Stat210B: Theoretical Statistics

Lecture Date: January 18, 2007

Lecture 2

Lecturer: Michael I. Jordan

Lemma 1 (Fatou). If $X_n \xrightarrow{a.s.} X$ and $X_n \ge Y$ with $E[|Y|] < \infty$, then

$$\liminf_{n \to \infty} E[X_n] \ge E[X].$$

Theorem 2 (Monotone Convergence Theorem). If $0 \le X_1 \le X_2 \cdots$ and $X_n \xrightarrow{a.s.} X$, then

 $E[X_n] \longrightarrow E[X].$

Note that the Monotone Convergence Theorem can be proven from Fatou's Lemma.

Theorem 3 (Dominated Convergence Theorem). If $X_n \xrightarrow{a.s.} X$ and $|X_n| \leq Y, E[|Y|] < \infty$, then

 $E[X_n] \longrightarrow E[X].$

Theorem 4 (Weak Law of Large Numbers). If $X_i \stackrel{i.i.d.}{\sim} X$ and $E[|X|] < \infty$, then

 $\bar{X}_n \xrightarrow{P} E[X],$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Theorem 5 (Strong Law of Large Numbers). If $X_i \stackrel{i.i.d.}{\sim} X$ and $E[|X|] < \infty$, then

$$\bar{X}_n \xrightarrow{a.s.} E[X].$$

Definition 6 (Empirical Distribution Function). Given *n* i.i.d. data points $X_i \stackrel{\text{i.i.d.}}{\sim} F$, the empirical distribution function is defined as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[X_i,\infty)}(x).$$

Note that $F_n(x) \xrightarrow{\text{a.s.}} F(x)$, for each x.

Theorem 7 (Glivenko-Cantelli). Given n i.i.d. data points $X_i \stackrel{i.i.d.}{\sim} F$,

$$P\{\sup_{x} |F_n(x) - F(x)| \longrightarrow 0\} = 1$$

That is, the random variable $\sup_{x} |F_n(x) - F(x)|$ converges to 0, almost surely.

Theorem 8 (Central Limit Thorem). Given n i.i.d. random variables X_i from some distribution with mean μ and covariance Σ (which are assumed to exist),

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{a}{\longrightarrow} N(0, \Sigma).$$

Scribe: Ariel Kleiner

The following theorem is a generalization of the Central Limit Theorem. It applies to non-i.i.d. (i.e., independent but not identically distributed) random variables as might be arranged in a triangular array as follows, where the random variables within each row are independent:

$$\begin{array}{cccc} Y_{11} & & \\ Y_{21} & Y_{22} & \\ Y_{31} & Y_{32} & Y_{33} \\ \vdots & & \end{array}$$

Theorem 9 (Lindeberg-Feller). For each n, let $Y_{n1}, Y_{n2}, \ldots, Y_{nk_n}$ be independent random variables with finite variance such that $\sum_{i=1}^{k_n} Var(Y_{ni}) \to \Sigma$ and

$$\sum_{i=1}^{k_n} E\left[\|Y_{ni}\|^2 \mathbb{1}\{\|Y_{ni}\| > \varepsilon\} \right] \xrightarrow{n \to \infty} 0, \qquad \forall \varepsilon > 0.$$

Then,

$$\sum_{i=1}^{k_n} (Y_{ni} - E[Y_{ni}]) \stackrel{d}{\longrightarrow} N(0, \Sigma)$$

We now consider an example illustrating application of the Lindeberg-Feller theorem.

Example 10 (Permutation Tests). Consider 2n paired experimental units in which we observe the results of n treatment experiments X_{nj} and n control experiments W_{nj} . Let $Z_{nj} = X_{nj} - W_{nj}$. We would like to determine whether or not the treatment has had any effect. That is, are the Z_{nj} significantly non-zero? To test this, we condition on $|Z_{nj}|$. This conditioning effectively causes us to discard information regarding the magnitude of Z_{nj} and leaves us to consider only signs. Thus, under the null hypothesis H_0 , there are 2^n possible outcomes, all equally probable. We now consider the test statistic

$$\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_{ni}$$

and show that, under H_0 ,

$$\frac{\sqrt{n}\bar{Z}_n}{\sigma_n} \stackrel{d}{\longrightarrow} N(0,1),$$

where $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n Z_{ni}^2$, and we assume that

$$\max_{j} \frac{Z_{nj}^2}{\sum_i Z_{ni}^2} \longrightarrow 0.$$

Proof. Let

$$Y_{nj} = \frac{Z_{nj}}{\left(\sum_{i} Z_{ni}^2\right)^{1/2}}.$$

Note that, under H_0 , $E[Y_{nj}] = 0$ because H_0 states that X_j and Y_j are identically distributed. Additionally,

we have $\sum_{j} \operatorname{Var}(Y_{nj}) = 1$. Now observe that, $\forall \varepsilon > 0$,

$$\sum_{j} E\left[|Y_{nj}|^{2} \mathbb{1}\left\{|Y_{nj}| > \varepsilon\right\}\right] = \sum_{j} \frac{Z_{nj}^{2}}{\sum_{i} Z_{ni}^{2}} \mathbb{1}\left\{\frac{Z_{nj}^{2}}{\sum_{i} Z_{ni}^{2}} > \varepsilon^{2}\right\}$$
$$\leq \left(\sum_{j} \frac{Z_{nj}^{2}}{\sum_{i} Z_{ni}^{2}}\right) \mathbb{1}\left\{\max_{j} \frac{Z_{nj}^{2}}{\sum_{i} Z_{ni}^{2}} > \varepsilon^{2}\right\}$$
$$= \mathbb{1}\left\{\max_{j} \frac{Z_{nj}^{2}}{\sum_{i} Z_{ni}^{2}} > \varepsilon^{2}\right\}$$
$$\to 0$$

where the equality in the first line follows from the definition of Y_{nj} and the fact that we are conditioning on the magnitudes of the Z_{nj} , thus rendering Z_{nj}^2 deterministic. The desired result now follows from application of the Lindeberg-Feller theorem.

We now move on to Chapter 3 in van der Vaart.

Theorem 11 (Delta Method, van der Vaart Theorem 3.1). Let $\phi : D_{\phi} \subseteq \mathbb{R}^k \to \mathbb{R}^m$, differentiable at θ . Additionally, let T_n be random variables whose ranges lie in D_{ϕ} , and let $r_n \to \infty$. Then, given that $r_n(T_n - \theta) \stackrel{d}{\longrightarrow} T$,

(i)
$$r_n(\phi(T_n) - \phi(\theta)) \xrightarrow{d} \phi'_{\theta}(T)$$

(ii) $r_n(\phi(T_n) - \phi(\theta)) - \phi'_{\theta}(r_n(T_n - \theta)) \xrightarrow{P} 0$

Proof. Given that $r_n(T_n - \theta) \xrightarrow{d} T$, it follows from Prohorov's Theorem that $r_n(T_n - \theta)$ is uniformly tight (UT). Differentiability implies that

$$\phi(\theta + h) - \phi(\theta) - \phi'_{\theta}(h) = o(||h||)$$

(from the definition of the derivative). Now consider $h = T_n - \theta$ and note that $T_n - \theta \xrightarrow{P} 0$ by UT and $r_n \to \infty$. By Lemma 2.12 in van der Vaart, it follows that

$$\phi(T_n) - \phi(\theta) - \phi'_{\theta}(T_n - \theta) = o_P(||T_n - \theta||)$$

Multiplying through by r_n , we have

$$r_n(\phi(T_n) - \phi(\theta) - \phi'_{\theta}(T_n - \theta)) = o_P(1),$$

thus proving (ii) above. Slutsky now implies that $r_n \phi'_{\theta}(T_n - \theta)$ and $r_n(\phi(T_n) - \phi(\theta))$ have the same weak limit. As a result, using the fact that ϕ'_{θ} is a linear operator and the Continuous Mapping Theorem, we have

$$r_n \phi'_{\theta}(T_n - \theta) = \phi'_{\theta}(r_n(T_n - \theta)) \xrightarrow{d} \phi'_{\theta}(T)$$

and so

$$r_n(\phi(T_n) - \phi(\theta)) \xrightarrow{a} \phi'_{\theta}(T)$$

We now jump ahead to U-statistics.

Definition 12 (U-Statistics). For $\{X_i\}$ i.i.d. and a symmetric kernel function $h(X_1, \ldots, X_r)$, a U-statistic is defined as

$$U = \frac{1}{\binom{n}{r}} \sum_{\beta} h(X_{\beta_1}, \dots, X_{\beta_r})$$

where β ranges over all subsets of size r chosen from $\{1, \ldots, n\}$.

Note that, by definition, U is an unbiased estimator of $\theta = E[h(X_1, \dots, X_r)]$ (i.e., $E[U] = \theta$).

Example 13. Consider

$$\theta(F) = E[X] = \int x dF(x).$$

Taking h(x) = x,

$$U = \frac{1}{n} \sum_{i} X_i.$$

As an exercise, consider

$$\theta(F) = \int (x-\mu)^2 dF(x)$$

and identify h for the corresponding U-statistic, where $\mu = \int x dF(x)$.