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Lemma 1 (Fatou). If Xn
a.s.−→ X and Xn ≥ Y with E[|Y |] < ∞, then

lim inf
n−→∞

E[Xn] ≥ E[X].

Theorem 2 (Monotone Convergence Theorem). If 0 ≤ X1 ≤ X2 · · · and Xn
a.s.−→ X, then

E[Xn] −→ E[X].

Note that the Monotone Convergence Theorem can be proven from Fatou’s Lemma.

Theorem 3 (Dominated Convergence Theorem). If Xn
a.s.−→ X and |Xn| ≤ Y,E[|Y |] < ∞, then

E[Xn] −→ E[X].

Theorem 4 (Weak Law of Large Numbers). If Xi
i.i.d.∼ X and E[|X|] < ∞, then

X̄n
P−→ E[X],

where X̄n = 1
n

∑n
i=1 Xi.

Theorem 5 (Strong Law of Large Numbers). If Xi
i.i.d.∼ X and E[|X|] < ∞, then

X̄n
a.s.−→ E[X].

Definition 6 (Empirical Distribution Function). Given n i.i.d. data points Xi
i.i.d.∼ F , the empirical

distribution function is defined as

Fn(x) =
1

n

n
∑

i=1

1[Xi,∞)(x).

Note that Fn(x)
a.s.−→ F (x), for each x.

Theorem 7 (Glivenko-Cantelli). Given n i.i.d. data points Xi
i.i.d.∼ F ,

P{sup
x

|Fn(x) − F (x)| −→ 0} = 1

That is, the random variable supx |Fn(x) − F (x)| converges to 0, almost surely.

Theorem 8 (Central Limit Thorem). Given n i.i.d. random variables Xi from some distribution with
mean µ and covariance Σ (which are assumed to exist),

√
n(X̄n − µ)

d−→ N(0,Σ).
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The following theorem is a generalization of the Central Limit Theorem. It applies to non-i.i.d. (i.e.,
independent but not identically distributed) random variables as might be arranged in a triangular array as
follows, where the random variables within each row are independent:

Y11

Y21 Y22

Y31 Y32 Y33

...

Theorem 9 (Lindeberg-Feller). For each n, let Yn1, Yn2, . . . , Ynkn
be independent random variables with

finite variance such that
∑kn

i=1 Var(Yni) → Σ and

kn
∑

i=1

E
[

‖Yni‖2 � {‖Yni‖ > ε}
] n→∞−→ 0, ∀ε > 0.

Then,

kn
∑

i=1

(Yni − E[Yni])
d−→ N(0,Σ).

We now consider an example illustrating application of the Lindeberg-Feller theorem.

Example 10 (Permutation Tests). Consider 2n paired experimental units in which we observe the results
of n treatment experiments Xnj and n control experiments Wnj . Let Znj = Xnj − Wnj . We would like to
determine whether or not the treatment has had any effect. That is, are the Znj significantly non-zero? To
test this, we condition on |Znj |. This conditioning effectively causes us to discard information regarding the
magnitude of Znj and leaves us to consider only signs. Thus, under the null hypothesis H0, there are 2n

possible outcomes, all equally probable. We now consider the test statistic

Z̄n =
1

n

n
∑

i=1

Zni

and show that, under H0,
√

nZ̄n

σn

d−→ N(0, 1),

where σ2
n = 1

n

∑n
i=1 Z2

ni, and we assume that

max
j

Z2
nj

∑

i Z2
ni

−→ 0.

Proof. Let

Ynj =
Znj

(
∑

i Z2
ni)

1/2
.

Note that, under H0, E[Ynj ] = 0 because H0 states that Xj and Yj are identically distributed. Additionally,
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we have
∑

j Var(Ynj) = 1. Now observe that, ∀ε > 0,

∑

j

E
[

|Ynj |2
� {|Ynj | > ε}

]

=
∑

j

Z2
nj

∑

i Z2
ni

�

{

Z2
nj

∑

i Z2
ni

> ε2

}

≤





∑

j

Z2
nj

∑

i Z2
ni





�

{

max
j

Z2
nj

∑

i Z2
ni

> ε2

}

=
�

{

max
j

Z2
nj

∑

i Z2
ni

> ε2

}

→ 0

where the equality in the first line follows from the definition of Ynj and the fact that we are conditioning on
the magnitudes of the Znj , thus rendering Z2

nj deterministic. The desired result now follows from application
of the Lindeberg-Feller theorem.

We now move on to Chapter 3 in van der Vaart.

Theorem 11 (Delta Method, van der Vaart Theorem 3.1). Let φ : Dφ ⊆ R
k → R

m, differentiable
at θ. Additionally, let Tn be random variables whose ranges lie in Dφ, and let rn → ∞. Then, given that

rn(Tn − θ)
d−→ T ,

(i) rn(φ(Tn) − φ(θ))
d−→ φ′

θ(T )

(ii) rn(φ(Tn) − φ(θ)) − φ′

θ(rn(Tn − θ))
P−→ 0

Proof. Given that rn(Tn − θ)
d−→ T , it follows from Prohorov’s Theorem that rn(Tn − θ) is uniformly tight

(UT). Differentiability implies that

φ(θ + h) − φ(θ) − φ′

θ(h) = o(‖h‖)

(from the definition of the derivative). Now consider h = Tn − θ and note that Tn − θ
P−→ 0 by UT and

rn → ∞. By Lemma 2.12 in van der Vaart, it follows that

φ(Tn) − φ(θ) − φ′

θ(Tn − θ) = oP (‖Tn − θ‖).

Multiplying through by rn, we have

rn(φ(Tn) − φ(θ) − φ′

θ(Tn − θ)) = oP (1),

thus proving (ii) above. Slutsky now implies that rnφ′

θ(Tn − θ) and rn(φ(Tn) − φ(θ)) have the same weak
limit. As a result, using the fact that φ′

θ is a linear operator and the Continuous Mapping Theorem, we have

rnφ′

θ(Tn − θ) = φ′

θ(rn(Tn − θ))
d−→ φ′

θ(T )

and so
rn(φ(Tn) − φ(θ))

d−→ φ′

θ(T ).

We now jump ahead to U -statistics.
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Definition 12 (U-Statistics). For {Xi} i.i.d. and a symmetric kernel function h(X1, . . . , Xr), a U -statistic
is defined as

U =
1

(

n
r

)

∑

β

h(Xβ1
, . . . , Xβr

)

where β ranges over all subesets of size r chosen from {1, . . . , n}.

Note that, by definition, U is an unbiased estimator of θ = E[h(X1, . . . , Xr)] (i.e., E[U ] = θ).

Example 13. Consider

θ(F ) = E[X] =

∫

xdF (x).

Taking h(x) = x,

U =
1

n

∑

i

Xi.

As an exercise, consider

θ(F ) =

∫

(x − µ)2dF (x)

and identify h for the corresponding U -statistic, where µ =
∫

xdF (x).


