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The Conjugate Prior for the Normal Distribution
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We will look at the Gaussian distribution from a Bayesian point of view. In the standard form, the likelihood
has two parameters, the mean µ and the variance σ2:

P (x1, x2, · · · , xn |µ, σ2) ∝ 1

σn
exp

(
− 1

2σ2

∑
(xi − µ)2

)
(1)

Our aim is to find conjugate prior distributions for these parameters. We will investigate the hyper-parameter
(prior parameter) update relations and the problem of predicting new data from old data: P (xnew |xold).

1 Fixed variance (σ2), random mean (µ)

Keeping σ2 fixed, the conjugate prior for µ is a Gaussian.

P (µ | µ0 , σ
2
0 ) ∝ 1

σ0
exp

(
− 1

2σ2
0

(µ− µ0)2
)

(2)

typically 0 typically large

Remark 1. In practice, when little is known about µ, it is common to set the location hyper-parameter to
zero and the scale to some large value.

1.1 Posterior for single measurement (n = 1)

We want to put together the prior (2) and the likelihood (1) to get the posterior (µ |x). For now, assume
we have only one measurement (n = 1);

There are several ways to do this:

• We could multiply the two distributions directly and complete the square in the exponent.

• Note that µ and x have a joint Gaussian distribution. Then the conditional µ |x is also a Gaussian for
whose parameters we know formulas:

Lemma 2. Assume (z1, z2) is distributed according to a bivariate Gaussian. Then z1 | z2 is Gaussian dis-
tributed with parameters:

E(z1 | z2) = E(z1) +
Cov(z1, z2)

Var(z2)
(z2 − E(z2)) (3)

Var(z1 | z2) = Var(z1)− Cov2(z1, z2)

Var(z2)
(4)
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Remark 3. These formulas are extremely useful so you should memorize them. They are easily derived based
on the notion of a Schur complement of a matrix.

We apply this lemma with the correspondence: x→ z2 , µ→ z1

x = µ+ σε ε ∼ N (0, 1)

µ = µ0 + σ0δ δ ∼ N (0, 1)

E(x) = µ0 (5)

Var(x) = E(Var(x |µ)) + Var(E(x |µ)) = σ2 + σ2
0 (6)

Cov(x, µ) = E(x− µ0)(µ− µ0) = σ2
0 (7)

Using equations 3 and 4:

E(µ |x) = µ0 +
σ2
0

σ2 + σ2
0

(x− µ0) =
σ2
0

σ2 + σ2
0

x +
σ2

σ2 + σ2
0

µ0 (8)

MLE prior mean

Var(µ |x) =
σ2σ2

0

σ2 + σ2
0

=
1

1
σ2
0

+ 1
σ2

= (τprior + τdata)
−1

(9)

Definition 4. 1 / σ2 is usually called the precision and is denoted by τ

The posterior mean is usually a convex combination of the prior mean and the MLE.

The posterior precision is, in this case, the sum of the prior precision and the data precision

τpost = τprior + τdata

We summarize our results so far:

Lemma 5. Assume x |µ ∼ N (µ, σ2) and µ ∼ N (µ0, σ
2
0). Then:

µ |x ∼ N

(
σ2
0

σ2 + σ2
0

x +
σ2

σ2 + σ2
0

µ0 ,

(
1

σ2
0

+
1

σ2

)−1)

1.2 Posterior for multiple measurements (n ≥ 1)

Now look at the posterior update for multiple measurements. We could adapt our previous derivation, but
that would be tedious since we would have to use the multivariate version of Lemma 2. Instead we will
reduce the problem to the univariate case, with the sample mean x̄ = (

∑
xi)/n as the new variable.

xi |µ ∼ N (µ, σ2) i.i.d. ⇒ x̄ |µ ∼ N
(
µ,
σ2

n

)
(10)

P (x1, x2, · · · , xn |µ) ∝µ
1

σ
exp

(
− 1

2σ2

∑
(xi − µ)2

)
∝µ exp

(
− 1

2σ2

(∑
x2i − 2µ

∑
xi + nµ2

))
∝µ exp

(
− n

2σ2

(
−2µx̄+ µ2

))
∝µ exp

(
− n

2σ2
(x̄− µ)2

)
∝µ P (x̄ |µ) (11)
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Then for the posterior probability, we get

P (µ |x1, x2, · · · , xn) ∝ P (x1, x2, · · · , xn |µ)P (µ) ∝ P (x̄ |µ)P (µ)

∝ P (µ | x̄) (12)

We can now plug x̄ into our previous result and we get:

Lemma 6. Assume xi |µ ∼ N (µ, σ2) i.i.d.and µ ∼ N (µ0, σ
2
0). Then:

µ |x1, x2, · · · , xn ∼ N

(
σ2
0

σ2

n + σ2
0

x+
σ2

σ2

n + σ2
0

µ0,

(
1

σ2
0

+
n

σ2

)−1)

2 Random variance (σ2), fixed mean (µ)

2.1 Posterior

Assuming µ is fixed, then the conjugate prior for σ2 is an inverse Gamma distribution:

z |α, β ∼ IG(α, β) P (z |α, β) =
βα

Γ(α)
z−α−1 exp

(
−β
z

)
(13)

For the posterior we get another inverse Gamma:

P (σ2 |α, β) ∝ (σ2)−(α+n
2 )−1 exp

(
−
β + 1

2

∑
(xi − µ)

σ2

)
∝ (σ2)−αpost−1 exp

(
−βpost

σ2

)
(14)

Lemma 7. If xi |µ, σ2 ∼ N (µ, σ2) i.i.d.and σ2 ∼ IG(α, β). Then:

σ2 |x1, x2, · · · , xn ∼ IG

(
α+

n

2
, β +

1

2

∑
(xi − µ)

)

If we re-parametrize in terms of precisions, the conjugate prior is a Gamma distribution.

τ |α, β ∼ Ga(α, β) P (τ |α, β) =
βα

Γ(α)
τα−1 exp (−τβ) (15)

And the posterior is:

P (τ |α, β) ∝ τ(α+n
2 )−1 exp

(
−τ
(
β +

1

2

∑
(xi − µ)

))
(16)

Lemma 8. If xi |µ, τ ∼ N (µ, τ) i.i.d.and τ ∼ Ga(α, β). Then:

τ |x1, x2, · · · , xn ∼ Ga

(
α+

n

2
, β +

1

2

∑
(xi − µ)

)
Remark 9. Should we prefer working with variances or precisions? We should prefer both:

• Variances add when we marginalize

• Precisions add when we condition
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2.2 Prediction

We might want to compute the probability of getting some new data given old data. This can be done by
marginalizing out parameters:

P (xnew |x, µ, α, β) =

∫
P (xnew |x, µ, τ, α, β)P (τ |x, α, β)dτ

=

∫
P (xnew |µ, τ)P (τ |x, α, β)dτ

=

∫
P (xnew |µ, τ)P (τ |αpost, βpost)dτ (17)

This integral “smears” the Gaussian into a heavier tailed distribution, which will turn out to be a student’s
t-distribution:

τ |α, β ∼ Ga(α, β)

x | τ, µ ∼ N (µ, τ)

P (x |µ, α, β) =

∫
βα

Γ(α)
τα−1e−τβ

( τ
2π

) 1
2

exp
(
−τ

2
(x− µ)2

)
dτ

=
βα

Γ(α)

1√
2π

∫
τ(α+ 1

2 )−1e−τ(β+(x−µ)2)/2 dτ

Gamma integral; use memorized normalizing constant

=
βα

Γ(α)

1√
2π

Γ
(
α+ 1

2

)(
β + 1

2 (x− µ)2
)α+ 1

2

=
Γ
(
α+ 1

2

)
Γ(α)

1

(2πβ)
1
2

1(
1 + 1

2β (x− µ)2
)α+ 1

2

(18)

Remark 10. The student-t density has three parameters: µ, α, β and is symmetric around µ. When α is an
integer or a half-integer we get simplifications using the formulas Γ(k + 1) = kΓ(k) and Γ(1/2) =

√
π

The following is another useful parametrization for the student’s t-distribution:

p = 2α λ =
α

β

P (x |µ, p, λ) =
Γ
(
p+1
2

)
Γ
(
p
2

) (
λ

πp

) 1
2 1(

1 + λ
p (x− µ)2

) p+1
2

(19)

with two interesting special cases:

• If p = 1 we get a Cauchy distribution

• If p→∞ we get a Gaussian distribution

Remark 11. We might want to sample from a student’s t-distribution. We would sample τ ∼ Ga(α, β), then
sample xi ∼ N (µ, τ), collect xi and repeat.
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3 Both variance (σ2) and mean (µ) are random

Now, we want to put a prior on µ and σ2 together. We could simply multiply the prior densities we obtained
in the previous two sections, implicitly assuming µ and σ2 are independent. Unfortunately, if we did that,
we would not get a conjugate prior. One way to see this is that if we believe that our data is generated
according to the graphical model in Figure 1, we find that, conditioned on x, the two parameters µ and σ2

are, in fact, dependent and this should be expressed by a conjugate prior.

x

σ2

α β

µ

µ0 σ2
0

Figure 1: µ and σ2 are dependent conditioned on x

We will use the following prior distribution which, as we will show, is conjugate to the Gaussian likelihood:

xi |µ, τ ∼ N (µ, τ) i.i.d.

µ | τ ∼ N (µ0, n0τ)

τ ∼ Ga(α, β)

3.1 Posterior

First look at µ |x, τ . This is the simpler part, as we can use Lemma 8:

µ |x, τ ∼ N
(

nτ

nτ + n0τ
x̄+

n0τ

nτ + n0τ
µ0 , nτ + n0τ

)
(20)

Next, look at τ |x. We get this by expressing the joint density P (τ, µ |x) and marginalizing out µ:

P (τ, µ |x) ∝ P (τ) · P (µ | τ) · P (x | τ, µ) (21)

∝ τα−1e−βτ τ1/2 exp
(
−n0τ

2
(µ− µ0)2

)
τn/2 exp

(
−τ

2

∑
(xi − µ)2

)
trick: xi − x̄+ x̄− µ

∝ τα+n
2−1 exp

(
−τ
(
β +

1

2

∑
(xi − x̄)2

))
τ1/2 exp

(
−τ

2
(n0(µ− µ0)2 + n(x̄− µ)2)

)
(22)

As we integrate out µ we get the normalization constant:

τ−
1
2 exp

(
nn0τ

2(n+ n0)
(x̄− µ0)2

)
Which leads to a Gamma posterior for τ :

P (τ |x) ∝ τα+n
2−1 exp

(
−τ
(
β +

1

2

∑
(xi − x̄)2 +

nn0
2(n+ n0)

(x̄− µ0)2
))

(23)

To summarize:
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Lemma 12. If we assume:

xi |µ, τ ∼ N (µ, τ) i.i.d.

µ | τ ∼ N (µ0, n0τ)

τ ∼ Ga(α, β)

Then the posterior is:

µ | τ, x ∼ N
(

nτ

nτ + n0τ
x̄+

n0τ

nτ + n0τ
µ0 , nτ + n0τ

)
τ |x ∼ Ga

(
α+

n

2
, β +

1

2

∑
(xi − x̄)2 +

nn0
2(n+ n0)

(x̄− µ0)2
)

3.2 Prediction

P (xnew |x) =

∫ ∫
Gamma
τ | x

·Gaussian
µ | τ,x

·Gaussian
xnew | τ,µ

dτdµ

P (xnew |x) =

∫
Gamma
τ | x

∫
Gaussian
µ | τ,x

·Gaussian
xnew | τ,µ

dτdµ

P (xnew |x) =

∫
Gamma
τ | x

·Gaussian
xnew | τ,x

dτ

P (xnew |x) = student-t
xnew | x


