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1 P -Glivenko-Cantelli

Definition 1 (P -Glivenko-Cantelli). A class F is P -Glivenko-Cantelli if

sup
f∈F

|Pnf − Pf |
a.s.
−→ 0.

Definition 2 (envelope). An envelope for a class F of functions is a function F such that PF < ∞ and,
for all f ∈ F , |f | ≤ F .

Theorem 3. (Pollard, 1984, Theorem 24) Let F be a permissible1 class of functions with envelope F . If
1
nH1(ε, Pn,F)

P
−→ 0 for all ε > 0 then ‖Pn − P‖

∆
= supf∈F |Pnf − Pf |

a.s.

−→ 0.

Remark 4. The condition that 1
nH1(ε, Pn,F)

P
−→ 0 is natural in the sense that we want to make sure that

the covering number does not grow exponentially fast. See Pollard (1984) for more discussion of this theorem
and its conditions.

Proof. In lectures 5 and 6, we proved Glivenko-Cantelli for a special class of functions, namely indicators.
This proof extends it to more general classes of functions. The proof will be similar, but some changes will
need to be made.

As before, we will prove convergence in probability. A reverse-martingale argument can be used to extend
the proof to show convergence almost surely.

Since PF < ∞, for any ε > 0 there exists a K such that PF{F > K} < ε. It follows that

sup
f∈F

|Pnf − Pf | ≤ sup
f∈F

|Pnf{F ≤ K} − Pf{F ≤ K}| + sup
f∈F

|Pnf{F > K}| + sup
f∈F

|Pf{F > K}|. (1)

Furthermore, since F is an envelope,

sup
f∈F

|Pnf{F > K}| + sup
f∈F

|Pf{F > K}| ≤ PnF{F > K} + PF{F > K}
a.s.
−→ 2PF{F > K} < 2ε.

Since this is true for all ε, inequality (1) means that

sup
f∈F

|Pnf{F ≤ K} − Pf{F ≤ K}|
P
−→ 0 =⇒ sup

f∈F

|Pnf − Pf |
P
−→ 0.

This tells us that we can proceed under the assumption that |f | ≤ K for all f ∈ F .

1Permissibility is a concept from measure theory that is not important for this class; see Pollard (1984, Appendix C,
Definition 1) for details.
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2 P -Glivenko-Cantelli

Now lecture 5 used two symmetrization arguments to establish bounds that helped in proving Glivenko-
Cantelli for indicator functions. Both these bounds apply in this more general case, and the proofs are
similar, so we will repeat only the conclusion from lecture 6, which is

P{‖Pn − P‖ > ε} ≤ 4P{‖P 0
n‖ > ε

4} for n ≥
2

ε2
,

where P 0
n is the signed measure putting mass ± 1

n at each of the observed data points ξ = {ξ1, . . . , ξn}. We
will now continue, working conditionally with ξ.

Given any ξ, choose g1, . . . , gM , where M = N1(
ε
8 , Pn,F) such that minj Pn|f − gj | < ε

8 for all f ∈ F .
Denote f∗ as the gj that achieves the minimal Pn-norm distance from f . Now

P{‖P 0
n‖ > ε

4 |ξ} ≤ P{sup
f∈F

(|P 0
nf∗| + |P 0

n(f − f∗)|) > ε
4 |ξ}

≤ P{sup
f∈F

(|P 0
nf∗| + Pn|f − f∗|) > ε

4 |ξ}

≤ P{max
j

|P 0
ngj | > ε

8 |ξ} since Pn|f − f∗| < ε
8

= P{

M⋃

j=1

|P 0
ngj | > ε

8 |ξ}

≤

M∑

j=1

P{|P 0
ngj | > ε

8 |ξ}

≤ N1(
ε
8 , Pn,F)max

j
P{|P 0

ngj | > ε
8 |ξ}

≤ N1(
ε
8 , Pn,F)max

j
2 exp

(

−2

(
nε
8

)2

∑n
i=1(2gj(ξi))2

)

by Hoeffding

≤ 2N1(
ε
8 , Pn,F) exp

(

−
nε2

128K2

)

since |gj | ≤ K

Note that this bound does not depend on the data!

To complete the proof we must integrate over ξ: for the event {log N1(
ε
8 , Pn,F) ≤ nε2

256K2 } we can use the

bound just obtained, replacing N1(
ε
8 , Pn,F) with the upper bound enε2/256K2

. Otherwise, we will use 1 as
a bound. That is,

P{‖P 0
n‖ > ε

4} ≤ P{log N1(
ε
8 , Pn,F) ≤ nε2

256K2 }2 exp

(

−
nε2

256K2

)

+ P{log N1(
ε
8 , Pn,F) > nε2

256K2 }

≤ 2 exp

(

−
nε2

256K2

)

︸ ︷︷ ︸

→0

+P{log N1(
ε
8 , Pn,F) > nε2

256K2

︸ ︷︷ ︸

P
−→0

}.

Example 5 (A non-GC class). Suppose F = {1A : A ⊂ R}, P = U(0, 1), and X = (0, 1). Consider
A = {x1, . . . , xn}. Then P1A ≡ 0, but Pn1A = 1 for some subsets.
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2 Glivenko-Cantelli and VC dimension

Lemma 6 (Approximation Lemma). (Pollard, 1984, Lemma 25) Let F be a class of functions with envelope
F and let Q be a probability measure such that QF < ∞. Suppose graphs of F have finite VC dimension V.
Then

N1(εQF,Q,F) ≤ AV(16e)Vε−(V−1).

Remark 7. The exponential dependence of N1 on V shown in this lemma gives an intuition for the use of
the word “dimension” in VC dimension.

Remark 8. This lemma implies that H1 ≤ C + (V − 1) log 1
ε .

Remark 9. See van der Vaart (1998, Lemma 19.15) for a tighter result.
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