In this lecture, we try to generalize the Glivenko-Cantelli theorem.
Let $\xi_{1}, \xi_{2}, \cdots, \xi_{n} \sim P$ and are i.i.d. sequences. We define $P f:=\mathbb{E}(f(X))$, in which $X \sim P$. We also define $P_{n} f$ with respect to the empirical measure but puts mass $\frac{1}{n}$ at $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$. Notice that by definition $P_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi_{i}\right)$.
We point out that $P_{n} f-P f$ is an object of interest; and $\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|$ is of even more interest. For example, let $\mathcal{F}=\left\{\mathbb{1}_{(-\infty, t]}: t \in \mathbb{R}\right\}$, then $P_{n} f-P f$ becomes $F_{n}(t)-F(t)$ and $\sup _{f \in \mathcal{F}}|\cdot|$ becomes $\sup _{t}\left|F_{n}(t)-F(t)\right|$. In general, we are interested in statistics defined on a family of stochastic processes with index set \mathcal{F}.

Uniform Law of Large Numbers

Define $\left\|P_{n}-P\right\|:=\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|$. Recalling the discussion in last lecture, we get

$$
\begin{aligned}
\mathbb{P}\left\{\left\|P_{n}-P\right\|>\epsilon\right\} & \leq 2 \mathbb{P}\left\{\left\|P_{n}-P_{n}^{\prime}\right\|>\frac{\epsilon}{2}\right\} \\
& \leq 4 \mathbb{P}\left\{\left\|P_{n}^{0}\right\|>\frac{\epsilon}{4}\right\}
\end{aligned}
$$

where P_{n}^{0} is a signed measure putting mass $\frac{1}{n} \sigma_{i}$ at $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$. Again, σ_{i} independently pick value uniformly on $\{1,-1\}$.

Specialize \mathcal{F} to indicators

Let $I_{j}=\left(-\infty, t_{j}\right]$ where $\left\{t_{j}\right\}$ lie between the points ξ_{i}, i.e., $t_{0}<\xi_{1}<t_{1}<\xi_{2}<t_{2}<\cdots$. Consider

$$
\begin{aligned}
\mathbb{P}\left\{\left.\left\|P_{n}^{0}\right\|>\frac{\epsilon}{4} \right\rvert\, \xi\right\} & \\
& =\mathbb{P}\left\{\left.\bigcup_{j=0}^{n}\left\{\left|P_{n}^{0} I_{j}\right|>\frac{\epsilon}{4}\right\} \right\rvert\, \xi\right\} \\
& \leq \sum_{j=0}^{n} \mathbb{P}\left\{\left.\left|P_{n}^{0} I_{j}\right|>\frac{\epsilon}{4} \right\rvert\, \xi\right\} \\
& \leq(n+1) \max _{j} \mathbb{P}\left\{\left.\left|P_{n}^{0} I_{j}\right|>\frac{\epsilon}{4} \right\rvert\, \xi\right\}
\end{aligned}
$$

Recall Hoeffding's inequality. Let Y_{i} be independent, $\mathbb{E}\left(Y_{i}\right)=0, a_{i} \leq Y_{i} \leq b_{i}$. Then, $\mathbb{P}\left\{\left|Y_{1}+Y_{2}+\cdots+Y_{n}\right|>\right.$ $\eta\} \leq \exp \left\{-\frac{2 \eta^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)}\right\}$. We apply this to $\sigma_{i}\left\{\xi_{i} \leq t\right\}$, and conclude

$$
\begin{aligned}
\mathbb{P}\left\{\left.\left|P_{n}^{0}\{(-\infty, t]\}\right|>\frac{\epsilon}{4} \right\rvert\, \xi\right\} & \leq 2 \exp \left(-\frac{2(n \epsilon / 4)^{2}}{4 n}\right) \\
& \leq 2 \exp \left(-\frac{n \epsilon^{2}}{32}\right)
\end{aligned}
$$

notice that this is independent of ξ, so $\mathbb{P}\left\{\left\|P_{n}-P\right\|>\epsilon\right\} \leq 8(n+1) \exp \left(-\frac{n \epsilon^{2}}{32}\right)$, i.e., we get Uniform Law of Large Numbers in probability and also almost surely (by Borel-Cantelli).

The conclusion, namely, Glivenko-Cantelli theorem is not new. However, this method can be generalized to richer class of functions immediately.

VC Classes

Consider a collection \mathcal{C} of subsets of some set \mathcal{X}, and consider points ξ_{1}, \cdots, ξ_{n} from \mathcal{X}. Define $\Delta_{n}^{\mathcal{C}}:=$ $\#\left\{C \bigcap\left\{\xi_{1}, \cdots, \xi_{n}\right\}: C \in \mathcal{C}\right\} ; m(n):=\max _{\xi_{1}, \cdots, \xi_{n}} \Delta_{n}^{\mathcal{C}}\left(\xi_{1}, \cdots, \xi_{n}\right) ; V^{\mathcal{C}}:=\min \left\{n: m(n)<2^{n}\right\}$.

Examples

$1, \mathcal{X}=\mathbb{R}, \mathcal{C}=\{(-\infty, t]\}$. Then, $V^{\mathcal{C}}=2$.
$2, \mathcal{X}=\mathbb{R}, \mathcal{C}=\{(s, t]: s<t\}$. Then, $V^{\mathcal{C}}=3$.
$3, \mathcal{X}=\mathbb{R}^{d}, \mathcal{C}=\left\{(-\infty, t]: t \in \mathbb{R}^{d}\right\}$. Then, $V^{\mathcal{C}}=d+1$.
4, Rectangles in $\mathbb{R}^{d} . V^{\mathcal{C}}=2 d+1$.

Sauer's Lemma

Lemma 1.

$$
m(n) \leq \sum_{j=0}^{V^{\mathcal{C}}}\binom{n}{j} \leq\left(\frac{n e}{V^{\mathcal{C}}-1}\right)^{V^{\mathcal{C}}-1}
$$

Proof. We prove the second part.

$$
\begin{aligned}
\sum_{j=0}^{S}\binom{n}{j} & =2^{n} \sum_{j=0}^{S}\binom{n}{j}\left(\frac{1}{2}\right)^{n} \\
& =2^{n} \mathbb{P}(Y \leq S), \quad Y \sim \operatorname{Bin}\left(n, \frac{1}{2}\right) \\
& \leq 2^{n} \mathbb{E}(\theta)^{Y-S}, \quad 0 \leq \theta \leq 1 \\
& =2^{n} \theta^{-S}\left(\frac{1}{2}+\frac{\theta}{2}\right)^{n}, \quad \text { take } \theta=\frac{S}{n} \\
& =\left(\frac{n}{S}\right)^{S}\left(1+\frac{S}{n}\right)^{n} \\
& \leq\left(\frac{n}{S}\right)^{S} e^{S}
\end{aligned}
$$

This suggests

$$
\begin{aligned}
\mathbb{P}\left\{\left.\left\|P_{n}^{0}\right\|>\frac{\epsilon}{4} \right\rvert\, \xi\right\}= & \mathbb{P}\left\{\left.\bigcup_{i=0}^{m(n)}\left|P_{n}^{0} \widetilde{f}_{i}\right|>\frac{\epsilon}{4} \right\rvert\, \xi\right\} \\
& \left(\widetilde{f}_{i} \text { are indicators of subsets that achieve } m(n)\right) \\
\leq & \sum_{i=1}^{m(n)} \mathbb{P}\left\{\left.\left|P_{n}^{0} \widetilde{f}_{i}\right|>\frac{\epsilon}{4} \right\rvert\, \xi\right\} \\
\leq & m_{n} \max (\cdot)
\end{aligned}
$$

Then if \mathcal{F} is a VC class, (i.e., $V^{\mathcal{C}}<\infty$), then

$$
\mathbb{P}\left\{\left\|P_{n}-P\right\|>\epsilon\right\} \leq(\text { Poly in } n)(\exp (-C n))
$$

