Stat210B: Theoretical Statistics

Lecture Date: February 8, 2007

Lecture 7

Lecturer: Michael I. Jordan

Scribe: Kurt Miller

1 Properties of VC-classes

1.1 VC preservation

Let \mathcal{C} and \mathcal{D} be VC-classes (i.e. classes with finite VC-dimension). Then so are

- $\{C^{\complement}: C \in \mathcal{C}\}$
- $\{C \cup D : C \in \mathcal{C}, D \in \mathcal{D}\}$
- $\{C \cap D : C \in \mathcal{C}, D \in \mathcal{D}\}$
- $\phi(C)$ where ϕ is 1-1
- $\{C \times D : C \in \mathcal{C}, D \in \mathcal{D}\}$

1.2 Half spaces

Let \mathcal{G} be a finite-dimensional vector space of functions. Let $\mathcal{C} = \{g \geq 0 : g \in \mathcal{G}\}$ or more formally $\mathcal{C} = \{\{\omega : g(\omega) \geq 0\} : g \in \mathcal{G}\}$. Then $V^{\mathcal{C}} \leq \dim \mathcal{G} + 1$.

1.3 Subgraphs

Definition 1. A subgraph of $f : \mathcal{X} \to \mathcal{R}$ is the subset $\mathcal{X} \times \mathcal{R}$ given by $\{(x, t) : t \leq f(x)\}$.

A collection \mathcal{F} is a *VC-subgraph class* if the collection of subgraphs is a VC-class.

2 Covering Number

We now begin to explore a more powerful method of defining complexity than VC-dimension.

2.1 Definitions

Definition 2 (Covering Number). (Pollard, 1984, p. 25) Let Q be a probability measure on S and \mathcal{F} be a class of functions in $\mathcal{L}^1(Q)$, i.e. $\forall f \in \mathcal{F}, \int |f| dQ < \infty$. For each $\varepsilon > 0$ define the \mathcal{L}_1 covering number $N_1(\varepsilon, Q, \mathcal{F})$ as the smallest value of m for which there exist functions g_1, \ldots, g_m (not necessarily in \mathcal{F}) such that $\min_j Q|f - g_j| \leq \varepsilon$ for each f in \mathcal{F} . For definiteness set $N_1(\varepsilon, Q, \mathcal{F}) = \infty$ if no such m exists.

Note that the set $\{g_i\}$ that achieves this minimum is not necessarily unique.

Definition 3 (Metric Entropy). Define $H_1(\varepsilon, Q, \mathcal{F}) = \log N_1(\varepsilon, Q, \mathcal{F})$ as the \mathcal{L}_1 metric entropy of \mathcal{F} .

More generally, $H_p(\varepsilon, Q, \mathcal{F})$ uses the $\mathcal{L}_p(Q)$ norm. Write this as $||g||_{p,Q} = (\int |g|^p dQ)^{1/p}$.

Definition 4 (Totally bounded). A class is called *totally bounded* if $\forall \varepsilon, H_p(\varepsilon, Q, \mathcal{F}) < \infty$

Another kind of entropy:

Definition 5 (Entropy with bracketing). Let $N_{p,B}(\varepsilon, Q, \mathcal{F})$ be the smallest value of m for which there exist pairs of functions $\{(g_j^L, g_j^U)\}_{j=1}^m$ such that $\forall j, \|g_j^U - g_j^L\|_{p,Q} < \varepsilon$ and $\forall f \in \mathcal{F}, \exists j(f) \text{ s.t. } g_{j(f)}^L \leq f \leq g_{j(f)}^U$. Then we define the *entropy with bracketing* as $H_{p,Q}(\varepsilon, Q, \mathcal{F}) = \log N_{p,Q}(\varepsilon, Q, \mathcal{F})$.

Finally, using $||g||_{\infty} \triangleq \sup_{x \in \mathcal{X}} |g(x)|$, let $N_{\infty}(\varepsilon, \mathcal{F})$ be the smallest m such that there exists a set $\{g_j\}_{j=1}^m$ such that $\sup_{f \in \mathcal{F}} \min_{j=1,...,m} ||f - g_j||_{\infty} < \varepsilon$. Then $H_{\infty}(\varepsilon, \mathcal{F}) = \log N_{\infty}(\varepsilon, \mathcal{F})$.

2.2 Relationship of the various entropies

Using the definitions above, we have that

1.
$$H_1(\varepsilon, Q, \mathcal{F}) \leq H_{p,B}(\varepsilon, Q, \mathcal{F}), \forall \varepsilon > 0$$

2.
$$H_{p,B}(\varepsilon, Q, \mathcal{F}) \leq H_{\infty}(\varepsilon/2, \mathcal{F}), \ \forall \varepsilon > 0$$

Can these quantities be computed for normal classes of functions? Yes, but you would generally look them up in a big book. We'll look at how to compute one of these quantities here.

2.3 Examples

Example 6. Let $\mathcal{F} = \{f : [0,1] \to [0,1], |f'| \leq 1\}$ (i.e. functions from [0,1] to [0,1] with first derivatives bounded by 1). Then $H_{\infty}(\varepsilon, \mathcal{F}) \leq A_{\varepsilon}^{\frac{1}{\epsilon}}$ where A is a constant that we will compute.

Proof. Let $0 = a_0 < a_1 < \cdots < a_m = 1$ where $a_k = k\varepsilon$ and $k = 0, \ldots, m$. Let $B_1 = [a_0, a_1]$ and $B_k = (a_{k-1}, a_k]$. For each $f \in \mathcal{F}$, define

$$\tilde{f} = \sum_{k=1}^{m} \varepsilon \left\lfloor \frac{f(a_k)}{\varepsilon} \right\rfloor \mathbf{1}_{B_k}$$

 \tilde{f} takes on values in εk where k is an integer. We also have $\|\tilde{f} - f\|_{\infty} \leq 2\varepsilon$, because $|\tilde{f}(a_{k-1}) - f(a_{k-1})| \leq \varepsilon$ by construction and $|f(a_k)^- - f(a_{k-1})| \leq \varepsilon$ since f' is bounded by 1.

We now count the number of possible \tilde{f} obtained by this construction. At a_0 , there are $\lfloor 1/\varepsilon \rfloor + 1$ choices for $\tilde{f}(a_0)$ since \tilde{f} only takes on values of εk in [0, 1]. Furthermore, combining previous results gives us

$$\begin{aligned} |\hat{f}(a_k) - \hat{f}(a_{k-1})| &\leq |\hat{f}(a_k) - f(a_k)| + |f(a_k) - f(a_{k-1})| + |f(a_{k-1}) - \hat{f}(a_{k-1})| \\ &\leq 3\varepsilon. \end{aligned}$$

Therefore, having chosen $\tilde{f}(a_{k-1})$, \tilde{f} can take on at most 7 distinct values at a_k . Therefore

$$N_{\infty}(2\varepsilon,\mathcal{F}) \leq \left(\left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1\right) 7^{\lfloor 1/\varepsilon \rfloor}$$

which gives us that

$$H_{\infty}(2\varepsilon, \mathcal{F}) \leq \frac{1}{\varepsilon} \log 7 + \log(\lfloor 1/\varepsilon \rfloor + 1)$$

so our constant can be chosen as any constant that $> \log 7$.

A seminal paper in this field is by Birman and Solomjak in 1967. They present other examples of metric entropy calculations, including:

Example 7. Let $\mathcal{F} = \{f : [0,1] \to [0,1] : \int (f^{(m)}(x))^2 dx \leq 1\}$. Then $H_{\infty}(\varepsilon, \mathcal{F}) \leq A\varepsilon^{-1/m}$.

Example 8. Let $\mathcal{F} = \{f : \mathcal{R} \to (0,1) : f \text{ is increasing}\}$. Then $H_{p,B}(\varepsilon, Q, \mathcal{F}) \leq A_{\varepsilon}^{\frac{1}{2}}$.

Example 9. Let $\mathcal{F} = \{f : \mathcal{R} \to [0,1] : \int |df| \leq 1\}$, the class of bounded variation. Then $H_{p,B}(\varepsilon, Q, \mathcal{F}) \leq A_{\varepsilon}^{\frac{1}{\epsilon}}$. Lemma 10 (Ball covering lemma). A ball $B_d(R)$ in \mathcal{R}^d of radius R can be covered by

$$\left(\frac{4R+\varepsilon}{\varepsilon}\right)^d$$

balls of radius ε .

Proof. Let $\{c_j\}_{j=1}^m$ be a packing of size ε (Euclidean norm). This implies that balls of radius ε with centers at $\{c_j\}$ cover $B_d(R)$ (otherwise we could add more points c_j to the packing). Let B_j be the ball of radius $\varepsilon/4$ centered at c_j . We must have that $B_i \cap B_j$ is empty for $i \neq j$. Therefore $\{B_j\}$ are disjoint and

$$\cup_j B_j \subset B_d(R + \varepsilon/4).$$

A ball of radius ρ has volume $C_d \rho^d$ where C_d is a constant that depends on the dimension d. Therefore, the volume of the union $\cup_j B_j$ is $MC_d(\varepsilon/4)^d$ and since it is a subset of $B_d(R + \varepsilon/4)$, we have

$$MC_d\left(\frac{\varepsilon}{4}\right)^d \le C_d\left(R + \frac{\varepsilon}{4}\right)^d.$$

With a simple manipulation of this equation, we get that

$$M \le \left(\frac{4R+\varepsilon}{\varepsilon}\right)^d$$

References

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.