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Applications of ULLNs: Consistency of M-estimators
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1 M and Z-estimators (van der Vaart, 1998, Section 5.1, p. 41–54)

Definition 1 (M-estimator). An estimator θ̂n defined as a maximizer of the expression:

Mn(θ) ,
1

n

n∑

i=1

mθ(Xi) (1)

for some function mθ(·). If there is a unique solution, the estimator can be expressed simply as

θ̂n = argmaxθ∈ΘMn(θ) .

Definition 2 (Z-estimator (estimating equations)). An estimator θ̂n that can be expressed
as the root of the expression:

Φn(θ) ,
1

n

n∑

i=1

φθ(Xi)

for some function φθ(·); that is, a solution to

Φn

(

θ̂n

)

= 0

M-estimators first were introduced in the context of robust estimation by Peter J. Huber as a generalization
of the maximum likelihood estimator (MLE): mθ(x) = log pθ(x). In the literature, they are often confused
with Z-esimators because of the relationship between optimization and differentiation. In fact under certain
conditions, they are equivalent via the relationship φθ(x) = ∇θ[mθ(x)]. If mθ is everywhere differentiable
w.r.t. θ then the M-estimator is a Z-estimator. A simple example where this fails is the estimation of the
parameter θ for the distribution Un(0, θ). In this model, the log-likelihood is discontinuous in θ but the MLE

is well defined as θ̂n = max{Xi}
n
i=1, which occurs at this discontinuity as show in the following figure:
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Log−Likelihood for 20 datapoints from Un(0,10)

max log−likelihood
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i
}

As is clear, the log-likelihood is −∞ before the MLE and decreasing after it. Hence, the maximum of the
log-likelihood occurs at this point of discontinuity even though the derivative is not 0 there (it is not defined).

2 Consistency of M-estimators (van der Vaart, 1998, Section 5.2,
p. 44–51)

Definition 3 (Consistency). An estimator is consistent if θ̂n
P
→ θ0 (alternatively, θ̂n

a.s.
→ θ0) for any θ0 ∈ Θ,

where θ0 is the true parameter being estimated.

Theorem 4. (van der Vaart, 1998, Theorem 5.7, p. 45) Let Mn be random functions and M be
a fixed function such that ∀ ǫ > 0:

sup
θ∈Θ

|Mn(θ) − M(θ)|
P
→ 0 (2)

sup
{θ | d(θ,θ0)≥ǫ}

M(θ) < M(θ0) (3)

Then, any sequence θ̂n with Mn(θ̂n) ≥ Mn(θ0) − op(1) converges in probability to θ0.

Notice, condition (2) is a restriction on the random functions Mn, whereas condition (3) ensures that θ0 is
a well-separated maximum of M ; i.e., only θ close to θ0 achieve a value M(θ) close to the maximum (See
figure below):

 

M 

θ0 

Finally it is worth noting that sequences θ̂n that nearly maximize Mn (i.e., Mn(θ̂n) ≥ supθMn(θ) − op(1))

meet the above requirement on θ̂n.
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Proof. We are assuming that our θ̂n satisfies, Mn(θ̂n) ≥ Mn(θ0) − op(1). Then, uniform convergence of Mn

to M implies

⇒ Mn(θ0)
P
→ M(θ0)

⇒ Mn(θ̂n) ≥ M(θ0) − op(1)

⇒ M(θ0) ≤ Mn(θ̂n) + op(1)

⇒ M(θ0) − M(θ̂n) ≤ Mn(θ̂n) − M(θ̂n) + op(1)

≤ sup
θ∈Θ

|Mn(θ) − M(θ)| + op(1)

P
→ 0 (by condition (2))

Now, by condition (3), ∀ ǫ > 0, ∃ η such that M(θ) < M(θ0) − η is satisfied ∀ θ : d(θ, θ0) ≥ ǫ. Thus

{d(θ̂n, θ0) ≥ ǫ} ⊆ {M(θ̂n) < M(θ0) − η}.

⇒ P
(

d(θ̂n, θ0) ≥ ǫ
)

≤ P
(

M(θ̂n) < M(θ0) − η
)

︸ ︷︷ ︸

P
→0 (as shown above)

The primary drawback of this approach is that it requires the metric entropy to achieve condition (2).

3 Consistency of the MLE (non-parametric)

We assume that we have n i.i.d. samples from some (unknown) distribution P ; i.e., X1, . . . ,Xn
i.i.d.
∼ P .

Further, we assume P has a density p0 = dP
dµ . For the family of densities, P, we will consider the maximum

likelihood estimator (MLE) amongst P as

p̂n = argmaxp∈P

∫

log pdPn

where Pn = 1
n

∑n
i=1 δXi

—the empirical distribution. To further formalize this, we consider the following
definitions.

Definition 5 (Kullback-Leibler (KL)-divergence). The Kullback-Leibler divergence between two den-
sities is defined as,

K (p0, p) =

∫

log
p0(x)

p(x)
dP (x) .

(Recall, K(p0, p) is always non-negative and is 0 if and only if p0(x) = p(x) almost everywhere.)

Definition 6 (Maximum Likelihood Estimator (MLE)). The maximum-likelihood estimator p̂n is the
minimizer of ∫

log
p0(x)

p̂n(x)
dP (x)

where P has a density p0. This implies ∫

log
p̂n

p0
dPn ≤ 0 (4)
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Given these definitions, we now derive a bound on the KL-divergence between the true density p0 and the
MLE p̂n:

⇒

∫

log
p0(x)

p̂n(x)
dPn(x) ≤ 0

⇒

∫

log
p0(x)

p̂n(x)
dPn(x) − K (p0, p̂n) + K (p0, p̂n) ≤ 0

⇒ K (p0, p̂n) ≤

∣
∣
∣
∣

∫

log
p0(x)

p̂n(x)
dPn(x) −

∫

log
p0(x)

p̂n(x)
dP (x)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

log
p̂n(x)

p0(x)
d(Pn − P )(x)

∣
∣
∣
∣

.

Thus, we need a ULLN for the family of functions: F = {log p
p0
{p0 > 0} | p ∈ P}. To this end, we use the

following distance measure:

Definition 7 (Hellinger Distance).

h (p1, p2) =

(
1

2

∫ (

p
1/2
1 (x) − p

1/2
2 (x)

)2

dµ(x)

) 1
2

Unlike the KL-divergence, Hellinger distance is a proper distance metric (non-negative, symmetric, transitive,
and 0 if and only if p1 = p2 almost everywhere). Moreover, Hellinger is appealing as the square-root of a
density lies in L2. Further we have the following:

Lemma 8.

h2(p1, p2) ≤
1

2
K(p1, p2)

Proof. We use the inequality log(x) ≤ x − 1 in the form 1
2 log(v) ≤ v1/2 − 1. This gives the following:

⇒
1

2
log

p2(x)

p1(x)
≤

p
1/2
2 (x)

p
1/2
1 (x)

− 1

⇒
−1

2
K(p1, p2) ≤

∫

p1>0

p
1/2
2 (x)

p
1/2
1 (x)

p1(x)µ(dx) − 1

⇒
1

2
K(p1, p2) ≥

1

2
︸︷︷︸

1
2

R

p1>0
p1(x)µ(dx)

+
1

2
︸︷︷︸

1
2

R

p1>0
p2(x)µ(dx)

−

∫

p1>0

p
1/2
2 (x)

p
1/2
1 (x)

p1(x)µ(dx)

⇒
1

2
K(p1, p2) ≥

∫

p1>0

1

2
p1(x) − p

1/2
1 (x)p

1/2
2 (x) +

1

2
p2(x)µ(dx)

⇒
1

2
K(p1, p2) ≥

1

2

∫ (

p
1/2
1 (x) − p

1/2
2 (x)

)2

µ(dx)

︸ ︷︷ ︸

=h2(p1,p2)

Unfortunately, though, F is hard to work with (p’s are not bounded away from 0). Instead we will work with
the family

G , {
1

2
log

p + p0

2p0
{p0 > 0} | p ∈ P}
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which is bounded below by 1
2 log 1

2 .

Lemma 9.

h2

(
p̂n + p0

2
, p0

)

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P )

Proof. Concavity of the logarithm implies

⇒ log
p̂n + p0

2
≥

1

2
log p̂n +

1

2
log p0

⇒ log
p̂n + p0

2
− log p0 ≥

1

2
log p̂n −

1

2
log p0

⇒ log
p̂n + p0

2p0
{p0 > 0} ≥

1

2
log

p̂n

p0
{p0 > 0}

Now, by the definition of the MLE (Eq. (4)):

⇒ 0 ≤

∫

p0>0

1

4
log

p̂n

p0
dPn

⇒ 0 ≤

∫

p0>0

1

2
log

p̂n + p0

2p0
dPn

=

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P ) +

∫

p0>0

1

2
log

p̂n + p0

2p0
dP

︸ ︷︷ ︸

=− 1
2
K(p0,

p̂n+p0
2 )

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P ) − h2

(
p̂n + p0

2
, p0

)

(by Lemma 8)

⇒ h2

(
p̂n + p0

2
, p0

)

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P )

Thus, elements of our family G have Hellinger distance 0 that goes to 0. To connect this back to our orginal
family F, we have the following Lemma:

Lemma 10.
h2 (p, p0) ≤ 16h2 (p̄, p0)

where p̄ ,
p+p0

2 .

Finally, we arrive at the following Theorem:

Theorem 11. Let G = { 1
2 log p̄

p0
{p0 > 0} | p ∈ P} and let G = supg∈G |g|. Assume that

∫
GdP < ∞ and ∀ǫ > 0 1

nH1(ǫ, Pn,G)
P
→ 0, then

h(p̂n, p0)
a.s.
→ 0
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Example 12 (Logistic Regression for nonparameteric links). We are given data pairs: (Yi, Zi) and
we assume the conditional distribution of Y follows a particular functional form:

P (Y = 1|Z = z) = Fθ0
(z)

where Fθ is an increasing function of z for every θ ∈ Θ and θ0 ∈ Θ is the true parameter.

Let µ be (counting measure on {0, 1})×Q where Q is the distribution of Z. Now, the family of joint densities
we obtain is

P = {pθ(y, z) = yFθ(z) + (1 − y)(1 − Fθ(z))}

which has the following properties:

• supp∈P p ≤ 1.

• HB(ǫ, µ,P) ≤ Aǫ−1 (for increasing functions).

Hence we have
h (p̂n, p0)

P
→ 0
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