Lecture 7

1 Properties of VC-classes

1.1 VC preservation

Let \mathcal{C} and \mathcal{D} be VC-classes (i.e. classes with finite VC-dimension). Then so are

- $\left\{C^{\complement}: C \in \mathcal{C}\right\}$
- $\{C \cup D: C \in \mathcal{C}, D \in \mathcal{D}\}$
- $\{C \cap D: C \in \mathcal{C}, D \in \mathcal{D}\}$
- $\phi(C)$ where ϕ is 1-1
- $\{C \times D: C \in \mathcal{C}, D \in \mathcal{D}\}$

1.2 Half spaces

Let \mathcal{G} be a finite-dimensional vector space of functions. Let $\mathcal{C}=\{g \geq 0: g \in \mathcal{G}\}$ or more formally $\mathcal{C}=\{\{\omega: g(\omega) \geq 0\}: g \in \mathcal{G}\}$. Then $V^{\mathcal{C}} \leq \operatorname{dim} \mathcal{G}+1$.

1.3 Subgraphs

Definition 1. A subgraph of $f: \mathcal{X} \rightarrow \mathcal{R}$ is the subset $\mathcal{X} \times \mathcal{R}$ given by $\{(x, t): t \leq f(x)\}$.
A collection \mathcal{F} is a $V C$-subgraph class if the collection of subgraphs is a VC-class.

2 Covering Number

We now begin to explore a more powerful method of defining complexity than VC-dimension.

2.1 Definitions

Definition 2 (Covering Number). (Pollard, 1984, p. 25) Let Q be a probability measure on S and \mathcal{F} be a class of functions in $\mathcal{L}^{1}(Q)$, i.e. $\forall f \in \mathcal{F}, \int|f| d Q<\infty$. For each $\varepsilon>0$ define the \mathcal{L}_{1} covering number $N_{1}(\varepsilon, Q, \mathcal{F})$ as the smallest value of m for which there exist functions g_{1}, \ldots, g_{m} (not necessarily in \mathcal{F}) such that $\min _{j} Q\left|f-g_{j}\right| \leq \varepsilon$ for each f in \mathcal{F}. For definiteness set $N_{1}(\varepsilon, Q, \mathcal{F})=\infty$ if no such m exists.

Note that the set $\left\{g_{j}\right\}$ that achieves this minimum is not necessarily unique.
Definition 3 (Metric Entropy). Define $H_{1}(\varepsilon, Q, \mathcal{F})=\log N_{1}(\varepsilon, Q, \mathcal{F})$ as the \mathcal{L}_{1} metric entropy of \mathcal{F}.

More generally, $H_{p}(\varepsilon, Q, \mathcal{F})$ uses the $\mathcal{L}_{p}(Q)$ norm. Write this as $\|g\|_{p, Q}=\left(\int|g|^{p} d Q\right)^{1 / p}$.
Definition 4 (Totally bounded). A class is called totally bounded if $\forall \varepsilon, H_{p}(\varepsilon, Q, \mathcal{F})<\infty$

Another kind of entropy:
Definition 5 (Entropy with bracketing). Let $N_{p, B}(\varepsilon, Q, \mathcal{F})$ be the smallest value of m for which there exist pairs of functions $\left\{\left(g_{j}^{L}, g_{j}^{U}\right)\right\}_{j=1}^{m}$ such that $\forall j,\left\|g_{j}^{U}-g_{j}^{L}\right\|_{p, Q}<\varepsilon$ and $\forall f \in \mathcal{F}, \exists j(f)$ s.t. $g_{j(f)}^{L} \leq f \leq g_{j(f)}^{U}$. Then we define the entropy with bracketing as $H_{p, Q}(\varepsilon, Q, \mathcal{F})=\log N_{p, Q}(\varepsilon, Q, \mathcal{F})$.

Finally, using $\|g\|_{\infty} \triangleq \sup _{x \in \mathcal{X}}|g(x)|$, let $N_{\infty}(\varepsilon, \mathcal{F})$ be the smallest m such that there exists a set $\left\{g_{j}\right\}_{j=1}^{m}$ such that $\sup _{f \in \mathcal{F}} \min _{j=1, \ldots, m}\left\|f-g_{j}\right\|_{\infty}<\varepsilon$. Then $H_{\infty}(\varepsilon, \mathcal{F})=\log N_{\infty}(\varepsilon, \mathcal{F})$.

2.2 Relationship of the various entropies

Using the definitions above, we have that

1. $H_{1}(\varepsilon, Q, \mathcal{F}) \leq H_{p, B}(\varepsilon, Q, \mathcal{F}), \forall \varepsilon>0$
2. $H_{p, B}(\varepsilon, Q, \mathcal{F}) \leq H_{\infty}(\varepsilon / 2, \mathcal{F}), \forall \varepsilon>0$

Can these quantities be computed for normal classes of functions? Yes, but you would generally look them up in a big book. We'll look at how to compute one of these quantities here.

2.3 Examples

Example 6. Let $\mathcal{F}=\left\{f:[0,1] \rightarrow[0,1],\left|f^{\prime}\right| \leq 1\right\}$ (i.e. functions from $[0,1]$ to $[0,1]$ with first derivatives bounded by 1). Then $H_{\infty}(\varepsilon, \mathcal{F}) \leq A \frac{1}{\varepsilon}$ where A is a constant that we will compute.

Proof. Let $0=a_{0}<a_{1}<\cdots<a_{m}=1$ where $a_{k}=k \varepsilon$ and $k=0, \ldots, m$. Let $B_{1}=\left[a_{0}, a_{1}\right]$ and $B_{k}=\left(a_{k-1}, a_{k}\right]$. For each $f \in \mathcal{F}$, define

$$
\tilde{f}=\sum_{k=1}^{m} \varepsilon\left\lfloor\frac{f\left(a_{k}\right)}{\varepsilon}\right\rfloor 1_{B_{k}}
$$

\tilde{f} takes on values in εk where k is an integer. We also have $\|\tilde{f}-f\|_{\infty} \leq 2 \varepsilon$, because $\left|\tilde{f}\left(a_{k-1}\right)-f\left(a_{k-1}\right)\right| \leq \varepsilon$ by construction and $\left|f\left(a_{k}\right)^{-}-f\left(a_{k-1}\right)\right| \leq \varepsilon$ since f^{\prime} is bounded by 1 .
We now count the number of possible \tilde{f} obtained by this construction. At a_{0}, there are $\lfloor 1 / \varepsilon\rfloor+1$ choices for $\tilde{f}\left(a_{0}\right)$ since \tilde{f} only takes on values of εk in $[0,1]$. Furthermore, combining previous results gives us

$$
\begin{aligned}
\left|\tilde{f}\left(a_{k}\right)-\tilde{f}\left(a_{k-1}\right)\right| & \leq\left|\tilde{f}\left(a_{k}\right)-f\left(a_{k}\right)\right|+\left|f\left(a_{k}\right)-f\left(a_{k-1}\right)\right|+\left|f\left(a_{k-1}\right)-\tilde{f}\left(a_{k-1}\right)\right| \\
& \leq 3 \varepsilon
\end{aligned}
$$

Therefore, having chosen $\tilde{f}\left(a_{k-1}\right), \tilde{f}$ can take on at most 7 distinct values at a_{k}. Therefore

$$
N_{\infty}(2 \varepsilon, \mathcal{F}) \leq\left(\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1\right) 7^{\lfloor 1 / \varepsilon\rfloor}
$$

which gives us that

$$
H_{\infty}(2 \varepsilon, \mathcal{F}) \leq \frac{1}{\varepsilon} \log 7+\log (\lfloor 1 / \varepsilon\rfloor+1)
$$

so our constant can be chosen as any constant that $>\log 7$.

A seminal paper in this field is by Birman and Solomjak in 1967. They present other examples of metric entropy calculations, including:
Example 7. Let $\mathcal{F}=\left\{f:[0,1] \rightarrow[0,1]: \int\left(f^{(m)}(x)\right)^{2} d x \leq 1\right\}$. Then $H_{\infty}(\varepsilon, \mathcal{F}) \leq A \varepsilon^{-1 / m}$.
Example 8. Let $\mathcal{F}=\{f: \mathcal{R} \rightarrow(0,1): f$ is increasing $\}$. Then $H_{p, B}(\varepsilon, Q, \mathcal{F}) \leq A \frac{1}{\varepsilon}$.
Example 9. Let $\mathcal{F}=\left\{f: \mathcal{R} \rightarrow[0,1]: \int|d f| \leq 1\right\}$, the class of bounded variation. Then $H_{p, B}(\varepsilon, Q, \mathcal{F}) \leq A \frac{1}{\varepsilon}$.
Lemma 10 (Ball covering lemma). A ball $B_{d}(R)$ in \mathcal{R}^{d} of radius R can be covered by

$$
\left(\frac{4 R+\varepsilon}{\varepsilon}\right)^{d}
$$

balls of radius ε.
Proof. Let $\left\{c_{j}\right\}_{j=1}^{m}$ be a packing of size ε (Euclidean norm). This implies that balls of radius ε with centers at $\left\{c_{j}\right\}$ cover $B_{d}(R)$ (otherwise we could add more points c_{j} to the packing). Let B_{j} be the ball of radius $\varepsilon / 4$ centered at c_{j}. We must have that $B_{i} \cap B_{j}$ is empty for $i \neq j$. Therefore $\left\{B_{j}\right\}$ are disjoint and

$$
\cup_{j} B_{j} \subset B_{d}(R+\varepsilon / 4)
$$

A ball of radius ρ has volume $C_{d} \rho^{d}$ where C_{d} is a constant that depends on the dimension d. Therefore, the volume of the union $\cup_{j} B_{j}$ is $M C_{d}(\varepsilon / 4)^{d}$ and since it is a subset of $B_{d}(R+\varepsilon / 4)$, we have

$$
M C_{d}\left(\frac{\varepsilon}{4}\right)^{d} \leq C_{d}\left(R+\frac{\varepsilon}{4}\right)^{d}
$$

With a simple manipulation of this equation, we get that

$$
M \leq\left(\frac{4 R+\varepsilon}{\varepsilon}\right)^{d}
$$

References

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

