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1 Properties of VC-classes

1.1 VC preservation

Let C and D be VC-classes (i.e. classes with finite VC-dimension). Then so are

• {C{ : C ∈ C}

• {C ∪ D : C ∈ C, D ∈ D}

• {C ∩ D : C ∈ C, D ∈ D}

• φ(C) where φ is 1-1

• {C × D : C ∈ C, D ∈ D}

1.2 Half spaces

Let G be a finite-dimensional vector space of functions. Let C = {g ≥ 0 : g ∈ G} or more formally
C = {{ω : g(ω) ≥ 0} : g ∈ G}. Then V C ≤ dimG + 1.

1.3 Subgraphs

Definition 1. A subgraph of f : X → R is the subset X ×R given by {(x, t) : t ≤ f(x)}.

A collection F is a VC-subgraph class if the collection of subgraphs is a VC-class.

2 Covering Number

We now begin to explore a more powerful method of defining complexity than VC-dimension.

2.1 Definitions

Definition 2 (Covering Number). (Pollard, 1984, p. 25) Let Q be a probability measure on S and F be
a class of functions in L1(Q), i.e. ∀f ∈ F ,

∫

|f |dQ < ∞ . For each ε > 0 define the L1 covering number
N1(ε,Q,F) as the smallest value of m for which there exist functions g1, . . . , gm (not necessarily in F) such
that minj Q|f − gj | ≤ ε for each f in F . For definiteness set N1(ε,Q,F) = ∞ if no such m exists.
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Note that the set {gj} that achieves this minimum is not necessarily unique.

Definition 3 (Metric Entropy). Define H1(ε,Q,F) = log N1(ε,Q,F) as the L1 metric entropy of F .

More generally, Hp(ε,Q,F) uses the Lp(Q) norm. Write this as ‖g‖p,Q = (
∫

|g|pdQ)1/p.

Definition 4 (Totally bounded). A class is called totally bounded if ∀ε, Hp(ε,Q,F) < ∞

Another kind of entropy:

Definition 5 (Entropy with bracketing). Let Np,B(ε,Q,F) be the smallest value of m for which there
exist pairs of functions {(gL

j , gU
j )}m

j=1 such that ∀j, ‖gU
j −gL

j ‖p,Q < ε and ∀f ∈ F , ∃j(f) s.t. gL
j(f) ≤ f ≤ gU

j(f).

Then we define the entropy with bracketing as Hp,Q(ε,Q,F) = log Np,Q(ε,Q,F).

Finally, using ‖g‖∞ , supx∈X |g(x)|, let N∞(ε,F) be the smallest m such that there exists a set {gj}
m
j=1

such that supf∈F minj=1,...,m ‖f − gj‖∞ < ε. Then H∞(ε,F) = log N∞(ε,F).

2.2 Relationship of the various entropies

Using the definitions above, we have that

1. H1(ε,Q,F) ≤ Hp,B(ε,Q,F), ∀ε > 0

2. Hp,B(ε,Q,F) ≤ H∞(ε/2,F), ∀ε > 0

Can these quantities be computed for normal classes of functions? Yes, but you would generally look them
up in a big book. We’ll look at how to compute one of these quantities here.

2.3 Examples

Example 6. Let F = {f : [0, 1] → [0, 1], |f ′| ≤ 1} (i.e. functions from [0, 1] to [0, 1] with first derivatives
bounded by 1). Then H∞(ε,F) ≤ A 1

ε where A is a constant that we will compute.

Proof. Let 0 = a0 < a1 < · · · < am = 1 where ak = kε and k = 0, . . . ,m. Let B1 = [a0, a1] and
Bk = (ak−1, ak]. For each f ∈ F , define

f̃ =
m

∑

k=1

ε

⌊

f(ak)

ε

⌋

1Bk

f̃ takes on values in εk where k is an integer. We also have ‖f̃ − f‖∞ ≤ 2ε, because |f̃(ak−1)− f(ak−1)| ≤ ε
by construction and |f(ak)− − f(ak−1)| ≤ ε since f ′ is bounded by 1.

We now count the number of possible f̃ obtained by this construction. At a0, there are b1/εc+ 1 choices for
f̃(a0) since f̃ only takes on values of εk in [0, 1]. Furthermore, combining previous results gives us

|f̃(ak) − f̃(ak−1)| ≤ |f̃(ak) − f(ak)| + |f(ak) − f(ak−1)| + |f(ak−1) − f̃(ak−1)|

≤ 3ε.
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Therefore, having chosen f̃(ak−1), f̃ can take on at most 7 distinct values at ak. Therefore

N∞(2ε,F) ≤

(⌊

1

ε

⌋

+ 1

)

7b1/εc

which gives us that

H∞(2ε,F) ≤
1

ε
log 7 + log(b1/εc + 1)

so our constant can be chosen as any constant that > log 7.

A seminal paper in this field is by Birman and Solomjak in 1967. They present other examples of metric
entropy calculations, including:

Example 7. Let F = {f : [0, 1] → [0, 1] :
∫

(f (m)(x))2dx ≤ 1}. Then H∞(ε,F) ≤ Aε−1/m.

Example 8. Let F = {f : R → (0, 1) : f is increasing}. Then Hp,B(ε,Q,F) ≤ A 1
ε .

Example 9. Let F = {f : R → [0, 1] :
∫

|df | ≤ 1}, the class of bounded variation. Then Hp,B(ε,Q,F) ≤ A 1
ε .

Lemma 10 (Ball covering lemma). A ball Bd(R) in Rd of radius R can be covered by

(

4R + ε

ε

)d

balls of radius ε.

Proof. Let {cj}
m
j=1 be a packing of size ε (Euclidean norm). This implies that balls of radius ε with centers

at {cj} cover Bd(R) (otherwise we could add more points cj to the packing). Let Bj be the ball of radius
ε/4 centered at cj . We must have that Bi ∩ Bj is empty for i 6= j. Therefore {Bj} are disjoint and

∪jBj ⊂ Bd(R + ε/4).

A ball of radius ρ has volume Cdρ
d where Cd is a constant that depends on the dimension d. Therefore, the

volume of the union ∪jBj is MCd(ε/4)
d and since it is a subset of Bd(R + ε/4), we have

MCd

(ε

4

)d

≤ Cd

(

R +
ε

4

)d

.

With a simple manipulation of this equation, we get that

M ≤

(

4R + ε

ε

)d
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