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Empirical Process theory allows us to prove uniform convergence laws of various kinds. One of the ways to
start Empirical Process theory is from the Glivenko-Cantelli theorem. Recall the Glivenko-Cantelli theorem.

Fn(t) =
1

n

n∑

i=1

1{ξi≤t} (1)

F (t) = P{ξ ≤ t} (2)

We would like to show that sup
t
|Fn(t)−F (t)|

P
−→ 0. The proof makes use of the compactness of the class of

indicator functions on the real line to break this class into bins and bound the oscillations in each bin. This
leads to the question of whether the same idea can be generalized to other function classes.

1 Empirical Process Theory

Denote sup
t
| · | by || · ||. To bound the difference ||Fn(t) − F (t)||, we compare two independent copies of the

empirical quantity - Fn(t) and F ′
n(t). A symmetrization lemma is used to bound the former in terms of the

latter.

1.1 First Symmetrization

Lemma 1. (Pollard, 1984, Section II.8, p. 14) Let Z(t) and Z ′(t) be independent stochastic processes.
Suppose that ∃α, β > 0 such that P{|Z ′(t)| ≤ α} ≥ β, ∀t. Then

P{sup
t
|Z(t)| > ε} ≤ β−1

P{sup
t
|Z(t) − Z ′(t)| > ε − α} (3)

An application of Lemma 1 can be seen by setting Z(t) = Fn(t) − F (t) and Z ′(t) = F ′
n(t) − F (t).

Proof. Suppose that the event {sup
t
|Z(t)| > ε} occurs. Choose τ 3 |Z(τ)| > ε. Note that τ is a random

variable. By definition of τ ,

P{sup
t
|Z(t)| > ε} ≤ P{|Z(τ)| > ε} (4)

From the independence of Z and Z ′, we have

P{|Z ′(t)| < α|Z} ≥ β (5)

Suppose that both {|Z(τ)| > ε} and {|Z ′(τ)| ≤ α} occur. Then we have

{|Z(τ) − Z ′(τ)| ≥ ε − α} (6)
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Also

β{|Z(τ)| > ε} ≤ P{|Z ′(τ)| ≤ α, |Z(τ)| > ε|Z}

≤ P{|Z ′(τ)| > α, |Z(τ)| > ε} (7)

Here {|Z(τ)| > ε} is an indicator function on the event {|Z(τ)| > ε}. The inequality 7 uses the independence
of Z and Z ′. From Equation 6

β{|Z(τ)| > ε} ≤ P{|Z ′(τ) − Z(τ)| ≥ ε − α}

≤ P{sup
t
|Z(t) − Z ′(t)| ≥ ε − α} (8)

The proof follows from Equations 8 and 4.

1.1.1 Example

Un(ω, t) = n− 1
2

n∑

i=1

({ξi(ω) ≤ t} − t)

where ξi
iid
∼ Unif(0, 1).

For fixed value of t,

Un ∼
Bin(n, t)

n
1
2

−
t

n
1
2

P{|Fn(t) − F (t)| >
ε

2
} ≤

4

ε2
E(Fn(t) − F (t))2

=
4

ε2
E(

1

n

∑

i

{ξ ≤ t} − F (t))2

=
4

nε2
E({ξ ≤ t} − F (t))2

=
4F (t)(1 − F (t))

nε2

≤
1

nε2

=
1

2
for n ≥

2

ε2

1.2 Second Symmetrization

The second symmetrization lemma allows us to replace the difference Fn−F ′
n with a single empirical quantity

consisting of n observations. We can further bound the latter so that the bound is independent of the data
ξ.

Define Rademacher variables {σi}
iid
∈ {−1,+1}. For any choice of {σi}, the distribution of ({ξi ≤ t} −

{ξi

′

≤ t}) is equal to the distribution of σi({ξi ≤ t} − {ξi

′

≤ t}). We change notation here so that
Pn = 1

n

∑n

i=1
1{ξi≤t}. P ′

n is defined similarly.
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Lemma 2. Pollard (1984, II.8,p. 15) P{||Pn − P ′
n|| > ε

2
} ≤ 2P{sup

t
| 1
n

∑
i σi{ξi ≤ t}| ≥ ε

4
}

Proof.

P{||Pn − P ′
n|| >

ε

2
}

= P{
1

n
sup

t
|
∑

i

σi({ξi ≤ t} − {ξ′i ≤ t})| ≥
ε

2
}

≤ P{sup
t
|
1

n

∑

i

σi{ξi ≤ t}| ≥
ε

4
} + P{sup

t
|
1

n

∑

i

σi{ξ
′
i ≤ t}| ≥

ε

4
} (9)

= 2P{sup
t
|
1

n

∑

i

σi{ξi ≤ t}| ≥
ε

4
}

Inequality 9 was derived using the equivalence of the two random quantities and the triangle inequality.

1.3 Hoeffding bound for independent RVs

We state here the Hoeffding bound which we use to bound the quantity 1

n

∑
i σi{ξi ≤ t}. Consider n

independent RVs {Yi}s so that EYi = 0 and ai ≤ Yi ≤ bi.

Theorem 3 (Hoeffding Bound). P{
∑n

i=1
Yi > η} ≤ 2e

− 2η2
P

i (bi−ai)
2

The proof proceeds by considering the random variable es
P

i Yi where s is a free parameter. Using Markov’s
inequality,

P{es
P

i Yi > esη} ≤
Ees

P

i Yi

esη

≤

∏
i EesYi

esη

Minimizing s gives the necessary bound.
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