STAT 210B HWK #4 SOLUTIONS (DUE MARCH 29)

GARVESH RASKUTTI

(1) Given densities p_1 and p_2 with respect to some σ -finite measure μ , define that the *Hellinger distance* as follows:

$$h(p_1, p_2) = \left(\frac{1}{2} \int (\sqrt{p_1} - \sqrt{p_2})^2 d\mu\right)^{1/2},$$

and define the variation distance as follows:

$$||p_1 - p_2||_1 = \int |p_1 - p_2| d\mu.$$

Establish the following two inequalities:

$$h^{2}(p_{1}, p_{2}) \leq \frac{1}{2} ||p_{1} - p_{2}||_{1} \leq h(p_{1}, p_{2})[2 - h^{2}(p_{1} - p_{2})]^{1/2}$$

For the first inequality, we have

$$\begin{aligned} |p_1 - p_2| &= |(\sqrt{p_1} + \sqrt{p_2})(\sqrt{p_1} - \sqrt{p_2})| \\ &\geq (\sqrt{p_1} - \sqrt{p_2})^2, \end{aligned}$$

which implies

$$||p_1 - p_2||_1 = \int |p_1 - p_2| d\mu$$

$$\geq \int (\sqrt{p_1} - \sqrt{p_2})^2 d\mu$$

$$= 2h^2(p_1, p_2).$$

Then the first inequality is established. For the second one,

$$\begin{aligned} ||p_1 - p_2||_1 &= \int |p_1 - p_2| d\mu \\ &= \int |\sqrt{p_1} - \sqrt{p_2}| |\sqrt{p_1} + \sqrt{p_2}| d\mu \\ &\leq \left(\int (\sqrt{p_1} - \sqrt{p_2})^2 d\mu \int (\sqrt{p_1} + \sqrt{p_2})^2 d\mu \right)^{1/2} \\ &= (2h^2(p_1, p_2)(4 - 2h^2(p_1, p_2)))^{1/2} \\ &= 2h(p_1, p_2)[2 - h^2(p_1, p_2)]^{1/2}, \end{aligned}$$

which establishes the second inequality. The third line holds by Cauchy-Schwartz inequality, and the fourth line hold because of the fact that $\int (\sqrt{p_1} - \sqrt{p_2})^2 d\mu + \int (\sqrt{p_1} + \sqrt{p_2})^2 d\mu = 4.$

Date: Apr 2, 2011.

(2) Consider two probability measure P_1 and P_2 on a measurable space $(\mathcal{X}, \mathcal{A})$, dominated by a σ -finite measure μ (e.g. $\mu = P_1 + P_2$). Show that the Hellinger distance

$$\sqrt{\frac{1}{2} \int \left(\sqrt{\frac{dP_1}{d\mu}} - \sqrt{\frac{dP_2}{d\mu}}\right)^2 d\mu}$$

does not depend on the dominating measure μ . More generally, neither does

$$\int \left| \left(\frac{dP_1}{d\mu} \right)^{(1/a)} - \left(\frac{dP_2}{d\mu} \right)^{(1/a)} \right|^a$$

Say $P_1 \ll \lambda$ and $P_2 \ll \lambda$. We'll show that

$$\int \left| \left(\frac{dP_1}{d\lambda} \right)^{(1/a)} - \left(\frac{dP_2}{d\lambda} \right)^{(1/a)} \right|^a d\lambda = \int \left| \left(\frac{dP_1}{d\mu} \right)^{(1/a)} - \left(\frac{dP_2}{d\mu} \right)^{(1/a)} \right|^a d\mu$$

The strategy is to write both integrals w.r.t. the measure $\lambda + \mu$. Since $\mu \ll \lambda + \mu$, the Radon-Nikodym theorem implies the existence of a nonnegative function $d\mu/d(\lambda + \mu)$ such that

$$\int \left| \left(\frac{dP_1}{d\mu} \right)^{(1/a)} - \left(\frac{dP_2}{d\mu} \right)^{(1/a)} \right|^a d\mu$$

$$= \int \left| \left(\frac{dP_1}{d\mu} \right)^{(1/a)} - \left(\frac{dP_2}{d\mu} \right)^{(1/a)} \right|^a \frac{d\mu}{d(\lambda + \mu)} d(\lambda + \mu)$$

$$= \int \left| \left(\frac{dP_1}{d\mu} \frac{d\mu}{d(\lambda + \mu)} \right)^{(1/a)} - \left(\frac{dP_2}{d\mu} \frac{d\mu}{d(\lambda + \mu)} \right)^{(1/a)} \right|^a d(\lambda + \mu)$$

$$= \int \left| \left(\frac{dP_1}{d(\lambda + \mu)} \right)^{(1/a)} - \left(\frac{dP_2}{d(\lambda + \mu)} \right)^{(1/a)} \right|^a d(\lambda + \mu)$$

The last equality uses a standard result about Radon-Nikodym derivatives. The exact same steps go through using μ as the dominating measure. Thus the Hellinger distance does not depend on the dominating measure.

(3) Suppose $||P_n - Q_n|| \to 0$. Show that P_n and Q_n are mutually contiguous Note that

$$||P - Q|| = \sup_{A} |P(A) - Q(A)|.$$

For any A_n , if we have

$$P_n(A_n) \to 0,$$

then

$$Q_n(A_n) \leq P_n(A_n) + |Q_n(A_n) - P_n(A_n)|$$

$$\leq P_n(A_n) + ||Q_n - P_n||$$

$$\rightarrow 0.$$

By definition, $Q_n \triangleleft P_n$. By symmetry, we have $Q_n \triangleleft \triangleright P_n$.

(4) Suppose P_{θ} is the uniform distribution on $(0, \theta)$. Let P_{θ}^{n} denote the distribution of n iid draws from P_{θ} . Fix h and determine whether or not P_{1}^{n} and $P_{1+h/n}^{n}$ are mutually contiguous. Consider both h > 0 and h < 0.

(1) When h > 0, we have $P_{1+h/n}^n \not \lhd P_1^n$ but $P_1^n \lhd P_{1+h/n}^n$. In fact, write down the two densities:

$$p_1^n(x) = \begin{cases} 1, & \text{if } x \in [0,1]^n \\ 0, & \text{o.w.} \end{cases}$$

and

$$p_{1+h/n}^n(x) = \begin{cases} (1+h/n)^{-n}, & \text{if } x \in [0,1+h/n]^n \\ 0, & \text{o.w.} \end{cases}$$

Use the fact that $(1 + h/n)^{-n} \to e^{-h}$, we have

$$\frac{p_1^n(x)}{p_{1+h/n}^n(x)} \stackrel{P_{1+h/n}^n}{\to} \begin{cases} e^h, & \text{if } x \in [0,1]^n \\ 0, & \text{if } x \in [0,1+h/n]^n \setminus [0,1]^n \end{cases}$$

So

$$\frac{dP_1^n(x)}{dP_{1+h/n}^n(x)} \stackrel{P_{1+h/n}^n}{\leadsto} U$$

and

$$P(U > 0) = \lim_{n \to \infty} P_{1+h/n}^n([0,1]^n) \to e^{-h} < 1.$$

By Le Cam's first lemma we have $P_{1+h/n}^n \not\triangleleft P_1^n$.

Meanwhile, we also have:

$$\frac{p_{1+h/n}^n(x)}{p_1^n(x)} \xrightarrow{P_1^n} e^{-h},$$

and Le Cam's first lemma tells us $P_1^n \triangleleft P_{1+h/n}^n$.

(2) When h < 0, the likelihood ratio becomes

$$\frac{p_1^n(x)}{p_{1+h/n}^n(x)} \stackrel{P_{1+h/n}^n}{\to} e^h,$$

and

$$\frac{p_{1+h/n}^n(x)}{p_1^n(x)} \xrightarrow{P_1^n} \begin{cases} e^{-h}, & \text{if } x \in [0, 1+h/n]^n \\ 0, & \text{if } x \in [0, 1]^n \setminus [0, 1+h/n]^n \end{cases}$$

Using Le Cam's first lemma we have $P_1^n \not\triangleleft P_{1+h/n}^n$ but $P_{1+h/n}^n \triangleleft P_1^n$.

(5) Consider estimating the distribution function $P(X \le x)$ at a fixed point x based on a sample $X_1, ..., X_n$ from the distribution of X. A nonparametric estimator is $n^{-1} \sum_i 1(X_i \le x)$. If it is know that the true underlying distribution is $N(\theta, 1)$, another possible estimator is $\Phi(x - \overline{X})$. Calculate the relative efficiency of these estimators.

This is a problem on the relative efficiency of estimators (as opposed to tests in the next problem). The theory for this problem can be found in in VDV pages 108-111.

If we have two estimator sequences that converge to normal limit distributions at rate \sqrt{n} , their relative efficiency is defined to be the ratio of their asymptotic variances. So we only need to find the asymptotic distributions of \hat{p} and \tilde{p} .

Consider $\tilde{p} = \frac{1}{n} \sum_{i=1}^{n} 1(X_i \le t)$. Since

$$\mu(\theta) := E_{\theta} \mathbb{1}(X_i \le t) = P_{\theta}(X_i \le t) = \Phi_{\theta}(t) = \Phi(t - \theta)$$

and

$$\sigma^{2}(\theta) := \operatorname{Var}_{\theta} \mathbb{1}(X_{i} \leq t) = P_{\theta}(X_{i} \leq t) - [P_{\theta}(X_{i} \leq t)]^{2}$$
$$= \Phi(t - \theta) [\mathbb{1} - \Phi(t - \theta)]$$

We have by the CLT that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} [1(X_i \leq t) - \mu(\theta)] \xrightarrow{d} N(0, \sigma^2(\theta))$. Equivalently,

 $\sqrt{n} \left(\tilde{p} - \mu(\theta) \right) \xrightarrow{d} N(0, \sigma^2(\theta))$

Now consider $\hat{p} = \Phi(t - \bar{X})$. Since X_1, \ldots, X_n are iid $N(\theta, 1)$, by the CLT we have $\sqrt{n}(\bar{X}-\theta) \xrightarrow{d} N(0,1)$. Now use the delta method (c.f. VDV p. 26) to find the asymptotic distribution of \hat{p} . Define $f: x \mapsto \Phi(t-x)$. Then the first order approximation to $f(\theta + a) - f(\theta)$ is f

$$\mathcal{O}_{\theta}(a) = a \left[\partial_x \Phi(t-x)\right]_{x=\theta} = -a\phi(t-\theta)$$

where $\phi(x) = \Phi'(x)$. If we take $Z \sim N(0, 1)$, then by the delta method,

$$\sqrt{n} \left[\hat{p} - \mu(\theta) \right] = \sqrt{n} \left[f(\bar{X}) - f(\theta) \right] \stackrel{d}{\to} f'_{\theta}(Z)$$
$$= -Z\phi(t - \theta)$$
$$\stackrel{d}{=} N \left[0, \left(\phi(t - \theta) \right)^2 \right]$$

Thus the asymptotic relative efficiency at θ is

$$\frac{\left(\phi(t-\theta)\right)^2}{\Phi(t-\theta)\left[1-\Phi(t-\theta)\right]}$$

As a result, the second estimator is asymptotically more efficient since it uses extra information about the distribution.