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Uniformly Strong Law of Large Numbers
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In this lecture, we try to generalize the Glivenko-Cantelli theorem.

Let ξ1, ξ2, · · · , ξn ∼ P and are i.i.d. sequences. We define Pf := E(f(X)), in which X ∼ P . We also
define Pnf with respect to the empirical measure but puts mass 1

n
at {ξ1, · · · , ξn}. Notice that by definition

Pnf = 1
n

∑n
i=1 f(ξi).

We point out that Pnf − Pf is an object of interest; and supf∈F |Pnf − Pf | is of even more interest.
For example, let F = {

�

(−∞,t] : t ∈ R}, then Pnf − Pf becomes Fn(t) − F (t) and supf∈F | · | becomes
supt |Fn(t)−F (t)|. In general, we are interested in statistics defined on a family of stochastic processes with
index set F .

Uniform Law of Large Numbers

Define ‖Pn − P‖ := supf∈F |Pnf − Pf |. Recalling the discussion in last lecture, we get

P{‖Pn − P‖ > ε} ≤ 2P{‖Pn − P ′
n‖ >

ε

2
}

≤ 4P{‖P 0
n‖ >

ε

4
}

where P 0
n is a signed measure putting mass 1

n
σi at {ξ1, · · · , ξn}. Again, σi independently pick value uniformly

on {1,−1}.

Specialize F to indicators

Let Ij = (−∞, tj ] where {tj} lie between the points ξi, i.e., t0 < ξ1 < t1 < ξ2 < t2 < · · · . Consider

P{‖P 0
n‖ >

ε

4
|ξ}

= P{

n⋃

j=0

{|P 0
nIj | >

ε

4
}|ξ}

≤

n∑

j=0

P{|P 0
nIj | >

ε

4
|ξ}

≤ (n + 1)max
j

P{|P 0
nIj | >

ε

4
|ξ}.

Recall Hoeffding’s inequality. Let Yi be independent, E(Yi) = 0, ai ≤ Yi ≤ bi. Then, P{|Y1 +Y2 + · · ·+Yn| >

η} ≤ exp{− 2η2

P

i
(bi−ai)

}. We apply this to σi{ξi ≤ t}, and conclude

P{|P 0
n{(−∞, t]}| >

ε

4
|ξ} ≤ 2 exp(−

2(nε/4)2

4n
)

≤ 2 exp(−
nε2

32
),
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2 Uniformly Strong Law of Large Numbers

notice that this is independent of ξ, so P{‖Pn − P‖ > ε} ≤ 8(n + 1) exp(−nε2

32 ), i.e., we get Uniform Law of
Large Numbers in probability and also almost surely (by Borel-Cantelli).

The conclusion, namely, Glivenko-Cantelli theorem is not new. However, this method can be generalized to
richer class of functions immediately.

VC Classes

Consider a collection C of subsets of some set X , and consider points ξ1, · · · , ξn from X . Define ∆C
n :=

#{C
⋂
{ξ1, · · · , ξn} : C ∈ C}; m(n) := maxξ1,··· ,ξn

∆C
n(ξ1, · · · , ξn); V C := min{n : m(n) < 2n}.

Examples

1, X = R, C = {(−∞, t]}. Then, V C = 2.

2, X = R, C = {(s, t] : s < t}. Then, V C = 3.

3, X = R
d, C = {(−∞, t] : t ∈ R

d}. Then, V C = d + 1.

4, Rectangles in R
d. V C = 2d + 1.

Sauer’s Lemma

Lemma 1.

m(n) ≤

V C∑

j=0

(
n

j

)
≤ (

ne

V C − 1
)V C

−1.

Proof. We prove the second part.

S∑

j=0

(
n

j

)
= 2n

S∑

j=0

(
n

j

)
(
1

2
)n

= 2n
P(Y ≤ S), Y ∼ Bin(n,

1

2
)

≤ 2n
E(θ)Y −S , 0 ≤ θ ≤ 1

= 2nθ−S(
1

2
+

θ

2
)n, take θ =

S

n

= (
n

S
)S(1 +

S

n
)n

≤ (
n

S
)SeS .

This suggests

P{‖P 0
n‖ >

ε

4
|ξ} = P{

m(n)⋃

i=0

|P 0
n f̃i| >

ε

4
|ξ}

(f̃i are indicators of subsets that achieve m(n)).

≤

m(n)∑

i=1

P{|P 0
n f̃i| >

ε

4
|ξ}

≤ mn max(·).
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Then if F is a VC class, (i.e., V C < ∞), then

P{‖Pn − P‖ > ε} ≤ (Poly in n)(exp(−Cn)).


