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Lecture 15: Asymptotic Testing

Lecturer: Michael I. Jordan Scribe: Dapo Omidiran

Reading: Chapter 7 of van der Vaart (1998).

1 Asymptotic Testing

Setup: We are given:

• A parametric model: Pθ, θ ∈ Θ

• A null hypothesis: θ = θ0

• An alternative hypothesis: θ = θ1

Our test then consists of computing the log likelihood ratio:

λ = log

(∏

i pθ1
(Xi)

∏

i pθ0
(Xi)

)

,

and accepting the alternative hypothesis if λ is sufficiently large.

Example 1. (Normal location model)

Let Pθ = N(θ, σ2), with σ2 known. After some algebra, we see that

λ =
n

σ2
[(θ1 − θ0)X̄n − 1

2
(θ2

1 − θ2
0)].

We can study the distribution under each hypothesis.

Under θ0, we can use the WLLN to conclude:

λ
P−→ − n

σ2

1

2
(θ1 − θ0)

2 → −∞

Notice that this a good thing. Asymptotically, we will never reject the null hypothesis; our test is “consistent”.
However, this is also somewhat vacuous, as almost any reasonable test will give the same result.

We should instead look at the rates at which our test converges. One approach is to use large deviations
(pioneered by Hoeffding in the ’60s?) However, we won’t go that route. Instead, we will “shrink” θ towards
θ0 as n increases (e.g., θ1 = θ0 + h√

n
.)

In some sense, this
√

n behavior is the right shrinkage factor for “regular” data, such as iid data.

This approach was first developed for testing, but is applicable to estimation as well.

So, let’s study shrinking alternatives:

1



2 Lecture 15: Asymptotic Testing

Example 2. (Normal location model revisited)

λ = h
√

n X̄n−θ0

σ2 − h2

2σ2 = hZ̄n − h2

2σ2 (where Zn =
√

n X̄n−θ0

σ2

H0∼ N(0, 1

σ2 ))

Note that this is a quadratic in h. Hence:

λ ∼ N(− h2

2σ2
,
h2

σ2
)

The mean is - 1

2
the variance!

Is this behavior specific to the Normal distribution? Let’s check the exponential family:

Example 3. (Exponential Family)

pθ(x) = exp [θT (x) − A(θ)]

λ = hn− 1

2

∑

i

T (Xi) − n[A(θ0 + hn− 1

2 ) − A(θ0)]

= hn− 1

2

∑

i

T (Xi) − n[A′(θ0)hn− 1

2 +
1

2
A′′(θ0)h

2n−1 + o(n−1)]

= hZn − 1

2
h2A′′(θ0) + o(1)

Where Zn = n
1

2

∑

i T (Xi) − Eθ0
[T (Xi)] (As A′(θ0) = Eθ0

[T (Xi)]).

Asymptotically, the mean is again -1/2 the variance.

How much further can we go?

The key property is quadratic mean differentiability (QMD), essentially a notion of smoothness relevant for
asymptotic statistics.

In particular, we want a smoothness condition. However, we are constrained by the following:

• We want to avoid assuming that derivatives exist for all x (i.e., for each x, a derivative exists at each
value of θ)

• We also want to avoid explicit conditions on higher derivatives.

Solution: We will work with square roots of densities. Classical (Frechet) differentiability of
√

pθ (Again,
note that x is held fixed, and θ is the variable):

√
pθ0+h −√

pθ0
− hT ηθ0

(x) = o(||h||).

To weaken this somewhat stringent condition, we only ask that it hold in the quadratic mean:

Definition 4. QMD

Pθ is QMD at θ0 if
∫
(

√
pθ0+h −√

pθ0
− 1

2
hT ˙̀

θ0

√
pθ0

)2

dµ = o(||h2||)

for some function ˙̀
θ0

.
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Keep in mind that these (pθ0
, pθ, etc) are all functions of x. ˙̀

θ0
is not the derivative of some `θ0

, but is
instead some function.

Why do we define things in this weird way? If classical derivatives do exist:

∂

∂θ

√
pθ =

1

2

√
pθ

∂

∂θ
log pθ.

So we associate ˙̀
θ is the score function, in this case.

Theorem 5 (Theorem 7.2, van der Vaart (1998) p94). If Θ is an open subset of RK and Pθ, θ ∈ Θ is QMD.

Then:

• Pθ
˙̀
θ = 0 (Like score functions),

• and Iθ = Pθ
˙̀
θ
˙̀T
θ exists (Fisher information),

• and λ =

∏

i

pθ+
hn
√

n

(Xi)

∏

i

pθ(Xi)
= 1√

n

∑

i hT ˙̀
θ(Xi) − 1

2
hT Iθh + opθ

(1).

Where hn → h 6= 0. Note that this implies that:

λ
d−→ N(−1

2
hT Iθh, hT Iθh) .

Proof. (Partial Proof) Let

pn = pθ +
hn√

n
,

p = pθ ,

g = hT ˙̀
θ .

By the definition of QMD, it follows that:
∫

(
√

pn −√
p − 1

2
g
√

p)2dµ = o(n−1) ,

=⇒ n1/2(
√

pn −√
p)

QM−→ 1

2
g
√

p ,

=⇒ √
pn

QM−→ √
p .

We recall that
∫

fngn →
∫

fg if fn → f and gn → g.

By continuity of the inner product:

Pg =

∫

gpdµ =

∫

1

2
g
√

p2
√

pdµ = lim
n→∞

∫ √
n(
√

pn −√
p)(

√
pn +

√
p)dµ = 0 .

Define:

Wn,i = 2

(

√

pn(Xi)
√

p(Xi)
− 1

)

We use the fact that log (1 + x) = x − 1

2
x2 + x2R(x) (where R(x) → 0 as x→ 0) to conclude that:
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log
∏

i

pn(Xi)/p(Xi) = 2
∑

i

log(1 +
1

2
Wn,i) =

∑

i

Wn,i −
1

4

∑

i

W 2
n,i +

1

2

∑

i

W 2
i R(Wn,i) .

As:

Ep

(

∑

i

Wn,i

)

= 2n

(
∫ √

pn
√

pdµ − 1

)

= −n

∫

(
√

pn −√
p)2dµ → −

∫

1

4
g2pdµ ,

where Pg2 =
∫

1

4
g2pdµ = hT (

∫

˙̀
θ
˙̀T
θ dP )h = hT Iθh.

Look at the remainder of the proof in van der Vaart (1998).
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