1 Gibbs Sampling

Let $x = (x_1, x_2, ..., x_p)$. In order to obtain samples $x^{(i)}$ from the joint distribution $P(x)$ do the following:

- Initialize $x^{(0)}$ and let $i = 0$.
- Repeatedly:
 - Sample $x_1^{(i+1)} \sim P(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_p^{(i)})$
 - Sample $x_2^{(i+1)} \sim P(x_2|x_1^{(i+1)}, x_3^{(i)}, ..., x_p^{(i)})$
 - :
 - Sample $x_p^{(i+1)} \sim P(x_p|x_1^{(i+1)}, x_2^{(i+1)}, ..., x_{p-1}^{(i+1)})$
 - Set $i = i + 1$

It is possible to do this block-wise, i.e. sample blocks of the x_i together. Various approaches exist (and can be justified) to ordering the variables in the sampling loop. One approach is random sweeps: variables are chosen at random to resample.

Figure 1: x_1, x_2 actually independent. Gibbs sampler makes big jumps. This is desirable.
Sampling Methods

Figure 2: x_1, x_2 highly correlated. Gibbs sampler makes only small moves. This is called chattering and is undesirable.

Example 1 (Gibbs Sampling).

\[
y_{ij} \sim N(\theta_j, \sigma^2) \\
\theta_j \sim N(\mu, \tau^2) \\
(\mu, \sigma, \tau) \propto \frac{1}{\sigma}
\]

We want to sample all of $(\theta_1, ..., \theta_J, \mu, \sigma, \tau|y)$. Here’s the Gibbs sampler:

\[
\theta_j | \mu, \tau^2, \sigma^2, y \sim N\left(\frac{\frac{\mu}{\tau^2} + \frac{n_j}{\sigma^2} \bar{y}_{ij}}{\frac{1}{\tau^2} + \frac{1}{\sigma^2}}, \frac{1}{\frac{1}{\tau^2} + \frac{1}{\sigma^2}}\right) \\
\mu | \theta_1, ..., \theta_J, \tau^2 \sim N\left(\frac{1}{\frac{1}{\tau^2}} \sum_j \theta_j, \frac{\tau^2}{J}\right) \\
\tau^2 | \theta, \mu \sim IG\left(\frac{J-1}{2}, \frac{\sum_j (\theta_j - \mu)^2}{2}\right) \\
\sigma^2 | \theta, y \sim IG\left(\frac{a}{2}, \frac{1}{2} \sum_j (y_{ij} - \theta_j)^2\right)
\]

2 Slice Sampling

Slice sampling is a special case of Gibbs sampling (in a product space). Consider the goal of obtaining samples from $P(x)$. Introduce a new random variable u, conditioned on x, in the following way:

\[
x \sim P(x) \\
\mu | x \sim \text{Uniform}([0, P(x)])
\]

This yields a joint distribution $P(x, u)$ such that the marginal distribution on x is the original $P(x)$. Hence, if we can obtain samples from $P(x, u)$, simply ignoring u will give us samples from $P(x)$. The Gibbs sampler for sampling from $P(x, u)$ has the following convenient updates:

\[
\text{Sample} \quad u^{(i+1)} \sim \text{Uniform}([0, p(x^{(i)})])
\]
Sampling Methods

Sample \(x^{(i+1)} \sim \text{Uniform}(\{ x : p(x) > u^{(i+1)} \}) \)

See Neal (2003) for details on efficient book keeping in slice sampling, and in particular how to efficiently keep track of slices for \(x : \{ x : p(x) > u^{(i+1)} \} \).

![Figure 3: Multimodal distribution where slice for \(x \) has two distinct regions.](image)

3 Simulated Annealing

Simulated annealing is mainly used for optimization, but can be used for sampling.

Define a temperature \(t_i \) at iteration \(i \).

Sample \(x^{(i+1)} \sim (p(x))^{\frac{1}{t_i}} \) (usually via Metropolis-Hastings since it does not require the normalization constant.)

At each iteration \(t \) decreases: \(t_{i+1} < t_i \). If \(t \) goes to 0, simulated annealing performs optimization. If \(t \) goes to 1, simulated annealing performs sampling.

Remark 2. Simulated tempering involves running multiple Metropolis-Hastings chains in parallel at different temperatures. Part of the proposal involves proposing to switch between different chains.

References