Stat210B: Theoretical Statistics

Lecture Date: February 15, 2007

Applications of ULLNs: Consistency of M-estimators

Lecturer: Michael I. Jordan

Scribe: Blaine Nelson

1 M and Z-estimators (van der Vaart, 1998, Section 5.1, p. 41–54)

Definition 1 (M-estimator). An estimator $\hat{\theta}_n$ defined as a maximizer of the expression:

$$M_n(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n m_\theta(X_i) \tag{1}$$

for some function $m_{\theta}(\cdot)$. If there is a unique solution, the estimator can be expressed simply as

$$\theta_n = \operatorname{argmax}_{\theta \in \Theta} M_n(\theta)$$

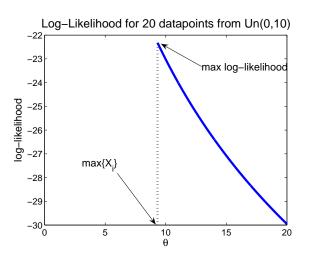
Definition 2 (**Z-estimator (estimating equations)**). An estimator $\hat{\theta}_n$ that can be expressed as the *root* of the expression:

$$\Phi_n(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n \phi_\theta(X_i)$$

for some function $\phi_{\theta}(\cdot)$; that is, a solution to

$$\Phi_n\left(\hat{\theta}_n\right) = 0$$

M-estimators first were introduced in the context of robust estimation by Peter J. Huber as a generalization of the maximum likelihood estimator (MLE): $m_{\theta}(x) = \log p_{\theta}(x)$. In the literature, they are often confused with Z-esimators because of the relationship between optimization and differentiation. In fact under certain conditions, they are equivalent via the relationship $\phi_{\theta}(x) = \nabla_{\theta}[m_{\theta}(x)]$. If m_{θ} is everywhere differentiable w.r.t. θ then the M-estimator is a Z-estimator. A simple example where this fails is the estimation of the parameter θ for the distribution $\text{Un}(0, \theta)$. In this model, the log-likelihood is discontinuous in θ but the MLE is well defined as $\hat{\theta}_n = \max\{X_i\}_{i=1}^n$, which occurs at this discontinuity as show in the following figure:



As is clear, the log-likelihood is $-\infty$ before the MLE and decreasing after it. Hence, the maximum of the log-likelihood occurs at this point of discontinuity even though the derivative is not 0 there (it is not defined).

2 Consistency of M-estimators (van der Vaart, 1998, Section 5.2, p. 44–51)

Definition 3 (Consistency). An estimator is *consistent* if $\hat{\theta}_n \xrightarrow{P} \theta_0$ (alternatively, $\hat{\theta}_n \xrightarrow{a.s.} \theta_0$) for any $\theta_0 \in \Theta$, where θ_0 is the true parameter being estimated.

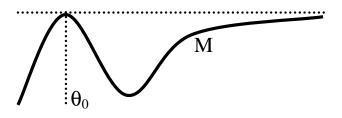
Theorem 4. (van der Vaart, 1998, Theorem 5.7, p. 45) Let M_n be random functions and M be a fixed function such that $\forall \epsilon > 0$:

$$\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \xrightarrow{P} 0$$
(2)

$$\sup_{\{\theta \mid d(\theta,\theta_0) \ge \epsilon\}} M(\theta) < M(\theta_0)$$
(3)

Then, any sequence $\hat{\theta}_n$ with $M_n(\hat{\theta}_n) \ge M_n(\theta_0) - o_p(1)$ converges in probability to θ_0 .

Notice, condition (2) is a restriction on the random functions M_n , whereas condition (3) ensures that θ_0 is a *well-separated* maximum of M; i.e., only θ close to θ_0 achieve a value $M(\theta)$ close to the maximum (See figure below):



Finally it is worth noting that sequences $\hat{\theta}_n$ that nearly maximize M_n (i.e., $M_n(\hat{\theta}_n) \ge \sup_{\theta} M_n(\theta) - o_p(1)$) meet the above requirement on $\hat{\theta}_n$.

Proof. We are assuming that our $\hat{\theta}_n$ satisfies, $M_n(\hat{\theta}_n) \ge M_n(\theta_0) - o_p(1)$. Then, uniform convergence of M_n to M implies

\Rightarrow	$M_n(\theta_0) \xrightarrow{P} M(\theta_0)$
\Rightarrow	$M_n(\hat{\theta}_n) \ge M(\theta_0) - o_p(1)$
\Rightarrow	$M(\theta_0) \le M_n(\hat{\theta}_n) + o_p(1)$
\Rightarrow	$M(\theta_0) - M(\hat{\theta}_n) \le M_n(\hat{\theta}_n) - M(\hat{\theta}_n) + o_p(1)$
	$\leq \sup_{ heta \in \Theta} M_n(heta) - M(heta) + o_p(1)$
	$\xrightarrow{P} 0$ (by condition (2))

Now, by condition (3), $\forall \epsilon > 0, \exists \eta$ such that $M(\theta) < M(\theta_0) - \eta$ is satisfied $\forall \theta : d(\theta, \theta_0) \ge \epsilon$. Thus $\{d(\hat{\theta}_n, \theta_0) \ge \epsilon\} \subseteq \{M(\hat{\theta}_n) < M(\theta_0) - \eta\}.$

$$\Rightarrow P\left(d(\hat{\theta}_n, \theta_0) \ge \epsilon\right) \le \underbrace{P\left(M(\hat{\theta}_n) < M(\theta_0) - \eta\right)}_{\stackrel{P}{\to} 0 \quad \text{(as shown above)}}$$

The primary drawback of this approach is that it requires the metric entropy to achieve condition (2).

3 Consistency of the MLE (non-parametric)

where P has a density p_0 . This implies

We assume that we have *n* i.i.d. samples from some (unknown) distribution *P*; i.e., $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} P$. Further, we assume *P* has a density $p_0 = \frac{dP}{d\mu}$. For the family of densities, \mathcal{P} , we will consider the maximum likelihood estimator (MLE) amongst \mathcal{P} as

$$\hat{p}_n = \operatorname{argmax}_{p \in \mathcal{P}} \int \log p dP_n$$

where $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ —the empirical distribution. To further formalize this, we consider the following definitions.

Definition 5 (Kullback-Leibler (KL)-divergence). The Kullback-Leibler divergence between two densities is defined as,

$$K(p_0, p) = \int \log \frac{p_0(x)}{p(x)} dP(x)$$

(Recall, $K(p_0, p)$ is always non-negative and is 0 if and only if $p_0(x) = p(x)$ almost everywhere.)

Definition 6 (Maximum Likelihood Estimator (MLE)). The maximum-likelihood estimator \hat{p}_n is the minimizer of

$$\int \log \frac{p_0(x)}{\hat{p}_n(x)} dP(x)$$
$$\int \log \frac{\hat{p}_n}{p_0} dP_n \le 0 \tag{4}$$

Given these definitions, we now derive a bound on the KL-divergence between the true density p_0 and the MLE \hat{p}_n :

$$\Rightarrow \qquad \int \log \frac{p_0(x)}{\hat{p}_n(x)} dP_n(x) \le 0$$

$$\Rightarrow \qquad \int \log \frac{p_0(x)}{\hat{p}_n(x)} dP_n(x) - K\left(p_0, \hat{p}_n\right) + K\left(p_0, \hat{p}_n\right) \le 0$$

$$\Rightarrow \qquad K\left(p_0, \hat{p}_n\right) \le \left| \int \log \frac{p_0(x)}{\hat{p}_n(x)} dP_n(x) - \int \log \frac{p_0(x)}{\hat{p}_n(x)} dP(x) \right|$$

$$= \left| \int \log \frac{\hat{p}_n(x)}{p_0(x)} d(P_n - P)(x) \right| .$$

Thus, we need a ULLN for the family of functions: $\mathfrak{F} = \{\log \frac{p}{p_0} \{p_0 > 0\} \mid p \in \mathcal{P}\}$. To this end, we use the following distance measure:

Definition 7 (Hellinger Distance).

$$h\left(p_{1}, p_{2}\right) = \left(\frac{1}{2} \int \left(p_{1}^{1/2}(x) - p_{2}^{1/2}(x)\right)^{2} d\mu(x)\right)^{\frac{1}{2}}$$

Unlike the KL-divergence, Hellinger distance is a proper distance metric (non-negative, symmetric, transitive, and 0 if and only if $p_1 = p_2$ almost everywhere). Moreover, Hellinger is appealing as the square-root of a density lies in \mathcal{L}_2 . Further we have the following:

Lemma 8.

$$h^2(p_1, p_2) \le \frac{1}{2}K(p_1, p_2)$$

Proof. We use the inequality $\log(x) \le x - 1$ in the form $\frac{1}{2}\log(v) \le v^{1/2} - 1$. This gives the following:

$$\Rightarrow \qquad \frac{1}{2}\log\frac{p_{2}(x)}{p_{1}(x)} \leq \frac{p_{2}^{1/2}(x)}{p_{1}^{1/2}(x)} - 1 \Rightarrow \qquad \frac{-1}{2}K(p_{1},p_{2}) \leq \int_{p_{1}>0} \frac{p_{2}^{1/2}(x)}{p_{1}^{1/2}(x)}p_{1}(x)\mu(dx) - 1 \Rightarrow \qquad \frac{1}{2}K(p_{1},p_{2}) \geq \underbrace{\frac{1}{2}}_{\frac{1}{2}\int_{p_{1}>0}p_{1}(x)\mu(dx)} - \frac{1}{2}\int_{p_{1}>0}p_{2}(x)\mu(dx)}_{\frac{1}{2}\int_{p_{1}>0}p_{1}(x)\mu(dx)} - \int_{p_{1}>0} \frac{p_{2}^{1/2}(x)}{p_{1}^{1/2}(x)}p_{1}(x)\mu(dx) \Rightarrow \qquad \frac{1}{2}K(p_{1},p_{2}) \geq \int_{p_{1}>0} \frac{1}{2}p_{1}(x) - p_{1}^{1/2}(x)p_{2}^{1/2}(x) + \frac{1}{2}p_{2}(x)\mu(dx) \Rightarrow \qquad \frac{1}{2}K(p_{1},p_{2}) \geq \underbrace{\frac{1}{2}\int \left(p_{1}^{1/2}(x) - p_{2}^{1/2}(x)\right)^{2}\mu(dx)}_{=h^{2}(p_{1},p_{2})}$$

Unfortunately, though, \mathfrak{F} is hard to work with (*p*'s are not bounded away from 0). Instead we will work with the family

$$\mathfrak{G} \triangleq \left\{\frac{1}{2}\log\frac{p+p_0}{2p_0}\{p_0>0\} \mid p \in \mathcal{P}\right\}$$

which is bounded below by $\frac{1}{2}\log \frac{1}{2}$.

Lemma 9. $h^2\left(\frac{\hat{p}_n + p_0}{2}, p_0\right) \le \int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} d(P_n - P)$

Proof. Concavity of the logarithm implies

$$\Rightarrow \qquad \log \frac{\hat{p}_n + p_0}{2} \ge \frac{1}{2} \log \hat{p}_n + \frac{1}{2} \log p_0$$

$$\Rightarrow \qquad \log \frac{\hat{p}_n + p_0}{2} - \log p_0 \ge \frac{1}{2} \log \hat{p}_n - \frac{1}{2} \log p_0$$

$$\Rightarrow \qquad \log \frac{\hat{p}_n + p_0}{2p_0} \{p_0 > 0\} \ge \frac{1}{2} \log \frac{\hat{p}_n}{p_0} \{p_0 > 0\}$$

Now, by the definition of the MLE (Eq. (4)):

$$\Rightarrow \qquad 0 \leq \int_{p_0 > 0} \frac{1}{4} \log \frac{\hat{p}_n}{p_0} dP_n \\ \Rightarrow \qquad 0 \leq \int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} dP_n \\ = \int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} d(P_n - P) + \underbrace{\int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} dP}_{= -\frac{1}{2}K(p_0, \frac{\hat{p}_n + p_0}{2})} \\ \leq \int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} d(P_n - P) - h^2 \left(\frac{\hat{p}_n + p_0}{2}, p_0\right) \quad \text{(by Lemma 8)} \\ \Rightarrow \qquad h^2 \left(\frac{\hat{p}_n + p_0}{2}, p_0\right) \leq \int_{p_0 > 0} \frac{1}{2} \log \frac{\hat{p}_n + p_0}{2p_0} d(P_n - P)$$

Thus, elements of our family \mathfrak{G} have Hellinger distance 0 that goes to 0. To connect this back to our orginal family \mathfrak{F} , we have the following Lemma:

Lemma 10.	
	$h^2(p, p_0) \le 16h^2(\bar{p}, p_0)$
where $\bar{p} \triangleq \frac{p+p_0}{2}$.	

Finally, we arrive at the following Theorem:

Theorem 11. Let $\mathfrak{G} = \{\frac{1}{2}\log \frac{\bar{p}}{p_0}\{p_0 > 0\} \mid p \in \mathcal{P}\}\ and let G = \sup_{g \in \mathfrak{G}} |g|.$ Assume that $\int GdP < \infty$ and $\forall \epsilon > 0$ $\frac{1}{n}H_1(\epsilon, P_n, \mathfrak{G}) \xrightarrow{P} 0$, then $h(\hat{p}_n, p_0) \xrightarrow{a.s.} 0$

Example 12 (Logistic Regression for nonparameteric links). We are given data pairs: (Y_i, Z_i) and we assume the conditional distribution of Y follows a particular functional form:

$$P(Y=1|Z=z) = F_{\theta_0}(z)$$

where F_{θ} is an increasing function of z for every $\theta \in \Theta$ and $\theta_0 \in \Theta$ is the true parameter.

Let μ be (counting measure on $\{0,1\}$) × Q where Q is the distribution of Z. Now, the family of joint densities we obtain is

$$\mathcal{P} = \{p_{\theta}(y, z) = yF_{\theta}(z) + (1 - y)(1 - F_{\theta}(z))\}$$

which has the following properties:

- $\sup_{p \in \mathcal{P}} p \leq 1.$
- $H_B(\epsilon, \mu, \mathcal{P}) \leq A\epsilon^{-1}$ (for increasing functions).

Hence we have

$$h\left(\hat{p}_n, p_0\right) \xrightarrow{P} 0$$

References

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.