
Stat210B: Theoretical Statistics Lecture Date: February 26, 2008
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Recall from last time the definition of a P-Donsker class.

Definition. A class of functions is called P-Donsker if Gn converges weakly to a tight limit process in l∞(F),
which is a P-Brownian bridge Gp with zero mean and covariance function E(GpfGpg) = Pfg−PfPg. Here
the empirical process Gn is defined as Gn =

√
n(Pn − P ). This means in particular, that for any finite

collection of functions, the elements Gnf converge to a zero mean multivariate Gaussian, with aforementioned
covariance function.

Furthermore, recall Theorem 19.5 stated last time.

Theorem 19.5 (Donsker). Every class F of measurable functions with J[](1,F , L2(P )) < ∞ is P-Donsker.

Here we defined J[](δ,F , L2(P )) =
∫ δ

0

√

log N[](ε,F , L2(P ))dε.

In this lecture we will be concerned mostly with proving the Chaining Lemma, which is instrumental to the
proof of this theorem. Before commencing the presentation, we first illustrate some properties of P-Donsker
classes.

Combining P-Donsker classes

The definition of P-Donsker classes gives rise to an algebra for combining any two P-Donsker classes. In
particular, suppose that f ∈ F and g ∈ G are both P-Donsker. If φ(·, ·) is a Lipschitz transformation, then
φ(f, g) is P-Donsker. Examples of such Lipschitz transformations include: f + g, f ∧ g, f ∨ g, fg if F and G
are uniformly bounded, and 1/f if F is bounded away from zero.

Chaining Lemma

In this lecture we give a thorough treatment of the core of empirical process theory by proving the Chaining
Lemma (lemma 19.34 in van der Vaart). The presentation is based on section 19.6 in van der Vaart (1998).
We begin by stating two relevant lemmas. The first one, Bernstein’s inequality, represents a tightening of the
Hoeffding bound we previously discussed. This strengthening will be required for the following argument.

Lemma 19.32 (Bernstein’s inequality). For one function f and any x > 0,

P (|Gnf | > x) ≤ 2 exp

{

−1

4

x2

Pf2 + x||f ||∞/
√

n

}

. (1)

Note that as in Hoeffding, the upper bound is twice the exponential of some function. Here, the Pf2 term in
the exponential accounts for something like the variance, whereas in Hoeffding there was an upper bound on
the variance through terms

∑

i(bi − ai)
2. An additional term has also been introduced to the denominator.

The next lemma will relate Bernstein’s inequality to finite collections.
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2 The Chaining Lemma

Lemma 19.33. For any finite class F of bounded, measurable and square-integrable functions, with |F|
elements, we have

E(||Gn||F ) . max
f

||f ||∞√
n

log(1 + |F|) + max
f

||f ||P,2

√

log(1 + |F|). (2)

Here, we have adopted the notation . to express that the left hand side is less than the right hand side, up
to a universal multiplicative constant. The proof idea behind this Lemma lies in breaking the left hand side
into two pieces using the triangle inequality, and then applying Bernstein’s inequality to both.

We now turn to the Chaining Lemma. The motivation for this lemma lies in the difficulty of carrying out
an independent analysis of fluctuations for each element f of an uncountably infinite set of functions F . To
get control over the infinite set, we need to tie functions together to a finite number of grid cells. We can
introduce suitable structure on F via a multi-resolution grid. At the coarse top level very few cells partition
F ; at progressively deeper levels each grid cell is partitioned into a set of smaller cells. By choosing one
representative function for each grid cell, the fluctuations between any two functions in F can be related to
fluctuations along edges on the grid tree.

Lemma 19.34 (Chaining Lemma). Define Log x = 1∨ log(x) and a(δ) = δ/
√

Log N[](δ,F , L2(P )). For

any class F of functions f : X → R so that, for some common δ2, Pf2 ≤ δ2,∀f ∈ F , and F an envelope

function,

E(||Gn||F ) . J[](δ,F , L2(P )) +
√

nPF
{

F >
√

na(δ)
}

. (3)

Proof. We begin the proof by focussing on the first term on the right hand side. For |f | ≤ g by the triangle
inequality

|Gf | =
√

n|Pnf − Pf | (4)

≤
√

n(Pn|f | + P |f |) (5)

≤
√

n(Png + Pg). (6)

This implies that for an envelope function F

E
(

||Gnf
{

F >
√

na(δ)
}

||F
)

≤
√

nE
(

PnF
{

F >
√

na(δ)
}

+ PF
{

F >
√

na(δ)
})

(7)

= 2
√

nPF
{

F >
√

na(δ)
}

. (8)

This demonstrates the inequality for the second term on the right hand side. We continue the derivation on
||Gnf {F ≤ √

na(δ)} || and show that it is less than or equal to J[](δ,F , L2(P )). Since the set of remaining
functions we work with has shrunk, it has smaller bracketing number than F . For notational convenience,
continue by assuming that f ≤ √

na(δ),∀f ∈ F . At this point we turn to the multi-resolution structure
on F which we previously noted. Choose an integer q0 such that 4δ ≤ 2−q0 ≤ 8δ. Also choose a nested
sequence of partitions Fqi

of F indexed by integers q ≥ q0; that is, if at level q there are Nq disjoint sets,

then F = ∪Nq

i=1Fqi
. Choose this nested sequence of partitions and measurable functions ∆qi

≤ 2F , so that

∑

q≥q0

2−q
√

Log Nq .

∫ δ

0

√

Log N[](ε,F , L2(P ))dε (9)

supf,g∈Fqi
|f − g| ≤ ∆qi

, P∆2
qi

< 2−2q. (10)

The functions ∆qi
are the difference between upper and lower brackets and act as envelopes.



The Chaining Lemma 3

We continue by choosing a representative function within each cell of each level. Fix for each level q > q0

and each partition Fqi
one representative fqi

and define, if f ∈ Fqi

πqf = fqi
(Nearest neighbor function) (11)

∆qf = ∆qi
. (12)

Here is where F is attributed a finite representation. At scale q, πqf and ∆qf run over Nq functions as f
runs over F . Define

aq = 2−q/
√

Log Nq+1, (13)

Aq−1f = I
{

∆q0
f ≤

√
naq0

, . . . ,∆q−1f ≤
√

naq−1

}

, (14)

Bqf = I
{

∆q0
f ≤

√
naq0

, . . . ,∆q−1f ≤
√

naq−1,∆qf >
√

naq

}

. (15)

Now decompose the difference between any f and the representative πq0
f using the newly defined sets as a

telescoping sum,

f − πq0
f =

∞
∑

q0+1

(f − πqf)Bqf +
∞
∑

q0+1

(πqf − πq−1f)Aq−1f. (16)

We observe that either all of the Bqf are zero1 in which case the Aq−1f are 1 (we always have small
fluctuations). Alternatively, one Bq1

f = 1 for some q1 > q0 (and zero for all other q), in which case Aqf = 1
for q < q1 and Aqf = 0 for q ≥ q1 . In that last case we have a sequence of small fluctuations, followed by
one large fluctuation

f − πq0
f = (f − πq1

f) +

q1
∑

q0+1

(πqf − πq−1f)Aq−1f. (17)

By the construction of partitions and our choice of q0 we have

2a(δ) =
2δ

√

Log N[](δ,F , L2(P ))
(18)

≤ 2−q0

√

Log Nq0+1

(19)

= aq0
. (20)

This implies that ∆q0
f ≤ aq0

√
n and therefore Aq0

f = 1. Furthermore, nesting implies ∆qfBqf ≤
∆q−1fBqf ≤ √

naq−1. The last inequality holds if Bqf = 0 and also if Bqf = 1 by definition. It follows that
since Bqf is an indicator where ∆qf >

√
naq that

√
naqP (∆qfBqf) ≤ P (∆qfBqf)2 = P (∆qf)2Bqf ≤ 2−2q

by the choice of ∆qf . We now apply the empirical process Gn to both series on the right of the equation 16
and use the triangular inequality on the supremum over absolute values. Because |Gnf | ≤ Gng + 2

√
nPg

for |f | < g we get, by applying Lemma 19.33

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

q0+1

Gn(f − πqf)Bqf

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

≤
∞
∑

q0+1

E||Gn∆qfBqf ||F +

∞
∑

q0+1

2
√

n||P∆qfBqf ||F (21)

19.33

.

∞
∑

q0+1

[

aq−1Log Nq + 2−q
√

Log Nq +
4

aq

2−2q

]

. (22)

We note that the third term arises in part from our earlier observation that P (∆qfBqf) ≤ 2−2q/
√

naq.
However, it was unclear in class where the additional factor of 2 stems from. All three terms in the infinite

1There is a typo in van der Vaart (1998) page 287, where the author states that “either all Bqf are 1”.
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sum will become essentially like the middle one, which we know from inequality 9 can be bounded by a
multiple of J[](δ,F , L2(P )). Thus we have bounded one more term.

To establish a similar bound for the second part of equation 16, note that there are at most Nq functions
πqf − πq−1f and at most Nq−1 indicators Aq−1f . Nesting implies |πqf − πq−1f |Aq−1f ≤ ∆q−1fAq−1f ≤√

naq−1. The L2(P ) norm of |πqf − πq−1f | is upper bounded by 2−(q+1). Now using Lemma 19.33 we find
that

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

q0+1

Gn(πqf − πq−1f)Aq−1f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

.

∞
∑

q0+1

[

aq−1Log Nq + 2−q
√

Log Nq

]

. (23)

As before, note that the first and second terms on the right are identical and that each can be bounded by
a multiple of J[](δ,F , L2(P )).

As the final step in this proof we need to establish a bound for terms πq0
f . Note that for the envelope

function F , we have |πq0
f | ≤ F . Also, recall that since early in the derivation we are only considering the

class of functions f {F ≤ √
na(δ)} where f ranges over F , so that F ≤ √

na(δ). Moreover,
√

na(δ) ≤ √
naq0

by a similar argument as in derivation 18-20. Recall also that one of the preconditions of this lemma is that
Pf2 < δ2,∀f ∈ F , so that in particular P (πq0

f)2 ≤ δ2. Applying Lemma 19.33 again, we find that

E||Gnπq0
f ||F . aq0

Log Nq0
+ δ

√

Log Nq0
. (24)

By the choice of q0 at the onset and inequality 9, both terms can be bounded by a multiple of J[](δ,F , L2(P )).

This concludes the proof of Lemma 19.34. We summarise briefly. The proof was carried out by using an
envelope function F to split the function space F into two sets. In inequality 8 we quickly saw that one set
gives rise to one of the terms in the final result. We then defined a multi-resolution tree on the remaining
subset of F so that we could consider fluctuations via suitably defined events Aq−1f and Bqf . In the
following we repeatedly applied Lemma 19.33 to yield inequalities 22, 23, and 24, each of which can be upper
bounded by a multiple of J[](δ,F , L2(P )). In the final result, these three parts are represented by one copy
of J[](δ,F , L2(P )).
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