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In the last lecture, we discussed contiguity of measure as the analogue of absolute continuity for asymptotic
statistics. In this lecture, we will use contiguity to establish results change-of-measure results for statistical
hypothesis testing. We briefly recall the definition of contiguity here,

Definition 1 (Contiguity). Let Qn and Pn be sequences of measures. We say that Qn is contiguous w.r.t
to Pn, denoted Qn ⊳ Pn, if for each sequence of measurable sets An,1 we have that

Pn(An) → 0 ⇒ Qn(An) → 0

We also showed that Qn ⊳ Pn if and only if whenever the Radon-Nikodym derivative, dQn

dPn
, converges weakly

under Pn to a random variable V (i.e.dQn

dPn

Pn

 V ), then we have EV = 1.2 We also saw that a distribution
being in the Quadratic Mean Derivative (QMD) family implied contiguity for shrinking alternatives in
statistical testing. Formally, for QMD families Pθ, we have that Pn

θ0+
h√
n

⊳ Pn
θ0

(by Theorem 7.2 in van der

Vaart (1998) pg. 94). We now state an important result regarding the joint distribution of test statistics
and the likelihood ratio:

Lemma 2 (Theorem 6.6 in van der Vaart (1998) pg. 90). Let Pn and Qn be sequences of measures such

that Qn ⊳ Pn. Let Xn be a sequence of test statistic random variables. Suppose that we have,

(

Xn,
dQn

dPn

)

Pn

 (X,V )

for limiting random variables X and V . Then we have that L(B) = E1B(X)V defines a measure. Further-

more, Xn
Qn

 L.

Proof. By contiguity, we have that EV = 1, which in turn implies that L must be a probability measure.

Using Portmanteau’s lemma and a standard induction over measurable functions gives that Xn
Qn

 L.

Typically, we have that (X,V ) is bi-variate normal. In this case we have a very appealing result about the
asymptotic distribution of the test statistic under Qn.

Lemma 3 (LeCan’s Third Lemma, pg. 90 van der Vaart (1998)). Suppose that

(Xn, log
dQn

dPn

)
Pn

 N
((

µ

− 1
2σ

2

)

,

(

Σ τ

τT σ2

))

,

where τ and σ are scalars.3 Then we have that

Xn
Qn

 N (µ+ τ,Σ)

1Where measurable means with respect to the underlying Borel set of Qn, which may change with n.
2Note that by Prohorov’s theorem that

dQn

dPn
has a convergent subsequence so the theorem isn’t vacuous.

3Note that we have that the mean of log
dQn

dPn
must be −

1

2
σ2.

1



2 Change of Measure and Contiguity

This lemma shows that under the alternative distribution Qn, the limiting distribution of the test statistic
Xn is also normal but has a mean shifted by τ = limn→∞ Cov(Xn, log dQn

dPn
).

Proof. Suppose that (X,W ) be the limiting distribution on the RHS of the above. By the continuous
mapping theorem we have that,

(Xn,
dQn

dPn

)
Pn

 (X, eW )

Since we have that W ∼ N (− 1
2σ

2, σ2), we have that Qn ⊳ Pn. We have by theorem 6.4 then, that Xn

converges weakly to L under Qn, where L = E1B(X)eW . We are going to determine the distribution of L
via it’s characteristic function,4

∫

eitT xdL(x) = E
[

eitT X+W
]

= E
[

eitT X+i(−i)W
]

= exp

{

itTµ− 1

2
σ2 − 1

2
(tT ,−i)

(

Σ τ

τT σ2

)(

t

−i

)}

= eitT (µ+τ)− 1
2
tT Σt

⇒ L ∼ N (µ+ τ,Σ)

where the last line is obtained by recognizing the form of the RHS of the previous equation as the charac-
teristic function of the normal distribution.

Example 4 (Asymptotically Linear Statistics). Suppose that Pθ is a family of QMD measures. We are

interested in the asymptotic behavior of
√
n(θ̂n − θ0). We will consider the following setting,

√
n(θ̂n − θ0) =

1√
n

∑

i

ψθ0
(Xi) + oP (1)

where Varθ0
ψθ0

(X) = τ2 < ∞ and Eθ0
ψθ0

= 0. Furthermore, we assume that under H0 (i.e. when θ = θ0),
we have by the CLT that, √

n(θ̂n − θ0)
d−→ N (0, τ2)

Since Pθ is in the QMD family, we have the following expression,
(

√
n(θ̂n − θ0),

dPθ0+
h√
n

dPθ0

)

=

(

1√
n

∑

i

[

ψθ0
(Xi), h

T ℓ̇θ0
(Xi)

]

+

[

0,−1

2
hT Iθ0

h

]

+ oP (1)

)

Using the bivariate CLT, we have that the RHS above converges to a normal distribution where the covariance

between
√
n(θ̂n − θ0) and

dP
θ0+ h√

n

dPθ0

is given by τ = Covθ0
(ψθ0

(X), hT ℓ̇θ0
(X)).

Our next example builds upon the previous one:

Example 5 (T-Statitic for Location Families). Suppose that f(X − θ) is a density for a QMD location
family. We are interested in testing θ0 = 0. We define the t-statitic as,

tn =
√
n
Xn

Sn

=
√
n
Xn

σ
+ oPθ0

(1)

4Which uniquely determines a distribution.
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where the second equality uses a delta method argument. This yields that the t-statistic is an asymptotic
linear statistic as in example 4. We are interested in the behavior of tn under the alternative θh = h√

n
.

Recall that, ℓ̇θ0
= − f ′(x)

f(x) . Using example 4 and the fact that ψθ0
(Xi) = Xi

σ
, we have that

τ = −h
σ

Cov(Xi,
f ′θ0

(Xi)

fθ0
(Xi)

)

= −h
σ

∫

x
f ′

f
df = −h

σ

∫

xf ′dx

=
h

σ
, using integration by part.

We therefore have that under shrinking alternatives, tn

h√
n

 N (h
σ
, 1).

Example 6 (Sign Test for Location Families). We suppose again that f(X−θ) is a density for QMD family
of distributions. We also suppose that f(·) is continuous at the origin and that Pθ=0(X > 0) = 1

2 . We define
the sign statistic,

sn =
1√
n

∑

i

(1X>0 −
1

2
)

We again suppose we are interested in testing whether θ0 = 0. Under the alternative hypothesis θh = h√
n
,

we have

τ = −hCovθ0
(1X>0,

f ′(X)

f(X)
)

= −h
∫ ∞

0

f ′(X)dx = hf(0)

Under the alternative hypothesis, the asymptotic distribution of sn is normal with mean hf(0).
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