike and slab models. By a spike and slab model we mean a Bayesian
model specified by the following prior hierarchy:

(Yi |xi ,β,σ 2)
ind∼ N(xt

iβ,σ 2), i = 1, . . . , n,

(β|γ ) ∼ N(0,#),

γ ∼ π(dγ ),

σ 2 ∼ µ(dσ 2),

(2)
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where 0 is the K-dimensional zero vector, # is the K × K diagonal matrix
diag(γ1, . . . ,γK), π is the prior measure for γ = (γ1, . . . ,γK)t and µ is the prior
measure for σ 2. Throughout we assume that both π and µ are chosen to exclude
values of zero with probability one; that is, π{γk > 0} = 1 for k = 1, . . . ,K and
µ{σ 2 > 0} = 1.

Lempers (1971) and Mitchell and Beauchamp (1988) were among the earliest
to pioneer the spike and slab method. The expression “spike and slab” referred
to the prior for β used in their hierarchical formulation. This was chosen so that
βk were mutually independent with a two-point mixture distribution made up of
a uniform flat distribution (the slab) and a degenerate distribution at zero (the
spike). Our definition (2) deviates significantly from this. In place of a two-point
mixture distribution, we assume that β has a multivariate normal scale mixture
distribution specified through the prior π for the hypervariance γ . Our basic idea,
however, is similar in spirit to the Lempers–Mitchell–Beauchamp approach. To
select variables, the idea is to zero out βk coefficients that are truly zero by making
their posterior mean values small. The spike and slab hierarchy (2) accomplishes
this through the values for the hypervariances. Small hypervariances help to zero
out coefficients, while large values inflate coefficients. The latter coefficients are
the ones we would like to select in the final model.

EXAMPLE 1 (Two-component indifference priors). A popular version of the
spike and slab model, introduced by George and McCulloch (1993), identifies zero
and nonzero βk’s by using zero–one latent variables Ik . This identification is a
consequence of the prior used for βk , which is assumed to be a scale mixture of
two normal distributions:

(βk|Ik)
ind∼ (1 − Ik)N(0, τ 2

k ) + IkN(0, ckτ
2
k ), k = 1, . . . ,K.

[We use the notation N(0, v2) informally here to represent the measure of a normal
variable with mean 0 and variance v2.] The value for τ 2

k > 0 is some suitably small
value while ck > 0 is some suitably large value. Coefficients that are promising
have posterior latent variables Ik = 1. These coefficients will have large posterior
hypervariances and, consequently, large posterior βk values. The opposite occurs
when Ik = 0. The prior hierarchy for β is completed by assuming a prior for Ik .
In principle, one can use any prior over the 2K possible values for (I1, . . . ,IK)t ;
however, often Ik are taken as independent Bernoulli(wk) random variables,
where 0 < wk < 1. It is common practice to set wk = 1/2. This is referred to
as an indifference, or uniform prior. It is clear this setup can be recast as a spike
and slab model (2). That is, the prior π(dγ ) in (2) is defined by the conditional
distributions

(γk|ck, τ
2
k ,Ik)

ind∼ (1 − Ik)δτ 2
k
(·) + Ik δckτ

2
k
(·), k = 1, . . . ,K,

(Ik|wk)
ind∼ (1 − wk)δ0(·) + wkδ1(·),

(3)
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where δv(·) is used to denote a discrete measure concentrated at the value v. Of
course, (3) can be written more compactly as

(γk|ck, τ
2
k ,wk)

ind∼ (1 − wk)δτ 2
k
(·) + wkδckτ

2
k
(·), k = 1, . . . ,K.

However, (3) is often preferred for computational purposes.

EXAMPLE 2 (Continuous bimodal priors). In practice, it can be difficult
to select the values for τ 2

k , ckτ
2
k and wk used in the priors for β and Ik .

Improperly chosen values lead to models that concentrate on either too few
or too many coefficients. Recognizing this problem, Ishwaran and Rao (2000)
proposed a continuous bimodal distribution for γk in place of the two-point mixture
distribution for γk in (3). They introduced the following prior hierarchy for β:

(βk|Ik, τ
2
k )

ind∼ N(0,Ikτ
2
k ), k = 1, . . . ,K,

(Ik|v0,w)
i.i.d.∼ (1 − w) δv0(·) + w δ1(·),

(4)
(τ−2

k |a1, a2)
i.i.d.∼ Gamma(a1, a2),

w ∼ Uniform[0,1].
The prior π for γ is induced by γk = Ikτ

2
k , and thus integrating over w shows

that (4) is a prior for β as in (2).
In (4), v0 (a small near zero value) and a1 and a2 (the shape and scale parameters

for a gamma density) are chosen so that γk = Ikτ
2
k has a continuous bimodal

distribution with a spike at v0 and a right continuous tail (see Figure 2). The spike
at v0 is important because it enables the posterior to shrink values for the zero βk,0

FIG. 2. Conditional density for γk , where v0 = 0.005, a1 = 5 and a2 = 50 and (a) w = 0.5,
(b) w = 0.95. Observe that only the height of the density changes as w is varied. [Note as w has
a uniform prior, (a) also corresponds to the marginal density for γk .]
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coefficients, while the right-continuous tail is used to identify nonzero parameters.
Continuity is crucial because it avoids having to manually set a bimodal prior
as in (3). Another unique feature of (4) is the parameter w. Its value controls
how likely Ik equals 1 or v0, and, therefore, it takes on the role of a complexity
parameter controlling the size of models. Notice that using an indifference prior
is equivalent to choosing a degenerate prior for w at the value of 1/2. Using a
continuous prior for w, therefore, allows for a greater amount of adaptiveness in
estimating model size.

3. Rescaling, penalization and universality of priors. The flexibility of a
prior like (4) greatly simplifies the problems of calibration. However, just like
any other prior, its effect on the posterior vanishes as the sample size increases,
and without some basic adjustment to the underlying spike and slab model, the
only way to avoid a washed out effect would be to tune the prior as a function
of the sample size. Having to adjust the prior is undesirable. Instead, to achieve a
type of “universality,” or sample size invariance, we introduce a modified rescaled
spike and slab model (Section 3.1). This involves replacing the original Yi values
with ones transformed by a

√
n factor. Also included in the models is a variance

inflation factor needed to adjust to the new variance of the transformed data. To
determine an appropriate choice for the inflation factor, we show that this value
can also be interpreted as a penalization shrinkage effect of the posterior mean.
We show that a value of n is the most appropriate because it ensures that the prior
has a nonvanishing effect. This is important, because as we demonstrate later in
Section 5, this nonvanishing effect, in combination with an appropriately selected
prior for γ , such as (4), yields a model selection procedure based on the posterior
mean with superior performance over one using the OLS.

For our results we require some fairly mild constraints on the behavior of
covariates.

Design assumptions. Let X be the n × K design matrix from the regression
model (1). We shall make use of one, or several, of the following conditions:

(D1)
∑n

i=1 xi,k = 0 and
∑n

i=1 x2
i,k = n for each k = 1, . . . ,K .

(D2) max1≤i≤n ‖xi‖/
√

n → 0, where ‖ ·‖ is the *2-norm.
(D3) XtX is positive definite.
(D4) $n = XtX/n → $0, where $0 is positive definite.

Condition (D1) simply reiterates the assumption that covariates are centered
and rescaled. Condition (D2) is designed to keep any covariate xi from becoming
too large. Condition (D3) will simplify some arguments, but is unnecessary
for asymptotic results in light of condition (D4). Condition (D3) is convenient,
because it frees us from addressing noninvertibility for small values of n. It also
allows us to write out closed form expressions for the OLS estimate without having
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to worry about generalized inverses. Note, however, that from a practical point of
view, noninvertibility for $n is not problematic. This is because the conditional
posterior mean is a generalized ridge estimator, which always exists if the ridge
parameters are nonzero.

REMARK 1. We call β̂R a generalized ridge estimator for β0 if β̂R = (XtX +
D)−1XtY, where D is a K × K diagonal matrix. Here Y = (Y1, . . . , Yn)

t is the
vector of responses. The diagonal elements d1, . . . , dK of D are assumed to be
nonnegative and are referred to as the ridge parameters, while D is referred to as
the ridge matrix. If dk > 0 for each k, then XtX + D is always of full rank. See
Hoerl (1962) and Hoerl and Kennard (1970) for background on ridge regression.

3.1. Rescaled spike and slab models. By a rescaled spike and slab model, we
mean a spike and slab model modified as follows:

(Y ∗
i |xi ,β,σ 2)

ind∼ N(xt
iβ,σ 2λn), i = 1, . . . , n,

(β|γ ) ∼ N(0,#),
(5)

γ ∼ π(dγ ),

σ 2 ∼ µ(dσ 2),

where Y ∗
i = σ̂−1

n n1/2Yi are rescaled Yi values, σ̂ 2
n = ‖Y − Xβ̂

◦
n‖2/(n − K) is the

unbiased estimator for σ 2
0 based on the full model and β̂

◦
n = (XtX)−1XtY is the

OLS estimate for β0 from (1).
The parameter λn appearing in (5) is one of the key differences between (5) and

our earlier spike and slab model (2). One way to think about this value is that it’s a
variance inflation factor introduced to compensate for the scaling of the Yi’s. Given
that a

√
n-scaling is used, the most natural choice for λn would be n, reflecting the

correct increase in the variance of the data. However, another way to motivate this
choice is through a penalization argument. We show that λn controls the amount
of shrinkage and that a value of λn = n is the amount of penalization required in
order to ensure a shrinkage effect in the limit.

REMARK 2. When λn = n, we have found that σ 2 in (5) plays an important
adaptive role in adjusting the penalty λn, but only by some small amount. Our
experience has shown that under this setting the posterior for σ 2 will concentrate
around the value of one, thus fine tuning the amount of penalization. Some
empirical evidence of this will be provided later on in Section 8.

REMARK 3. Throughout the paper when illustrating the spike and slab
methodology, we use the continuous bimodal priors (4) in tandem with the rescaled
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spike and slab model (5) under a penalization λn = n. Specifically, we use the
model

(Y ∗
i |xi ,β,σ 2)

ind∼ N(xt
iβ,σ 2n), i = 1, . . . , n,

(βk|Ik, τ
2
k )

ind∼ N(0,Ikτ
2
k ), k = 1, . . . ,K,

(Ik|v0,w)
i.i.d.∼ (1 − w)δv0(·) + wδ1(·),

(6)
(τ−2

k |b1, b2)
i.i.d.∼ Gamma(a1, a2),

w ∼ Uniform[0,1],
σ−2 ∼ Gamma(b1, b2),

with hyperparameters specified as in Figure 2 and b1 = b2 = 0.0001. Later theory
will show the benefits of using a model like this. In estimating parameters we
use the Gibbs sampling algorithm discussed in Ishwaran and Rao (2000). We
refer to this method as Stochastic Variable Selection, or SVS for short. The SVS
algorithm is easily implemented. Because of conjugacy, each of the steps in the
Gibbs sampler can be simulated from well-known distributions (see the Appendix
for details). In particular, the draw for σ 2 is from an inverse-gamma distribution,
and, in fact, the choice of an inverse-gamma prior for σ 2 is chosen primarily to
exploit this conjugacy. Certainly, however, other priors for σ 2 could be used. In
light of our previous comment, any continuous prior with bounded support should
work well as long as the support covers a range of values that includes one. This is
important because some of the later theorems (e.g., Theorem 2 of Section 3.3 and
Theorem 7 of Section 5.5) require a bounded support for σ 2. Such assumptions
are not unrealistic.

3.2. Penalization and generalized ridge regression. To recast λn as a penalty
term, we establish a connection between the posterior mean and generalized ridge
regression estimation. This also shows the posterior mean can be viewed as a
model averaged shrinkage estimator, providing motivation for its use [see also
George (1986) and Clyde, Parmigiani and Vidakovic (1998) for more background
and motivation for shrinkage estimators]. Let β̂

∗
n(γ ,σ 2) = E(β|γ ,σ 2,Y∗) be the

conditional posterior mean for β from (5). It is easy to verify

β̂
∗
n(γ ,σ 2) = (XtX + σ 2λn#

−1)−1XtY∗

= σ̂−1
n n1/2(XtX + σ 2λn #−1)−1XtY,

where Y∗ = (Y ∗
1 , . . . , Y ∗

n )t . Thus, β̂
∗
n(γ ,σ 2) is the ridge solution to a regression

of Y∗ on X with ridge matrix σ 2λn#
−1. Let β̂

∗
n = E(β|Y∗) denote the posterior

mean for β from (5). Then

β̂
∗
n = σ̂−1

n n1/2
∫

{(XtX + σ 2λn #−1)−1XtY}(π × µ)(dγ , dσ 2|Y∗).
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Hence, β̂
∗
n is a weighted average of ridge shrunken estimates, where the adaptive

weights are determined from the posteriors of γ and σ 2. In other words, β̂
∗
n is an

estimator resulting from shrinkage in combination with model averaging.
Now we formalize the idea of λn as a penalty term. Define θ̂

∗
n (γ ,σ 2) =

σ̂nβ̂
∗
n(γ ,σ 2)/

√
n. It is clear θ̂

∗
n (γ ,σ 2) is the ridge solution to a regression of Y

on X with ridge matrix σ 2λn#
−1. A ridge solution can always be recast as an

optimization problem, which is a direct way of seeing how λn plays a penalization
role. It is straightforward to show that

θ̂
∗
n (γ ,σ 2) = arg min

β

{

‖Y − Xβ‖2 + λn

K∑

k=1

σ 2γ−1
k β2

k

}

,(7)

which shows clearly that λn is a penalty term.

REMARK 4. Keep in mind that to achieve this same kind of penalization
effect in the standard spike and slab model, (2), requires choosing a prior that
depends upon n. To see this, note that the conditional posterior mean β̂n(γ ,σ 2) =
E(β|γ ,σ 2,Y) from (2) is of the form

β̂n(γ ,σ 2) = (XtX + σ 2#−1)−1XtY.

Multiplying β̂n(γ ,σ 2) by
√

n/σ̂n gives β̂
∗
n(γ ,σ 2), but only if σ 2 is O(λn), or

if # has been scaled by 1/λn. Either scenario occurs only when the prior depends
upon n.

3.3. How much penalization? The identity (7) has an immediate consequence
for the choice of λn, at least from the point of view of estimation. This can be
seen by Theorem 1 of Knight and Fu (2000), which establishes consistency for
Bridge estimators (ridge estimation being a special case). Their result can be
stated in terms of hypervariance vectors with coordinates satisfying γ1 = · · · =
γk = γ0, where 0 < γ0 < ∞. For ease of notation, we write γ = γ01, where 1
is the K-dimensional vector with each coordinate equal to one. Theorem 1 of
Knight and Fu (2000) implies the following:

THEOREM 1 [Knight and Fu (2000)]. Suppose that εi are i.i.d. such that
E(εi ) = 0 and E(ε2

i ) = σ 2
0 . If condition (D4) holds and λn/n → λ0 ≥ 0, then

θ̂
∗
n(γ01,σ 2)

p→ arg min
β

{

(β − β0)
t$0(β − β0) + λ0σ

2γ−1
0

K∑

k=1

β2
k

}

.

In particular, if λ0 = 0, then θ̂
∗
n(γ01,σ 2)

p→ β0.
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Knight and Fu’s result shows there is a delicate balance between the rate at
which λn increases and consistency for β0. Any sequence λn which increases at
a rate of O(n) or faster will yield an inconsistent estimator, while any sequence
increasing more slowly than n will lead to a consistent procedure.

The following is an analogue of Knight and Fu’s result applied to rescaled spike
and slab models. Observe that this result does not require εi to be identically
distributed. The boundedness assumptions for π and µ stated in the theorem are
for technical reasons. In particular, the assumption that σ 2 remains bounded cannot
be removed. It is required for the penalization effect to be completely determined
through the value for λn, analogous to Theorem 1 (however, recall from Remark 3
that this kind of assumption is not unrealistic).

THEOREM 2. Assume that (1) holds where εi are independent such that
E(εi ) = 0 and E(ε2

i ) = σ 2
0 . Let θ̂

∗
n = σ̂nβ̂

∗
n/

√
n. Assume that conditions (D3)

and (D4) hold. Also, suppose there exists some η0 > 0 such that π{γk ≥ η0} = 1 for
each k = 1, . . . ,K and that µ{σ 2 ≤ s2

0} = 1 for some 0 < s2
0 < ∞. If λn/n → 0,

then θ̂
∗
n = β̂

◦
n + Op(λn/n)

p→ β0.

4. Optimality of the posterior mean. Theorem 2 shows that a penalization
effect satisfying λn/n → 0 yields a posterior mean (after rescaling) that is
asymptotically consistent for β0. While consistency is certainly crucial for
estimation purposes, it could be quite advantageous in terms of model selection
if we have a shrinkage effect that does not vanish asymptotically and a posterior
mean that behaves differently from the OLS. This naturally suggests penalizations
of the form λn = n.

The following theorem (Theorem 3) is a first step in quantifying these ideas.
Not only does it indicate more precisely the asymptotic behavior of the posterior
for β , but it also identifies the role that the normal hierarchy plays in shrinkage.
An important conclusion is that the optimal way to process the posterior in a local
asymptotics framework is by the posterior mean. We then begin a systematic study
of the posterior mean (Section 5) and show how this can be used for effective
model selection.

For this result we assume λn = n. Note that because of the rescaling of the Yi ’s,
the posterior is calibrated to a

√
n-scale, and thus some type of reparameterization

is needed if we want to consider the asymptotic behavior of the posterior mean.
We will look at the case when the true parameter shrinks to 0 at a

√
n-rate. Think

of this as a “local asymptotics case.” In some aspects these results complement the
work in Section 3 of Knight and Fu (2000). See also Le Cam and Yang [(1990),
Chapter 5] for more on local asymptotic arguments.

We assume that the true model is

Yni = xt
iβn + εni, i = 1, . . . , n,(8)
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where for each n, εn1, . . . , εnn are independent random variables. The true
parameter is βn = β0/

√
n. Let Y ∗

ni = √
nYni . To model (8) we use a rescaled spike

and slab model of the form

(Y ∗
ni |xi ,β) ∼ N(xt

iβ, n), i = 1, . . . , n,

(β|γ ) ∼ ν(dβ|γ ),

γ ∼ π(dγ ),

(9)

where ν(dβ|γ ) is the prior for β given γ . Write ν for the prior measure for β , that
is, the prior for β marginalized over γ . Let νn(·|Y∗

n) denote the posterior measure
for β given Y∗

n = (Y ∗
n1, . . . , Y

∗
nn)

t . For simplicity, and without loss of generality,
the following theorem is based on the assumption that σ 2

0 is known. There is no
loss in generality in making such an assumption, because if σ 2

0 were unknown, we
could always rescale Yni by

√
nYni/σ̂n and replace βn with σ0β0/

√
n as long as

σ̂ 2
n

p→ σ 2
0 . Therefore, for convenience we assume σ 2

0 = 1 is known.

THEOREM 3. Assume that ν has a density f that is continuous and
positive everywhere. Assume that (8) is the true regression model, where εni are
independent such that E(εni) = 0, E(ε2

ni) = σ 2
0 = 1 and E(ε4

ni) ≤ M for some
M < ∞. If (D1)–(D4) hold, then for each β1 ∈ RK and each C > 0,

log
(
νn(S(β1,C/

√
n )|Y∗

n)

νn(S(β0,C/
√

n )|Y∗
n)

)

d! log
(

f (β1)

f (β0)

)
− 1

2
(β1 − β0)

t$0(β1 − β0) + (β1 − β0)
tZ,

(10)

where Z has a N(0,$0) distribution. Here S(β,C) denotes a sphere centered at β
with radius C > 0.

Theorem 3 quantifies the asymptotic behavior of the posterior and its sensitivity
to the choice of prior for β . Observe that the log-ratio posterior probability on
the left-hand side of (10) can be thought of as a random function of β1. Call this
function -n(β1). Also, the expression on the right-hand side of (10),

−1
2(β1 − β0)

t$0(β1 − β0) + (β1 − β0)
tZ,(11)

is a random concave function of β1 with a unique maximum at β0 + $−1
0 Z,

a N(β0,$
−1
0 ) random vector. Consider the limit under an improper prior for β ,

where f (β0) = f (β1) for each β1. Then -n(β1) converges in distribution
to (11), which as we said has a unique maximum at a N(β0,$

−1
0 ) vector. This

is the same limiting distribution for
√

n β̂
◦
n, the rescaled OLS, under the settings

of the theorem. Therefore, under a flat prior the posterior behaves similarly to the
distribution for the OLS. This is intuitive, because with a noninformative prior
there is no ridge parameter, and, therefore, no penalization effect.
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On the other hand, consider what happens when β has a N(0,#0) prior. Now
the distributional limit of -n(β1) is

1
2β t

0#
−1
0 β0 − 1

2β t
1#

−1
0 β1 − 1

2(β1 − β0)
t$0(β1 − β0) + (β1 − β0)

tZ.

As a function of β1, this is once again concave. However, now the maximum is

β1 = ($0 + #−1
0 )−1($0β0 + Z),

which is a N(V−1
0 β0,V−1

0 $−1
0 V−1

0 ) random vector, where V0 = I + $−1
0 #−1

0 . Let
Q(·|γ 0) represent this limiting normal distribution.

The distribution Q(·|γ 0) is quite curious. It appears to be a new type of
asymptotic ridge limit. The next theorem identifies it as the limiting distribution
for the posterior mean.

THEOREM 4. Assume that β has a N(0,#0) prior for some fixed #0. Let
β̂

∗
nn(γ 0) = E(β|γ 0,Y∗

n) be the posterior mean from (9), where (8) is the true

model. Under the same conditions as Theorem 3, we have β̂
∗
nn(γ 0)

d! Q(·|γ 0).

Theorem 4 shows the importance of the posterior mean when coefficients shrink
to zero. In combination with Theorem 3, it shows that in such settings the correct
estimator for asymptotically maximizing the posterior must be the posterior mean
if a normal prior with a fixed hypervariance is used. Notice that the data does not
have to be normal for this result to hold.

5. The Zcut method, orthogonality and model selection performance.
Theorem 4 motivates the use of the posterior mean in settings where coefficients
may all be zero and when the hypervariance is fixed, but how does it perform
in general, and what are the implications for variable selection? It turns out
that under an appropriately specified prior for γ , the posterior mean from a
rescaled spike and slab model exhibits a type of selective shrinkage property,
shrinking in estimates for zero coefficients, while retaining large estimated values
for nonzero coefficients. This is a key property of immense potential. By using a
hard shrinkage rule, that is, a threshold rule for setting coefficients to zero, we can
take advantage of selective shrinkage to define an effective method for selecting
variables. We analyze the theoretical performance of such a hard shrinkage model
estimator termed “Zcut.” Our analysis will be confined to orthogonal designs (i.e.,
$n = $0 = I) for rescaled spike and slab models under a penalization of λn = n.
Under these settings we show Zcut possesses an oracle like risk misclassification
property when compared to the OLS. Specifically, we show there is an oracle
hypervariance γ 0 which leads to uniformly better risk performance (Section 5.3)
and that this type of risk performance is achieved by using a continuous bimodal
prior as specified by (4).
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5.1. Hard shrinkage rules and limiting null distributions. The Zcut procedure
(see Section 5.2 for a formal definition) uses a hard shrinkage rule based on
a standard normal distribution. Coefficients are set to zero by comparing their
posterior mean values to an appropriate cutoff from a standard normal. This
rule can be motivated using Theorem 4. This will also indicate an alternative
thresholding rule that is an adaptive function of the true coefficients. For simplicity,
assume that µ{σ 2 = 1} = 1. Under the assumptions outlined above, Theorem 4
implies that β̂

∗
n(γ ), the conditional posterior mean from (5), is approximately

distributed as Qn(·|γ ), a N(
√

nDβ0/σ0,DtD) distribution, where D is the
diagonal matrix diag(γ1/(1 + γ1), . . . ,γK/(1 + γK)) (to apply the theorem in
the nonlocal asymptotics case, simply replace β0 with

√
nβ0/σ0). Consequently,

the (unconditional) posterior mean β̂
∗
n should be approximately distributed as

Q∗
n(·) =

∫
Qn(·|γ )π(dγ |Y∗).

This would seem to suggest that in testing whether a specific coefficient βk,0 is
zero, and, therefore, deciding whether its coefficient estimate should be shrunk to
zero, we should compare its posterior mean value β̂∗

k,n to the kth marginal of Q∗
n

under the null βk,0 = 0. Given the complexity of the posterior distribution for γ ,
it is tricky to work out what this distribution is exactly. However, in its place we
could use

Q∗
k,null(·) =

∫
N
(

0,

(
γk

1 + γk

)2)
π(dγk|Y∗).

Notice that this is only an approximation to the true null distribution because
π(dγk|Y∗) does not specifically take into account the null hypothesis βk,0 = 0.
Nevertheless, we argue that Q∗

k,null is a reasonable choice. We will also show that
a threshold rule based on Q∗

k,null is not that different from the Zcut rule which uses
a N(0,1) reference distribution.

Both rules can be motivated by analyzing how π(dγk|Y∗) depends upon the
true value for the coefficient. First consider what happens when βk,0 .= 0 and the
null is misspecified. Then the posterior will asymptotically concentrate on large γk

values and γk/(1+γk) should be concentrated near one (see Theorem 6 later in this
section). Therefore, Q∗

k,null will be approximately N(0,1). Also, when βk,0 .= 0,
the kth marginal distribution for Qn(·|γ ) is dominated by the mean, which in this
case equals σ−1

0
√

nβk,0γk/(1 + γk). Therefore, if γk is large, β̂∗
k,n is of order

σ−1
0

√
nβk,0 + Op(1) = σ−1

0
√

nβk,0
(
1 + Op

(
1/

√
n
))

,

which shows that the null is likely to be rejected if β̂∗
k,n is compared to a N(0,1)

distribution.
On the other hand, consider when βk,0 = 0 and the null is really true. Now the

hypervariance γk will often take on small to intermediate values with high posterior
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probability and π(dγk|Y∗) should be a good approximation to the posterior under
the null. In such settings, using a N(0,1) in place of Q∗

k,null will be slightly more
conservative, but this is what we want (after all the null is really true). Let zα/2 be
the 100 × (1 − α/2) percentile of a standard normal distribution. Observe that

α = P{|N(0,1)| ≥ zα/2}

≥
∫

P
{
|N(0,1)| ≥ zα/2

(
γk

1 + γk

)−1}
π(dγk|Y∗)

= Q∗
k,null{|β̂∗

k,n| ≥ zα/2}.
Therefore, a cut-off value using a N(0,1) distribution yields a significance level
larger than Q∗

k,null. This is because Q∗
k,null has a smaller variance E((γk/(1 +

γk))
2|Y∗) and, therefore, a tighter distribution.

Figure 3 compares the two procedures using the data from our earlier simulation
(recall this uses a near orthogonal X design). Depicted are boxplots for values
simulated from Q∗

k,null for each k (see the caption for details). The dashed
horizontal lines at ±1.645 represent a α = 0.10 cutoff using a N(0,1) null,
while the whiskers for each boxplot are 90% null intervals under Q∗

k,null. In this
example both procedures lead to similar estimated models, and both yield few false

FIG. 3. Adaptive null intervals. Boxplots of simulated values from Q∗
k,null, with k sorted according

to largest absolute posterior mean (data from Figure 1). Values from Q∗
k,null were drawn within the

SVS Gibbs sampler from a multivariate N(0,σ 2Vt
n$nVn) distribution where Vn = ($n + #−1)−1.

Whiskers identify 90% null intervals. Superimposed are Ẑk,n frequentist test statistics (green
squares) and estimated values for β̂∗

k,n (blue circles and red triangles used for zero and nonzero
coefficients, resp.).
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discoveries. In general, however, we prefer the N(0,1) approach because of its
simplicity and conservativeness. Nevertheless, the Q∗

k,null intervals can always be
produced as part of the analysis. These intervals are valuable because they depict
the variability in the posterior mean under the null but are also adaptive to the true
value of the coefficient via π(dγk|Y∗).

5.2. The Zcut rule. The preceding argument suggests the use of a thresholding
rule that treats the posterior mean as a N(0,1) test statistic. This method, and the
resulting hard shrinkage model estimator, have been referred to as Zcut [Ishwaran
and Rao (2000, 2003, 2005)]. Here is its formal definition.

THE ZCUT MODEL ESTIMATOR. Let β̂
∗
n = ( β̂∗

1,n, . . . , β̂
∗
K,n)

t be the posterior
mean for β from (5). The Zcut model contains all coefficients βk whose posterior
means satisfy |β̂∗

k,n| ≥ zα/2. That is,

Zcut := {βk : |β̂∗
k,n| ≥ zα/2}.

Here α > 0 is some fixed value specified by the user. The Zcut estimator for β0 is
the restricted OLS estimator applied to only those coefficients in the Zcut model
(all other coefficients are set to zero).

Zcut hard shrinks the posterior mean. Hard shrinkage is important because it
reduces the dimension of the model estimator, which is a key to successful subset
selection. Given that the posterior mean is already taking advantage of shrinkage,
it is natural to wonder how this translates into performance gains over conventional
hard shrinkage procedures. We compare Zcut theoretically to “OLS-hard,” the hard
shrinkage estimator formed from the OLS estimator β̂

◦
n = ( β̂◦

1,n, . . . , β̂
◦
K,n)

t . Here
is its definition:

THE OLS-HARD MODEL ESTIMATOR. The OLS-hard model corresponds to
the model with coefficients βk whose Z-statistics, Ẑk,n, satisfy |Ẑk,n| ≥ zα/2,
where

Ẑk,n =
n1/2β̂◦

k,n

σ̂n(skk)1/2(12)

and skk is the kth diagonal value from $−1
n . That is,

OLS-hard := {βk : |Ẑk,n| ≥ zα/2}.

The OLS-hard estimator for β0 is the restricted OLS estimator using only OLS-
hard coefficients.
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5.3. Oracle risk performance. If Zcut is going to outperform OLS-hard in
general, then it is reasonable to expect it will be better in the fixed hypervariance
case for some appropriately selected γ . Theorem 5, our next result, shows this to
be true in the context of risk performance. We show there exists a value γ = γ 0 that
leads not only to better risk performance, but uniformly better risk performance.
Let B0 = {k :βk,0 = 0} be the indices for the zero coefficients of β0. Define

RZ(α) =
∑

k∈B0

P{|β̂∗
k,n| ≥ zα/2} +

∑

k∈Bc
0

P{|β̂∗
k,n| < zα/2}.

This is the expected number of coefficients misclassified by Zcut for a fixed
α-level. This can be thought of as the risk under a zero–one loss function. The
misclassification rate for Zcut is RZ(α)/K . Similarly, define

RO(α) =
∑

k∈B0

P{|Ẑk,n| ≥ zα/2} +
∑

k∈Bc
0

P{|Ẑk,n| < zα/2}

to be the risk for OLS-hard.

THEOREM 5. Assume that the linear regression model (1) holds such that
k0 < K and where εi are i.i.d. N(0,σ 2

0 ). Assume that in (5) β has a N(0,#0)

prior, µ{σ 2 = 1} = 1 and λn = n. Then for each 0 < δ < 1/2 there exists a γ 0
such that RZ(α) < RO(α) for all α ∈ [δ,1 − δ].

Theorem 5 shows that Zcut’s risk is uniformly better than the OLS-hard in any
finite sample setting if γ is set at the oracle value γ 0. Of course, in practice,
this oracle value is unknown, which raises the interesting question of whether the
same risk behavior can be achieved by relying on a well-chosen prior for γ . Also,
Theorem 5 requires that εi are normally distributed, but can this assumption be
removed?

5.4. Risk performance for continuous bimodal priors. Another way to frame
these questions is in terms of the posterior behavior of the hypervariances γk . This
is because risk performance ultimately boils down to their behavior. One can see
this by carefully inspecting the proof of Theorem 5. There the oracle γ 0 is chosen
so that its values are large for the nonzero βk,0 coefficients and small otherwise.
Under any prior π ,

β̂∗
k,n = Eπ

(
γk

1 + γk

∣∣∣Y∗
)
Ẑk,n.

In particular, for the π obtained by fixing γ at γ 0, the posterior mean is
shrunk toward zero for the zero coefficients, thus greatly reducing the number of
misclassifications from this group of variables relative to OLS-hard. Meanwhile
for the nonzero coefficients, β̂∗

k,n is approximately equal to Ẑk,n, so the risk from
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this group of variables is the same for both procedures, and, therefore, Zcut’s risk is
smaller overall. Notice that choosing γ 0 in this fashion also leads to what we have
been calling selective shrinkage. So good risk performance follows from selective
shrinkage, which ultimately is a statement about the posterior behavior of γk . This
motivates the following theorem.

THEOREM 6. Assume in (1) that condition (D2) holds and εi are independent
such that E(εi ) = 0, E(ε2

i ) = σ 2
0 and E(ε4

i ) ≤ M for some M < ∞. Suppose in (5)
that µ{σ 2 = 1} = 1 and λn = n.

(a) If the support for π contains a set [η0,∞)K for some finite constant η0 ≥ 0,
then, for each small δ > 0,

πn

({
γ :

γk

1 + γk
> 1 − δ

}∣∣∣Y∗
)

p→ 1 if βk,0 .= 0,

where πn(·|Y∗) is the posterior measure for γ .
(b) Let f ∗

k (·|w) denote the posterior density for γk given w. If π is the
continuous bimodal prior specified by (4), then

f ∗
k (u|w) ∝ exp

(
u

2(1 + u)
ξ2
k,n

)
(1 + u)−1/2((1 − w)g0(u) + wg1(u)

)
,(13)

where g0(u) = v0u
−2g(v0u

−1), g1(u) = u−2g(u−1),

g(u) = a
a1
2

(a1 − 1)!u
a1−1 exp(−a2u),

and ξk,n = σ̂−1
n n−1/2∑n

i=1 xi,kYi . Note that if βk,0 = 0, then ξk,n
d! N(0,1).

Part (a) of Theorem 6 shows why continuity for π is needed for good risk
performance. To be able to selectively shrink coefficients, the posterior must
concentrate on arbitrarily large values for the hypervariance when the coefficient
is truly nonzero. Part (a) shows this holds asymptotically as long as π has
an appropriate support. A continuous prior meets this requirement. Selective
shrinkage also requires small hypervariances for the zero coefficients, which is
what part (b) asserts happens with a continuous bimodal prior. Note importantly
that this is a finite sample result and is distribution free. The expression (13) shows
that the posterior density for γk (conditional on w) is bimodal. Indeed, except for
the leading term

exp
(

u

2(1 + u)
ξ2
k,n

)
,(14)

which reflects the effect on the prior due to the data, the posterior density is nearly
identical to the prior. What (14) does is to adjust the amount of probability at the
slab in the prior (cf. Figure 2) using the value of ξ2

k,n. As indicated in part (b), if
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the coefficient is truly zero, then ξ2
k,n will have an approximate χ2-distribution,

so this should introduce a relatively small adjustment. Notice this also implies that
the effect of the prior does not vanish asymptotically for zero coefficients. This is a
key aspect of using a rescaled spike and slab model. Morever, because the posterior
for γk will be similar to the prior when βk,0 = 0, it will concentrate near zero, and
hence the posterior mean will be biased and shrunken toward zero relative to the
frequentist Z-test.

On the other hand, if the coefficient is nonzero, then (14) becomes exponentially
large and most of the mass of the density shifts to larger hypervariances. This, of
course, matches up with part (a) of the theorem. Figure 4 shows how the posterior
cumulative distribution function varies in terms of ξ2

k,n. Even for fairly large values
of ξ2

k,n (e.g., from the 75th percentile of a χ2-distribution), the distribution function
converges to one rapidly for small hypervariances. This shows that the posterior
will concentrate on small hypervariances unless ξ2

k,n is abnormally large.
Figure 5 shows how the hypervariances might vary in a real example. We

have plotted the posterior means β̂∗
k,n for the Breiman simulation of Figure 1

against E((γk/(1 + γk))
2|Y∗) (the variance of Q∗

k,null). This shows quite clearly
the posterior’s ability to adaptively estimate the hypervariances for selective
shrinkage. Figure 6 shows how this selective shrinkage capability is translated

FIG. 4. Posterior cumulative distribution function for γk conditional on w (hyperparameters equal
to those in Figure 2 and w = 0.3). Curves from top to bottom are derived by setting ξ2

k,n at the

25,50,75 and 90th percentiles for a χ2-distribution with one degree of freedom. Standardized
hypervariance axis defined as γk/(1 + γk).
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FIG. 5. Posterior means β̂∗
k,n versus variances E((γk/(1 + γk))

2|Y∗) of Q∗
k,null from simulation

used in Figure 1. Triangles in red are nonzero coefficients.

FIG. 6. Total number of misclassified coefficients from simulation used in Figure 1. Observe how
Zcut’s total misclassification is less than OLS-hard’s over a range of cutoff values zα/2.
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into risk performance. As seen, Zcut’s misclassification performance is uniformly
better than OLS-hard over a wide range of cut-off values, exactly as our theory
suggests.

REMARK 5. The assumption in Theorems 5 and 6 that µ{σ 2 = 1} = 1 is
not typical in practice. As discussed, it is beneficial to assume that σ 2 has a
continuous prior to allow adaptive penalization. Nevertheless, Theorem 5 shows
even if σ 2 = 1, thus forgoing the extra benefits of finite sample adaptation, the total
risk for Zcut with an appropriately fixed γ 0 is still uniformly better than OLS-hard.
The same argument could be made for Theorem 6. That is, from a theoretical point
of view, it is not restrictive to assume a fixed σ 2.

5.5. Complexity recovery. We further motivate Zcut by showing that it
consistently estimates the true model under a threshold value that is allowed to
change with n. Let

M0 = (I{β1,0 .= 0}, . . . , I{βK,0 .= 0})t

be the K-dimensional binary vector recording which coordinates of β0 are nonzero
[I(·) denotes the indicator function]. By consistent estimation of the true model,
we mean the existence of an estimator M̂n such that M̂n

p→ M0. We show that
such an estimator can be constructed from β̂

∗
n. Let

Mn(C) = (I{|β̂∗
1,n| ≥ C}, . . . , I{|β̂∗

K,n| ≥ C})t .
The Zcut estimator corresponds to setting C = zα/2. The next theorem shows
we can consistently recover M0 by letting C converge to ∞ at any rate slower
than

√
n.

THEOREM 7. Assume that the priors π and µ in (5) are chosen so that
π{γk ≥ η0} = 1 for some η0 > 0 for each k = 1, . . . ,K and that µ{σ 2 ≤ s2

0} = 1
for some 0 < s2

0 < ∞. Let M̂n = Mn(Cn), where Cn → ∞ is any positive
increasing sequence such that Cn/

√
n → 0. Assume that the linear regression

model (1) holds where εi are independent such that E(εi ) = 0, E(ε2
i ) = σ 2

0 and

E(ε4
i ) ≤ M for some M < ∞. If (D2) holds and λn = n, then M̂n

p→ M0.

An immediate consequence of Theorem 7 is that the true model complexity k0
can be estimated consistently. By the continuous mapping theorem, we obtain the
following:

COROLLARY 1. Let M̂n = (M̂1,n, . . . ,M̂K,n)
t and let k̂n =∑K

k=1 I{M̂k,n .= 0} be the number of nonzero coordinates of M̂n. Then, under the

conditions of Theorem 7, k̂n
p→ k0.
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6. The effects of model uncertainty. In this section we prove an asymptotic
complexity result for a specialized type of forward stepwise model selection
procedure. This forward stepwise method is a modification of a backward
stepwise procedure introduced by Pötscher (1991) and discussed recently in Leeb
and Pötscher (2003). We show in orthogonal settings that if the coordinates
of β0 are perfectly ordered a priori, then the forward stepwise procedure leads
to improved complexity recovery relative to the OLS-hard. Interestingly, the
backward stepwise procedure has the worst performance of all three methods
(Theorem 8 of Section 6.3). This result can be used as an empirical tool for
assessing a procedure’s ability to reduce model uncertainty. If a model selection
procedure is effectively reducing model uncertainty, then it should produce an
accurate ranking of coefficients in finite samples. Consequently, the forward
stepwise procedure based on this data based ranking should perform better than
OLS-hard. This provides an indirect way to confirm a procedure’s ability to reduce
model uncertainty.

REMARK 6. The idea of pre-ranking covariates and then selecting models has
become a well established technique in the literature. As mentioned, this idea was
used by Pötscher (1991) and Leeb and Pötscher (2003), but also appears in Zhang
(1992), Zheng and Lo (1995, 1997), Rao and Wu (1989) and Ishwaran (2004).

We use this strategy to assess the performance of a rescaled spike and slab
model. For a data based ordering of β , we use the absolute posterior means |β̂∗

k,n|.
The first coordinate of β corresponds to the largest absolute posterior value, the
second coordinate to the second largest value, and so forth. The data based forward
stepwise procedure using this ranking is termed “svsForwd.” Section 6.2 provides
a formal description. In Section 8 we use simulations to systematically compare
the performance of svsForwd to OLS-hard as an indirect way to confirm SVS’s
ability to reduce model uncertainty. Figure 7 provides some preliminary evidence
of this capability. There we have compared a ranking of β using the posterior mean
against an OLS ordering using |Ẑk,n|. Figure 7 is based on the simulation presented
in Figure 1.

We note that it is possible to consistently estimate the order of the β0
coordinates using the posterior mean. Let Uk,n be the kth largest value from the
set {|β̂∗

k,n| : k = 1, . . . ,K}. That is, U1,n ≥ U2,n ≥ · · · ≥ UK,n. Let

M̂(n) = (I{U1,n ≥ Cn}, . . . , I{UK,n ≥ Cn})t ,
where Cn is a positive sequence satisfying Cn → ∞ and Cn/

√
n → 0. By

inspection of the proof of Theorem 7, Corollary 2 can be shown.

COROLLARY 2. Under the conditions of Theorem 7, M̂(n)
p→ (1, . . . ,

1,0t
K−k0

)t .
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FIG. 7. (a) True rank of a coefficient versus estimated rank using posterior means (circles) and OLS
(squares). The lower the rank, the larger the absolute value of the coefficient. Data from Breiman
simulation of Figure 1 (only nonzero coefficients shown). (b) Same plot as (a) but with true ranks
averaged to adjust for ties in true coefficient values (simulation used four unique nonzero coefficient
values). Dashed line connects values for true average rank. Note the higher variability in OLS,
especially for intermediate coefficients.
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6.1. Backward model selection. We begin by reviewing the backward step-
wise procedure of Pötscher (1991). For notational ease, we avoid subscripts of n

as much as possible. We assume the coordinates of β0 have been ordered, so that
the first k0 coordinates are nonzero. That is,

β0 = (
β1,0, . . . ,βk0,0,0t

K−k0

)t
,

where 0K−k0 is the (K − k0)-dimensional zero vector. We assume the design
matrix X has been suitably recoded as well. Let X[k] be the n × k design matrix
formed from the first k columns of the re-ordered X. Let

β̂
◦[k] = ( β̂◦

1 [k], . . . , β̂◦
k [k])t

= (X[k]tX[k])−1X[k]tY

be the restricted OLS estimator using only the first k variables. To test whether the
kth coefficient βk is zero, define the test statistic

Z̃k,n = n1/2β̂◦
k [k]

σ̂n(skk[k])1/2 ,(15)

where skk[k] is the kth diagonal value from (X[k]tX[k]/n)−1. Let α1, . . . ,αK

be a sequence of fixed positive α-significance values for the Z̃k,n test statistics.
Estimate the true complexity k0 by the estimator k̂B , where

k̂B = max
{
k : |Z̃k,n| ≥ zαk/2, k = 0, . . . ,K

}
.

To ensure that k̂B is well defined, take Z̃0,n = 0 and zα0/2 = 0.
Observe if k̂B = k, then Z̃k,n is the first test starting from k = K and going

backward to k = 0 satisfying |Z̃k,n| ≥ zαk/2 and |Z̃j,n| < zαj /2 for j = k +
1, . . . ,K . This corresponds to accepting the event {β :βk+1 = 0, . . . ,βK = 0}, but
rejecting {β :βk = 0, . . . ,βK = 0}. The post-model selection estimator for β is
defined as

β̂B = 0KI{k̂B = 0} +
K∑

k=1

( β̂
◦[k]t ,0t

K−k)
tI{k̂B = k}.

It should be clear that the estimators k̂B and β̂B are derived from a backward
stepwise mechanism.

REMARK 7. Observe that Z̃k,n uses σ̂ 2
n , the estimate for σ 2

0 based on the full
model, rather than an estimate based on the first k variables, and so, in this way,
is different from a conventional stepwise procedure. The latter estimates are only
unbiased if k ≥ k0 and can perform quite badly otherwise.
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REMARK 8. At first glance it seems the backward procedure requires K
regression analyses to compute β̂

◦[k] for each k. This would be expensive for
large K , requiring a computational effort of O(

∑K
k=1 k3). In fact, the whole

procedure can be reduced to the problem of finding an orthogonal decomposition
of the X matrix, an O(K3) operation. This idea rests on the following observations
implicit in Lemma A.1 of Leeb and Pötscher (2003). Let

P⊥
k = I − X[k](X[k]tX[k])−1X[k]t

be the projection onto the orthogonal complement of the linear space spanned
by X[k]. Let x(k) denote the kth column vector of X (thus X[k] = [x(1), . . . ,x(k)]).
Define

u1 = x(1) and uk = P⊥
k−1x(k) for k = 2, . . . ,K.

One can show that

β̂◦
k [k] = (ut

kuk)
−1ut

kY, k = 1, . . . ,K.

Consequently, the backward procedure is equivalent to finding an orthogonal
decomposition of X. (Note that this argument shows β̂◦

1 [1], . . . , β̂◦
K [K] are

mutually uncorrelated if εi are independent, E(εi ) = 0 and E(εi ) = σ 2
0 . See

Lemma A.1 of Leeb and Pötscher (2003). This will be important in the proof of
Theorem 8.)

6.2. Forward model selection. A forward stepwise procedure and its associ-
ated post-model selection estimator for β0 can be defined in an analogous way.
Define

k̂F = min
{
k − 1 : |Z̃k,n| < zαk/2, k = 1, . . . ,K + 1

}
,(16)

where Z̃K+1,n = 0 and αK+1 = 0 are chosen to ensure a well-defined procedure.
Observe if k̂F = k − 1, then Z̃k,n is the first test statistic such that |Z̃k,n| < zαk/2,
while |Z̃j,n| ≥ zαj /2 for j = 1, . . . , k − 1. This corresponds to accepting the event
{β :β1 .= 0, . . . ,βk−1 .= 0}, but rejecting {β :β1 .= 0, . . . ,βk .= 0}. Note that k̂F = 0
if |Z̃1,n| < zα1/2. The post-model selection estimator for β0 is

β̂F = 0KI{k̂F = 0} +
K∑

k=1

( β̂
◦[k]t ,0t

K−k)
tI{k̂F = k}.(17)

The data based version of forward stepwise, svsForwd, mentioned earlier is defined
as follows:

THE SVSFORWD MODEL ESTIMATOR. Re-order the coordinates of β (and the
columns of the design matrix X) using the absolute posterior means β̂∗

k,n from (5).
If k̂F ≥ 1, the svsForwd model is defined as

svsForwd := {βk : k = 1, . . . , k̂F };
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otherwise, if k̂F = 0, let svsForwd be the null model. Define the svsForwd post-
model selection estimator for β0 as in (17).

6.3. Complexity recovery. The following theorem identifies the limiting dis-
tribution for k̂B and k̂F . It also considers OLS-hard. Let k̂O denote the OLS-hard
complexity estimator (i.e., k̂O equals the number of parameters in OLS-hard).
Part (a) of the following theorem is related to Lemma 4 of Pötscher (1991).

THEOREM 8. Assume that (D1)–(D4) hold for (1), where εi are independent
such that E(εi ) = 0, E(ε2

i ) = σ 2
0 and E(ε4

i ) ≤ M for some M < ∞. Let kB ,
kF and kO denote the limits for k̂B , k̂F and k̂O , respectively, as n → ∞. For
1 ≤ k ≤ K ,

(a) P{kB = k} = 0 × I{k < k0} + (
1 − αk0+1

) · · · (1 − αK)I{k = k0}
+ αk(1 − αk+1) · · · (1 − αK)I{k > k0}.

Moreover, when X has an orthogonal design (i.e., $n = $0 = I),

(b) P{kF = k} = 0 × I{k < k0} + (
1 − αk0+1

)
I{k = k0}

+ (1 − αk+1)αk0+1 · · ·αkI{k > k0}.
(c) P{kO = k} = 0 × I{k < k0}

+ P
{
Bk0+1 + · · · + BK = k − k0

}
I{k ≥ k0},

where αK+1 = 0 in (b) and Bk are independent Bernoulli(αk) random variables
for k = k0 + 1, . . . ,K .

REMARK 9. Although the result (b) requires an assumption of orthogonality,
this restriction can be removed. See equation (38) of Corollary 4.5 from Leeb and
Pötscher (2003).

Theorem 8 shows that forward stepwise is the best procedure in orthogonal
designs. Suppose that αk = α > 0 for each k. Then the limiting probability of
correctly estimating k0 is P{kF = k0} = (1 − α) for forward stepwise, while
for OLS-hard and backward stepwise, it is (1 − α)K−k0 . Notice if K − k0 is
large, this last probability is approximated by exp(−(K − k0)α), which becomes
exponentially small as K increases. Simply put, the OLS-hard and backward
stepwise methods are prone to overfitting. Figure 8 illustrates how the limiting
probabilities vary under various choices for K and k0 (all figures computed with
α = 0.10). One can clearly see the superiority of the forward procedure, especially
as K increases.
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FIG. 8. Complexity recovery in the orthogonal case. Limiting probabilities versus model dimen-
sion k for the three estimators k̂F ( ), k̂B ( ) and k̂O ( ): (a) K = 25, k0 = 10, (b) K = 50,
k0 = 20, (c) K = 100, k0 = 50. In all cases αk = 0.10.

7. Diabetes data example. As an illustration of the different model selection
procedures we consider an example from Efron, Hastie, Johnstone and Tibshirani
(2004). In illustrating the LARS method, Efron, Hastie, Johnstone and Tibshirani
analyzed a diabetes study involving n = 442 patients in which the response of
interest, Yi , is a quantitative measure of disease progression recorded one year after
baseline measurement. Data included ten baseline variables: age, sex, body mass
index, average blood pressure and six blood serum measurements. All covariates
were standardized and Yi was centered so that its mean value was zero. Two
linear regression models were considered in the paper. The first was a main effects
model involving the 10 baseline measurements, the second, a “quadratic model,”
which we re-analyze here, was made up of 64 covariates containing the 10 baseline
measurements, 45 interactions for the 10 original covariates and 9 squared terms
(these being the squares of each of the original covariates except for the gender
variable, which is binary).

Table 1 contains the results from our analysis of the quadratic model. Listed
are the top 10 variables as ranked by their absolute posterior means, |β̂∗

k,n|. Using
an α = 0.10 criteria, Zcut chooses a model with six variables starting from the



758 H. ISHWARAN AND J. S. RAO

top variable “bmi” (body mass index) and ending with “age.sex” (the age–sex
interaction effect). The seventh variable, “bmi.map” (the interaction of body mass
index and map, a blood pressure measurement), is borderline significant. Table 1
also reports results using OLS-hard, svsForwd and a new procedure, “OLSForwd”
(all using an α = 0.10 value). OLSForwd is the direct analogue of svsForwd, but
orders β using Z-statistics Ẑk,n in place of the posterior mean. For all procedures
the values in Table 1 are Z-statistics (12) derived from the restricted OLS for the
selected model. This was done to allow direct comparison to the posterior mean
values recorded in column 2.

Table 1 shows that the OLS-hard model differs significantly from Zcut. It
excludes both “ltg” and “hdl” (blood serum measurements), both of which have
large posterior mean values. We are not confident in the OLS-hard and suspect
it is missing true signal here. The same comment applies to OLSForwd, which
has produced the same model as OLS-hard. Note how svsForwd, the counterpart
for OLSForwd, agrees closely with Zcut (it disagrees only on bmi.map, which is
borderline significant). We believe the SVS models are more accurate than the OLS
ones. In the next section we more systematically study the differences between the
four procedures.

REMARK 10. Figure 9 displays the posterior density for σ 2. Note how the
posterior is concentrated near one. This is typical of what we see in practice.

8. Breiman simulations. We used simulations to more systematically study
performance. These followed the recipe given in Breiman (1992). Specifically,
data were generated by taking εi to be i.i.d. N(0,1) variables, while covariates xi

TABLE 1
Top 10 variables from diabetes data (ranking based on absolute posterior
means |β̂∗

k,n|). Entries for model selection procedures are Z-statistics (12)
derived from the restricted OLS for the selected model

Variable β̂∗
k,n Zcut OLS-hard svsForwd OLSForwd

1 bmi 9.54 8.29 13.70 8.15 13.70
2 ltg 9.25 7.68 0.00 7.82 0.00
3 map 5.64 5.39 7.06 4.99 7.06
4 hdl −4.37 −4.20 0.00 −4.31 0.00
5 sex −3.38 −4.03 −1.95 −4.02 −1.95
6 age.sex 2.43 3.58 3.19 3.47 3.19
7 bmi.map 1.61 0.00 2.56 3.28 2.56
8 glu.2 0.84 0.00 0.00 0.00 0.00
9 bmi.2 0.46 0.00 0.00 0.00 0.00

10 tc.tch −0.44 0.00 0.00 0.00 0.00
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FIG. 9. Posterior density for σ 2 from diabetes analysis.

were simulated independently from a multivariate normal distribution such
that E(xi ) = 0 and E(xi,j xi,k) = ρ|j−k|, where 0 < ρ < 1 was a correlation
parameter. We considered two settings for ρ: (i) an uncorrelated design, ρ = 0;
(ii) a correlated design, ρ = 0.90. For each ρ setting we also considered two
different sample size and model dimension configurations: (A) n = 200 and
K = 100; (B) n = 800 and K = 400. Note that our illustrative example of Figure 1
corresponds to the Monte Carlo experiment (B) with ρ = 0.

In the higher-dimensional simulations (B), the nonzero βk,0 coefficients were in
15 clusters of 7 adjacent variables centered at every 25th variable. For example,
for the variables clustered around the 25th variable, the coefficient values were
given by β25+j,0 = |h − j |1.25 for |j | < h, where h = 4. The other 14 clusters
were defined similarly. All other coefficients were set to zero. This gave a total
of 105 nonzero values and 295 zero values. Coefficient values were adjusted by
multiplying by a common constant to make the theoretical R2 value equal to 0.75
[see Breiman (1992) for a discussion of this point].

Simulations (B) reflect a regression framework with a large number of zero
coefficients. In contrast, simulations (A) were designed to represent a regression
model with many weakly informative covariates. For (A), nonzero βk,0 coefficients
were grouped into 9 clusters each of size 5 centered at every 10th variable. Each of
the 45 nonzero coefficients was set to the same value. Coefficient values were then
adjusted by multiplying by a common constant to make the theoretical R2 value
equal to 0.75. This ensured that the overall signal to noise ratio was the same as
(B), but with each coefficient having less explanatory power.

Simulations were repeated 100 times independently for each of the four
experiments. Results are recorded in Table 2 for each of the procedures Zcut,
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svsForwd, OLS-hard and OLSForwd (all using an α = 0.10 value). Table 2 records
what we call “TotalMiss,” “FDR” and “FNR.” The TotalMiss is the total number of
misclassified variables, that is, the total number of falsely identified nonzero βk,0
coefficients and falsely identified zero coefficients. This is an unbiased estimator
for the risk discussed in Theorem 5. The FDR and FNR are the false discovery and
false nondiscovery rates defined as the false positive and false negative rates for
those coefficients identified as nonzero and zero, respectively. The TotalMiss, FDR
and FNR values reported are the averaged values from the 100 simulations. Also
recorded is k̂, the average number of variables selected by a procedure. Table 2 also
includes the performance value “Perf,” a measure of prediction accuracy, defined
as

Perf = 1 − ‖Xβ̂ − Xβ0‖2

‖Xβ0‖2 ,

where β̂ is the estimator for β0. So Perf equals zero when β̂ = 0 and equals one
when β̂ = β0. The value for Perf was again averaged over the 100 simulations.

REMARK 11. Given the high dimensionality of the simulations, both svs-
Forwd and OLSForwd often stopped early and produced models that were much
too small. To compensate, we slightly altered their definitions. For svsForwd, we
modified the definition of k̂F [cf. (16)] to

k̂F = min
{
k − 1 : |Z̃k,n| < zαk/2 and |β̂∗

k,n| ≤ C,k = 1, . . . ,K + 1
}
,

where C = 3. In this way, svsForwd stops the first time the null hypothesis is not
rejected and if the absolute posterior mean is no longer a large value. The definition

TABLE 2
Breiman simulations

ρ = 0 (uncorrelated X) ρ = 0.9 (correlated X)

k̂ Perf TotalMiss FDR FNR k̂ Perf TotalMiss FDR FNR

(A) Moderate number of covariates with few (55%) that are zero
(n = 200, K = 100 and 55 zero βk,0).

Zcut 41.44 0.815 11.99 0.097 0.129 10.06 0.853 38.49 0.167 0.408
svsForwd 34.02 0.753 15.09 0.054 0.191 8.31 0.826 39.39 0.156 0.415
OLS-hard 41.99 0.791 14.06 0.128 0.145 11.08 0.707 45.31 0.496 0.446
OLSForwd 26.90 0.612 20.92 0.042 0.258 5.96 0.574 44.64 0.459 0.445

(B) Large number of covariates with many (74%) that are zero
(n = 800, K = 400 and 295 zero βk,0).

Zcut 75.96 0.903 39.62 0.068 0.106 36.67 0.953 72.61 0.055 0.194
svsForwd 86.81 0.904 41.19 0.130 0.095 24.42 0.926 81.90 0.025 0.216
OLS-hard 106.74 0.883 58.54 0.279 0.097 45.41 0.706 121.37 0.676 0.255
OLSForwd 61.09 0.846 49.87 0.046 0.138 9.14 0.303 106.48 0.590 0.259
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for OLSForwd was altered in similar fashion, but using Ẑk,n in place of β̂∗
k,n.

8.1. Results. The simulations revealed several interesting patterns, summa-
rized as follows:

1. Zcut beats OLS-hard across all performance categories. It maintains low risk,
has small FDR values and has good prediction error performance in both
the near-orthogonal (uncorrelated) and nonorthogonal (correlated) X cases.
Performance differences between Zcut and OLS-hard become more appreciable
in the near-orthogonal simulation (B) involving many zero coefficients, because
this is when the effect of selective shrinkage is most pronounced. For example,
the OLS-hard misclassifies about 19 coefficients more on average, and has a
FDR more than 4 times larger than Zcut’s. Large gains are also seen in the
correlated case (B). There, the OLS-hard misclassifies over 48 more coefficients
on average than Zcut and its FDR is more than 12 times higher.

2. It is immediately clear upon comparing svsForwd to OLSForwd that SVS is
capable of some serious model averaging. These two procedures differ only in
the way they rank coefficients, so the disparity in their two performances is
clear evidence of SVS’s ability to model average.

3. In the ρ = 0 simulations, svsForwd is roughly the same as OLS-hard in
simulation (A) and significantly better in simulation (B). In the correlated
setting, svsForwd is significantly better. Thus, overall svsForwd is as good, and
in most cases significantly better, than OLS-hard. This suggests that svsForwd
is starting to tap into the oracle property forward stepwise has relative to OLS-
hard and provides indirect evidence that SVS is capable of reducing model
uncertainty in finite samples.

4. It is interesting to note how badly OLSForwd performs relative to OLS-hard
in simulation (A) when ρ = 0. In orthogonal designs, OLSForwd is equivalent
to OLS-hard, but the ρ = 0 design is only near-orthogonal. With only a slight
departure from orthogonality, we see the importance of a reliable ranking for
the coordinates of β . Note that this effect is less pronounced in simulation (B)
because of the larger sample size. This is because XtX/n

a.s.→ I as n → ∞, so
simulation (B) should be closer to orthogonality.

5. While our theory does not cover Zcut’s performance in correlated settings, it is
interesting to note how well it does in the ρ = 0.9 simulations relative to OLS-
hard. The explanation for its success here, however, is probably different from
that for the orthogonal setting. For example, it is possible that its performance
gains may be mostly due to the use of generalized ridge estimators. As is
well known, such estimators are much more stable than OLS in multicollinear
settings. We should also note that while Zcut is better than OLS-hard here, its
performance relative to the orthogonal simulations is noticeably worse. This is
not unexpected though. Correlation has the effect of reducing the dimension
of the problem. So performance measurements like TotalMiss and FDR will
naturally be less favorable.
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APPENDIX: PROOFS

PROOF OF THEOREM 2. We start by establishing that β̂
◦
n is consistent, which

is part of the conclusion of Theorem 2. First observe that

β̂
◦
n = n−1$−1

n XtY = β0 + 'n,

where 'n = $−1
n Xtε/n and ε = (ε1, . . . , εn)

t . From E('n) = 0 and Var('n) =
σ 2

0 $−1
n /n, it is clear that β̂

◦
n

p→ β0. Next, a little bit of rearrangement shows that

θ̂
∗
n(γ ,σ 2) = (

I − (σ−2λ−1
n XtX + #−1)−1#−1)β̂◦

n.

Consequently,

θ̂
∗
n = β̂

◦
n −

∫
(σ−2λ−1

n XtX + #−1)−1#−1β̂
◦
n (π × µ)(dγ , dσ 2|Y∗)

= β̂
◦
n − λ∗

n

∫
σ 2V−1

n #−1β̂
◦
n(π × µ)(dγ , dσ 2|Y∗),

where λ∗
n = λn/n and Vn = $n + σ 2λ∗

n#
−1. By the Jordan decomposition the-

orem, we can write Vn =∑K
k=1 ek,nvk,nvt

k,n, where {vk,n} is a set of orthonormal
eigenvectors with eigenvalues {ek,n}. For convenience, assume that the eigenvalues
have been ordered so that e1,n ≤ · · · ≤ eK,n. The assumption that $n → $0, where
$0 is positive definite, ensures that the minimum eigenvalue for $n is larger than
some e0 > 0 for sufficiently large n. Therefore, if n is large enough,

e1,n ≥ e0 + σ 2λ∗
n min

k
γ−1
k ≥ e0 > 0.

Notice that

‖V−1
n #−1β̂

◦
n‖2 =

K∑

k=1

e−2
k,n(v

t
k,n#

−1β̂
◦
n)

2 ≤ e−2
0 ‖β̂◦

n‖2
K∑

k=1

γ−2
k .

Thus, since γk ≥ η0 over the support of π , and σ 2 ≤ s2
0 over the support of µ,

∥∥∥∥

∫
σ 2V−1

n #−1β̂
◦
n (π × µ)(dγ , dσ 2|Y∗)

∥∥∥∥

≤ e−1
0 ‖β̂◦

n‖
(

K∑

k=1

∫
σ 4γ−2

k (π × µ)(dγ , dσ 2|Y∗)

)1/2

≤ K1/2s2
0

η0e0
‖β̂◦

n‖.

Deduce that θ̂
∗
n = β̂

◦
n + Op(λ∗

n)
p→ β0. "

Before proving Theorem 3, we state a lemma. This will also be useful in the
proofs of some later theorems.
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LEMMA A.1. Assume that for each n, εn1, . . . , εnn are independent random
variables such that E(εni) = 0, E(ε2

ni) = σ 2
0 and E(ε4

ni) ≤ M for some finite M .
If (D1)–(D4) hold, then

n−1/2Xtεn = n−1/2
n∑

i=1

εnixi
d! N(0,σ 2

0 $0),(18)

where εn = (εn1, . . . , εnn)
t .

PROOF. Let Sn =∑n
i=1 εnixt

i)/
√

n, where ) ∈ RK is some arbitrary nonzero
vector. Let s2

n = σ 2
0 )t$n) and define ζni = n−1/2εnixt

i)/sn. Then, Sn/sn =∑n
i=1 ζni , where ζni are independent random variables such that E(ζni) = 0 and∑n
i=1 E(ζ 2

ni) = 1. To prove (18), we will verify the Lindeberg condition
n∑

i=1

E(ζ 2
niI{|ζni | ≥ δ}) → 0 for each δ > 0,

where I(·) denotes the indicator function. This will show that Sn/sn
d! N(0,1),

which by the Cramér–Wold device implies (18) because s2
n → σ 2

0 )t$0*. Observe
that

E(ζ 2
niI{|ζni | > δ}) = (xt

i))
2

ns2
n

E(ε2
niI{|εni | ≥ rnisnδ}),

where rni = √
n/|xt

i)|. By the Cauchy–Schwarz inequality and the assumption of
a bounded fourth moment for εni ,

E(ε2
niI{|εni | ≥ rnisnδ}) ≤ (

E(ε4
ni)P{|εni | ≥ rnisnδ}

)1/2 ≤ M1/2σ0

rnisnδ
.

Bound rni below by

rni ≥ rn :=
(

max
1≤i≤n

|xt
i)|/

√
n

)−1
.

Notice that rn → ∞ by the assumption that maxi ‖xi‖/
√

n → 0. Substituting the
bound for rni , and since (xt

i))
2 sums to ns2

n/σ 2
0 , and s2

n remains bounded away
from zero since s2

n → σ 2
0 )t$0*,

n∑

i=1

E(ζ 2
niI{|ζni | > δ}) ≤ M1/2

σ0rnsnδ
→ 0.

"

PROOF OF THEOREM 3. Let φ(·|m, τ 2) denote a normal density with
mean m and variance τ 2. By dividing the numerator and denominator by
n−K/2∏n

i=1 φ(Y ∗
ni |xt

iβ0, n), one can show that

νn(S(β1,C/
√

n )|Y∗
n)

νn(S(β0,C/
√

n )|Y∗
n)

= nK/2 ∫ I{β ∈ S(β1,C/
√

n )}Ln(β)ν(dβ)

nK/2
∫

I{β ∈ S(β0,C/
√

n )}Ln(β)ν(dβ)
,(19)
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where

log
(
Ln(β)

)= −1
2(β − β0)

t$n(β − β0) + n−1/2
n∑

i=1

εnixt
i (β − β0).

Consider the denominator in (19). By making the change of variables from β to
u = √

n(β − β0), we can rewrite this as
∫

I{u ∈ S(0,C)}Ln0(u)f (β0 + n−1/2u) du,(20)

where log(Ln0(u)) = gn(u) + O(1/n) and gn(u) =∑n
i=1 εnixt

iu/n. The O(1/n)

term corresponds to ut$nu/n and is uniform over u ∈ S(0,C). Observe that, for
each δ > 0,

P{|gn(u)| ≥ δ} ≤ 1
δ2n2

n∑

i=1

E(εnixt
iu)2 ≤ C2

δ2n2

n∑

i=1

‖xi‖2 = o(1),

where the last inequality on the right-hand side follows from the Cauchy–Schwarz
inequality and from the assumption that maxi ‖xi‖/

√
n = o(1). Therefore,

gn(u)
p→ 0 uniformly over u ∈ S(0,C). Because f is continuous [and keeping

in mind it remains positive and bounded over S(0,C)], deduce that the log of (20)
converges in probability to

log
(
f (β0)

)+ log
(∫

I{u ∈ S(0,C)}du
)
.(21)

Meanwhile, for the numerator in (19), make the change of variables from β to
u = √

n(β − β1) to rewrite this as
∫

I{u ∈ S(0,C)}Ln1(u)f (β1 + n−1/2u) du,(22)

where

log
(
Ln1(u)

)= −1
2(β1 − β0)

t$0(β1 − β0)

+ n−1/2
n∑

i=1

εnixt
i (β1 − β0) + gn(u) + o(1)

uniformly over u ∈ S(0,C). Consider the second term on the right-hand side of
the last expression. Set ) = β1 − β0. By Lemma A.1, since σ 2

0 = 1, it follows that

n−1/2
n∑

i=1

εnixt
i)

d! N(0,)t$0)).

Now extract the expressions not depending upon u outside the integral in (22), take
logs and use gn(u)

p→ 0 uniformly over u ∈ S(0,C) to deduce that the log of (22)
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converges in distribution to

−1
2(β1 − β0)

t$0(β1 − β0)

+ (β1 − β0)
tZ + log

(
f (β1)

)+ log
(∫

I{u ∈ S(0,C)}du
)
.

(23)

To complete the proof, take the difference of (23) and (21) and note the
cancellation of the logs of

∫
I{u ∈ S(0,C)}du. "

PROOF OF THEOREM 4. First note that

β̂
∗
nn(γ 0) = (XtX+n#−1

0 )−1XtY∗
n = ($0 +#−1

0 )−1$0β0 +n−1/2V−1
n Xtεn+o(1),

where Vn = $n + #−1
0 . The o(1) term on the right-hand side is due to $n → $0.

Also, by Lemma A.1, the second term on the right-hand side converges in
distribution to ($0 + #−1

0 )−1Z, where Z has a N(0,$0) distribution. Deduce that

β̂
∗
nn(γ 0)

d! Q(·|γ 0). "

PROOF OF THEOREM 5. A little algebra (keeping in mind $n = I) shows
β̂

∗
n = √

n(I + #−1
0 )−1β̂

◦
n/σ̂n. Hence, recalling the definition (12) for Ẑk,n,

β̂∗
k,n = dk,0 ×

n1/2β̂◦
k,n

σ̂n
= dk,0Ẑk,n,

where dk,0 = γk,0/(1+γk,0) and the last equality holds because skk = 1. Under the
assumption of normality,

√
nβ̂◦

k,n has a N(mk,n,σ
2
0 ) distribution, where mk,n =√

nβk,0. Choose γ 0 such that dk,0 = δ1 for each k ∈ B0 and dk,0 = δ2 for each
k ∈ Bc

0, where 0 < δ1, δ2 < 1 are values to be specified. Therefore,

RO(α) − RZ(α)

= (K − k0)
(
P{|N(0,σ 2

0 )| ≥ σ̂nzα/2} − P{|N(0,σ 2
0 )| ≥ δ−1

1 σ̂nzα/2}
)

+
∑

k∈Bc
0

(
P{|N(mk,n,σ

2
0 )| < σ̂nzα/2} − P{|N(mk,n,σ

2
0 )| < δ−1

2 σ̂nzα/2}
)
,

where the P-distributions on the right-hand side correspond to the joint distribution
for a normal random variable and the distribution for σ̂n, where σ̂ 2

n /σ 2
0 has an

independent χ2-distribution with n − K degrees of freedom. It is clear that the
sum on the right-hand side can be made arbitrarily close to zero, uniformly for
α ∈ [δ,1 − δ], by choosing δ2 close to one, while the first term on the right-hand
side remains positive and uniformly bounded away from zero over α ∈ [δ,1 − δ]
whatever the choice for δ1. Thus, for a suitably chosen δ2, RO(α) − RZ(α) > 0
for each α ∈ [δ,1 − δ]. "
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PROOF OF THEOREM 6. Choose some j ∈ Bc
0. Let Aj = {γ :dj ≤ 1 − δ},

where dj = γj /(1 + γj ). To prove part (a), we show that

πn(Aj |Y∗) =
∫
Aj

f (Y∗|γ )π(dγ )
∫

f (Y∗|γ )π(dγ )

p→ 0.

By definition, f (Y∗|γ ) = ∫
f (Y∗|β)f (β|γ ) dβ , where

f (Y∗|β)f (β|γ ) = C exp
(
− 1

2n
(Y∗ − Xβ)t (Y∗ − Xβ) − 1

2
β t#−1β

)
|#|−1/2

and C is a generic constant not depending upon γ . By some straightforward
calculations that exploit conjugacy and orthogonality,

f (Y∗|γ ) = C exp

(
1
2

K∑

k=1

dkξ
2
k,n

)
K∏

k=1

(1 + γk)
−1/2,(24)

where (ξ1,n, . . . , ξK,n)
t = σ̂−1

n n−1/2XtY.
Let B = {γ : 1 − δk ≤ dk ≤ 1 − δk/2, k = 1, . . . ,K}, where 0 < δk < 1 are small

values that will be specified. Observe that

πn(Aj |Y∗) ≤
∫
Aj

f (Y∗|γ )π(dγ )
∫
B f (Y∗|γ )π(dγ )

.

Over the set Aj we have the upper bound

f (Y∗|γ ) ≤ C exp

{
1
2

(
∑

k∈B0

ξ2
k,n +

∑

k∈Bc
0−{j}

ξ2
k,n + (1 − δ)ξ2

j,n

)}

because 0 < dk < 1, while over B we have the lower bound

f (Y∗|γ ) ≥ C exp

{
1
2

(
∑

k∈Bc
0−{j}

(1 − δk)ξ
2
k,n + (1 − δj )ξ

2
j,n

)}
K∏

k=1

( 2
δk

)−1/2
.

An application of Lemma A.1 (which also applies to nontriangular arrays) shows

(ξ1,n, . . . , ξK,n)
t = σ̂−1

n

(
n1/2β0 + Op(1)

)
.

Therefore,

πn(Aj |Y∗) ≤ exp

{

Op(1) + n

2σ̂ 2
n

(
∑

k∈Bc
0−{j}

δkβ
2
k,0

+ (δj − δ)β2
j,0 + Op

(
1/

√
n
)
)}

π(Aj )

π(B)
.

(25)
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Choose δj < δ. It is clear we can find a set of values {δk : k .= j} chosen small
enough so that

∑

k∈Bc
0−{j}

δkβ
2
k,0 + (δj − δ)β2

j,0 < 0.

This ensures that the expression in the exponent of (25) converges to −∞ in
probability. Note for this result we assume σ̂ 2

n has a nonzero limit (we give a

proof shortly that σ̂ 2
n

p→ σ 2
0 ). Therefore, since π(B) must be strictly positive for

small enough δk > 0 (by our assumptions regarding the support for π ), conclude
from (25) that πn(Aj |Y∗)

p→ 0.
To prove part (b), let fk(γk|w) denote the density for γk given w. From (4), it is

seen that fk(γk|w) = (1 − w)g0(γk) + wg1(γk). Therefore,

f ∗
k (γk|w) ∝ f (Y|γ )fk(γk|w)

∝ exp
(1

2dkξ
2
k,n

)
(1 + γk)

−1/2fk(γk|w),

which is the expression (13). Furthermore, by Lemma A.1 deduce that ξk,n

converges to a standard normal if βk,0 = 0 (we are using σ̂ 2
n

p→ σ 2
0 , which still

needs to be proven).
To complete the proof, we now show σ̂ 2

n is consistent. For this proof we do
not assume orthogonality, only that $n is positive definite (this generality will
be useful for later proofs). Observe that σ̂ 2

n = (εtε − εtHε)/(n − K), where
H = X(XtX)−1Xt . It follows from Chebyshev’s inequality using the moment
assumptions on εi that εtε/(n − K)

p→ σ 2
0 , while from Markov’s inequality, for

each δ > 0,

P{εtHε ≥ (n − K)δ} ≤ E(εtHε)

(n − K)δ
= Trace(HE(εεt ))

(n − K)δ
= Kσ 2

0
(n − K)δ

→ 0.

Deduce that σ̂ 2
n

p→ σ 2
0 . "

PROOF OF THEOREM 7. Under the assumption of orthogonality, and using
the fact that λn = n, it follows that

β̂
∗
n(γ ,σ 2) = σ̂−1

n n1/2Dβ0 + σ̂−1
n n−1/2DXtε,

where D is the diagonal matrix diag(d1, . . . , dK) and dk = γk/(γk + σ 2). Taking
expectations with respect to the posterior, deduce that

β̂∗
k,n = σ̂−1

n n1/2d∗
kβk,0 + σ̂−1

n d∗
k ζk,n,(26)

where d∗
k = E(dk|Y∗) and ζk,n is the kth coordinate of Xtε/

√
n. From Lemma A.1

and σ̂ 2
n

p→ σ 2
0 (proven in Theorem 6), we have σ̂−1

n Xtε/
√

n
d! N(0, I). Therefore,

because 0 ≤ d∗
k ≤ 1, deduce that the second term on the right-hand side of (26)
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is Op(1). Now consider the first term on the right-hand side of (26). By
our assumptions regarding the support of π and µ, we must have d∗

k ≥ η0/

(η0 + s2
0). Thus, d∗

k remains bounded away from zero in probability. Hence,
because Cn/

√
n → 0, we have proven that

C−1
n |β̂∗

k,n|
p→
{

0, if k ∈ B0,
∞, otherwise. "

PROOF OF THEOREM 8. As the proof is somewhat lengthy, we first give a
brief sketch. The basis for the proof will rely on the following result:

β̂◦
k [k] p→






0, if k0 < k ≤ K ,
βk0,0, if k = k0,
βk,0 +3k,0, if 1 ≤ k < k0,

(27)

where 3k,0 is the kth coordinate of $0[k : k]−1$0[k :−k]β0[−k]. Here β0[−k] =
(β0,k+1, . . . ,β0,K)t , while $0[k :k] and $0[k :−k] are the k × k and k × (K − k)

matrices associated with $0 which has been partitioned according to

$0 =
(

$0[k : k] $0[k :−k]
$0[−k : k] $0[−k :−k]

)
.

First consider what (27) implies when k < k0. Recall the definition (15) for Z̃k,n.

Using σ̂ 2
n

p→ σ 2
0 (shown in the proof of Theorem 6) and that skk[k] converges to the

kth diagonal value of $0[k : k]−1, a strictly positive value, deduce from the second
limit of (27) that P{|Z̃k0,n| ≥ zαk0/2} → 1. Thus, for (a),

P{k̂B = k} = P
{|Z̃k,n| ≥ zαk/2 and |Z̃j,n| < zαj /2 for j = k + 1, . . . ,K

}

≤ P
{∣∣Z̃k0,n

∣∣< zαk0/2
}→ 0.

For (b), observe that 3k,0 = 0 (by our assumption of orthogonality). Thus, when
k ≤ k0, the last two lines of (27) imply that P{|Z̃k,n| ≥ zαk/2} → 1, and therefore,

P{k̂F = k − 1} = P
{|Z̃k,n| < zαk/2 and |Z̃j,n| ≥ zαj /2 for j = 1, . . . , k − 1

}

≤ P
{|Z̃k,n| < zαk/2

}→ 0.

Now for (c), due to orthogonality, Ẑk,n = Z̃k,n for Ẑk,n defined by (12). Thus,

P{k̂O ≥ k0} ≥ P
{|Z̃j,n| ≥ zαj /2 for j = 1, . . . , k0

}→ 1.

Thus, for all three estimators the probability of the event {k < k0} tends to zero.
Now consider when k > k0. We will show for (a) [and, therefore, for (b) and (c)]

Z̃n = (
Z̃k0+1,n, . . . , Z̃K,n

)t d! N
(
0K−k0, I

)
,(28)
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which implies {Z̃k0+1,n, . . . , Z̃K,n} are asymptotically independent. By (28),

P{k̂B = k} → P
{|N(0,1)| ≥ zαk/2

} K∏

j=k+1

P
{|N(0,1)| < zαj /2

}
,

which is the third expression in (a). For (b), using (28) and the assumed
orthogonality,

P{k̂F = k} → P
{|N(0,1)| < zαk+1/2

} k∏

j=k0+1

P
{|N(0,1)| ≥ zαj /2

}
.

Meanwhile, for OLS-hard, when k > k0 or k = k0,

P{k̂O = k} → P
{

K∑

j=k0+1

I
{|Zj | ≥ zαj /2

}= k − k0

}

,

where {Zk0+1, . . . ,ZK} are mutually independent N(0,1) variables. This is the
second expression in (c). Deduce that (a), (b) and (c) hold (the case k = k0 for kB

and kF can be worked out using similar arguments).
This completes the outline of the proof. Now we must prove (27) and (28). We

start with (27). Let β0[k] = (β0,1, . . . ,β0,k)
t . Some simple algebra shows that

β̂
◦[k] = β0[k] + (X[k]tX[k])−1X[k]tX[−k]β0[−k]

+ (X[k]tX[k])−1X[k]tε,
(29)

where X[−k] refers to the design matrix which excludes the first k columns of X. It
is easy to show that the third term on the right-hand side is op(1). Thus, it follows
that

β̂
◦[k] p→ β0[k] + $0[k : k]−1$0[k :−k]β0[−k],

which is what (27) asserts.
Finally, we prove (28). By (29), β̂◦

k [k] is the kth coordinate of (X[k]tX[k])−1 ×
X[k]tε when k > k0, and thus,

Z̃k,n = (
0t
k−1, (skk[k])−1/2)(X[k]tX[k]/n)−1(σ̂−1

n n−1/2X[k]tε)
= ( ṽt

k,0t
K−k)ξn,

where ξn = σ̂−1
n Xtε/

√
n and ṽk is the k-dimensional vector defined by

ṽt
k = (

0t
k−1, (skk[k])−1/2)(X[k]tX[k]/n)−1.

This allows us to write Z̃n = Vnξn, where

Vn :=





vt
k0+1
...

vt
K



 :=





(
ṽt
k0+1,0t

K−k0−1
)

...
ṽt
K



 .
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Thus, because ξn
d! N(0,$0) by Lemma A.1, we have

Z̃n
d! N

(
0K−k0,V0$0Vt

0
)
,

where V0 is the limit of Vn. In particular, Vn$nVt
n → V0$0Vt

0. To complete
the proof, we show V0$0Vt

0 = I by proving that Vn$nVn = I. Note by tedious
(but straightforward) algebra that vt

k$nvk = 1. Consider vt
j$nvk when j .= k and

j > k0. By (29), when k > k0,

β̂◦
k [k] = n−1skk[k]1/2vt

kXtε.

By Remark 8 we know that β̂◦
k0+1[k0 + 1], . . . , β̂◦

K [K] are uncorrelated. Thus
E( β̂◦

j [j ]β̂◦
k [k]) = 0 if j .= k, and therefore,

0 = E(vt
j Xtεvt

kXtε) = vt
j XtE(εεt )Xvk = σ 2

0 vt
j XtXvk.

Thus, vt
j$nvk = 0. Deduce that Vn$nVt

n = I and, hence, that V0$0Vt
0 = I. "

SVS Gibbs sampler.

ALGORITHM. The SVS procedure uses a Gibbs sampler to simulate posterior
values

(β,J ,τ ,w,σ 2|Y∗)

from (6), where J = (I1, . . . ,IK)t and τ = (τ1, . . . , τK)t . Recall that γk = Ikτ
2
k ,

so simulating J and τ provides a value for γ . The Gibbs sampler works as follows:

1. Simulate (β|γ ,σ 2,Y∗) ∼ N(µ,σ 2$), the conditional distribution for β , where

µ = $XtY∗ and $ = (XtX + σ 2n#−1)−1.

2. Simulate Ik from its conditional distribution

(Ik|β,τ ,w)
ind∼ w1,k

w1,k + w2,k
δv0(·) + w2,k

w1,k + w2,k
δ1(·), k = 1, . . . ,K,

where

w1,k = (1 − w)v
−1/2
0 exp

(
− β2

k

2v0τ
2
k

)

and

w2,k = w exp
(
− β2

k

2τ 2
k

)
.

3. Simulate τ−2
k from its conditional distribution,

(τ−2
k |β,J )

ind∼ Gamma
(
a1 + 1

2
, a2 + β2

k

2Ik

)
, k = 1, . . . ,K.
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4. Simulate w, the complexity parameter, from its conditional distribution,

(w|γ ) ∼ Beta(1 + #{k :γk = 1},1 + #{k :γk = v0}).
5. Simulate σ−2 from its conditional distribution,

(σ−2|β,Y∗) ∼ Gamma
(
b1 + n

2
, b2 + 1

2n
‖Y∗ − Xβ‖2

)
.

6. This completes one iteration. Update γ by setting γk = Ikτ
2
k for k = 1, . . . ,K .

COMPUTATIONS FOR LARGE K . The most costly computation in running the
Gibbs sampler is the inversion

$ = (XtX + σ 2n#−1)−1

required in updating β in step 1. This requires O(K3) operations and can be
tremendously slow when K is large.

A better approach is to update β in B blocks of size q . This will reduce
computations to order O(B−2K3), where K = Bq . To proceed, decompose β
as (β t

(1), . . . ,β
t
(B))

t , # as diag(#(1), . . . ,#(B)) and X as [X(1), . . . ,X(B)]. Now
update each component β(j), j = 1, . . . ,B , conditioned on the remaining values.
Using a subscript −(j) to indicate exclusion of the j th component, draw β(j) from
a N(µj ,σ

2$j ) distribution, where

µj = $j Xt
(j)

(
Y∗ − X−(j)β−(j)

)
and $j = (

Xt
(j)X(j) + σ 2n#−1

(j)

)−1
.

Notice that the cross-product terms Xt
(j)X(j) and Xt

(j)X−(j) can be extracted
from XtX and do not need to be computed.
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