1 Asymptotic Relative Efficiency

We will be working in the context of hypothesis testing where we have

null hypothesis H_0: $\theta \in \Theta_0$

alternative H_1: $\theta \in \Theta_1$

and $\Theta_0 \cup \Theta_1$ is typically exhaustive and non-overlapping.

We will denote the critical region by K_n and the power function is $\pi_n(\theta) = P(\theta \in K_n)$ where T_n is our test statistic. The size of the test is $\sup\{\pi_n(\theta) : \theta \in \Theta_0\}$. A test is of level α if its size is $\leq \alpha$.

A test is asymptotically of size α if

$$\limsup_{n \to \infty} \sup_{\theta \in \Theta_0} \pi_n(\theta) \leq \alpha$$

We will look at the limiting power function of shrinking alternatives

$$\pi(h) = \lim_n \pi_n(h/\sqrt{n})$$

Theorem 1. Theorem 14.7 in (?; p. 195). Assume without loss of generality that $\theta_0 = 0$ and therefore that our shrinking set of alternatives is $\theta_n = h/\sqrt{n}$. Also assume that

$$\sqrt{n} T_n - \mu(\theta_n) / \sigma(\theta_n) \overset{d}{\to} N(0, 1)$$

for some μ and σ where μ is differentiable at 0 and σ is continuous at 0. Then the tests that reject for large values of T_n and are asymptotically of level α have power functions that satisfy

$$\pi_n(h/\sqrt{n}) \to 1 - \Phi(z_\alpha - h\mu'(0)/\sigma(0))$$

where $\mu'(0)/\sigma(0)$ is called the slope (or efficiency) of the test.

Proof.

$$\pi_n(h/\sqrt{n}) \triangleq P_{\theta_n}(\sqrt{n} (T_n - \mu(0)) > z_\alpha \sigma(0)) = P_{\theta_n}(\sqrt{n} (T_n - \mu(h/\sqrt{n})) > z_\alpha \sigma(0) - \sqrt{n}(\mu(h/\sqrt{n}) - \mu(0)))$$

$$\to 1 - \Phi(z_\alpha - h\mu'(0)/\sigma(0))$$

where we have arrived at the last line since

$$\frac{\mu(h/\sqrt{n}) - \mu(0)}{h/\sqrt{n}} \to \mu'(0)$$

and by continuity of σ, we have $\sigma(\theta_n) \to \sigma(0)$.

\[\square\]
Definition 2 (Asymptotic relative efficiency). The Asymptotic Relative Efficiency (ARE) is the ratio of the squares of slopes between two statistics.

Example 3 (Sign test). This example is from Van der Vaart, but presents a different derivation than is found in the book.

- Let \(X_1, X_2, \ldots, X_n \) be i.i.d. from a symmetric density \(f(x - \theta) \).
- Let our test statistic be \(S_n = \frac{1}{n} \sum_1^n 1_{X_i > 0} \).
- At \(\theta = 0 \), this is the sum of Bernoulli variables with probability \(1/2 \), so \(\sigma^2(0) = 1/4 \).

Remember that location families are qmd (as mentioned in lecture on 3/8) and that for qmd families, \(P_{\theta+h/\sqrt{n}} \prec P_\theta \) (see example 14 from the 3/13 lecture notes). Also, for location families, \(\hat{\ell}_0 = -f'(x)/f(x) \).

By contiguity, to get the distribution of the statistics under \(P_{\theta_n} \), compute \(\tau_{12} \). To compute \(\tau_{12} \), we note that this statistic is an (asymptotically) linear statistic, so by the results from example 4 from the 3/15 lecture notes), \(\tau_{12} \) is equal to

\[
\tau_{12} = \text{Cov}_0(1_{X > 0}, h^\top \hat{\ell}_0(X)) = -h \int 1_{x > 0} \frac{f'(x)}{f(x)} f(x) dx = -h \int_0^\infty f'(x) dx = hf(0)
\]

Therefore the slope of the sign test is \(2f(0) \). It is good to have larger slopes, so this test will be better if there is a lot of mass around the origin.

Example 4 (t-test). In example 5 from the 3/15 lecture notes, we showed that for the t-statistic, \(\tau_{12} = h/\sigma \) and the variance under the null is 1, so the slope of the t-statistic is

\[
\frac{1}{(\int x^2 f(x) dx)^{1/2}}
\]

Therefore, we compute that the ARE of the sign test vs. the t-test is \(4f^2(0) \int x^2 f(x) dx \). If this is > 1, then the sign test is better; if it is < 1, the t-test is better. We compute the AREs as

<table>
<thead>
<tr>
<th>f distribution</th>
<th>ARE(sign, t)</th>
<th>t-test better?</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistic</td>
<td>(\pi^2/12)</td>
<td>yes</td>
</tr>
<tr>
<td>normal</td>
<td>(2/\pi)</td>
<td>yes</td>
</tr>
<tr>
<td>Laplace</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>uniform</td>
<td>1/3</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note: Why do we square the slopes in the ARE ratio? This leads to ARE(A,B) being the number of points for A to be competitive with B. We will return to this later.

It turns out that above, we can show that \(1/3 \) is a lower bound on the ARE using calculus of variations. Therefore, the uniform is the worst case for the sign test compared to the t-test.

Example 5 (2 sample tests for shift of location of \(f(x - \theta) \) under the null \(\theta = 0 \) vs. \(\theta > 0 \)). The Mann-Whitney test for \(m \) and \(n \) samples respectively of \(x_i \) and \(y_j \) rejects if

\[
\frac{1}{mn} \sum_i \sum_j 1_{x_i \leq y_j}
\]
is large. We will compare this to the two sample t-test. The Mann-Whitney statistic is a U-statistic, so we have a formula for computing its variance (or use contiguity) to get that the slope is \(\int f dF / \sigma(0) \). Looking up the slope of the two-sample t-test, the ARE between the Mann-Whitney test and the t-test is
\[
12 \text{Var}(X) \int f^2(y) dy
\]
This gives the chart

<table>
<thead>
<tr>
<th>f distribution</th>
<th>ARE(M-W, t)</th>
<th>t-test better?</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistic</td>
<td>4/9</td>
<td>no</td>
</tr>
<tr>
<td>normal</td>
<td>3/2π</td>
<td>yes</td>
</tr>
<tr>
<td>Laplace</td>
<td>3/2</td>
<td>no</td>
</tr>
<tr>
<td>uniform</td>
<td>1</td>
<td>equivalent</td>
</tr>
<tr>
<td>(t_{3-\text{dof}})</td>
<td>1.24</td>
<td>no</td>
</tr>
<tr>
<td>(t_{3-\text{dof}})</td>
<td>1.9</td>
<td>no</td>
</tr>
<tr>
<td>(c(1 - x^2) \vee 0)</td>
<td>108/125</td>
<td>yes</td>
</tr>
</tbody>
</table>

Again, it can be shown using calculus of variations that 108/125 is the worst that the ARE can be, so the Mann-Whitney test can never be that much worse than the t-test, but it can be much better. The above two tables support our intuition that the sign test can lose a decent amount of information since it throws out a lot of information, but rank tests don’t throw out as much, so they are competitive.

2 Interpreting the ARE

As mentioned above, the ARE is the number of points needed to achieve the same power between two tests. Let \(\theta_\nu \) be an alternative sequence where \(\nu \to \infty \) where \(\nu \) is the rate of gathering data. Define \(n_\nu \) to be the minimal number of observations such that \(\pi(n_\nu, \theta_0) \leq \alpha \) (since \(\theta = 0 \) is the null and the power at the null = the type-1 error rate, which we want to be \(\leq \alpha \)) and \(\pi(n_\nu, \theta_\nu) \geq \gamma \) for some \(\gamma \in (\alpha, 1) \). Do this for two tests, yielding \(n_{\nu,1} \) and \(n_{\nu,2} \) for tests 1 and 2, respectively.

Definition 6 (Pitman efficiency). The Pitman efficiency is defined as

\[
\lim_{\nu \to \infty} \frac{n_{\nu,2}}{n_{\nu,1}}
\]

Theorem 7. Theorem 14.19 in (? p. 201). Assume we are dealing with models \(\{P_{n,\theta} : \theta \geq 0\} \). Also assume that \(\theta > 0 \) and the total variation distance \(\|P_{n,\theta} - P_{n,0}\| \to 0 \) as \(\theta \downarrow 0 \). Let \(T_{n,1} \) and \(T_{n,2} \) be two statistics that satisfy

\[
\sqrt{n} \frac{T_{n,i} - \mu_i(\theta_n)}{\sigma_i(\theta_n)} \overset{\theta_n}{\to} N(0, 1)
\]

for \(\theta_n \downarrow 0 \), \(\mu_i'(0) > 0 \), \(\sigma_i(0) > 0 \), and \(\sigma_i \) continuous at 0. Then we have that the Pitman efficiency is equal to the ARE, i.e.

\[
\lim_{\nu \to \infty} \frac{n_{\nu,2}}{n_{\nu,1}} = \left(\frac{\mu_1'(0)/\sigma_1(0)}{\mu_2'(0)/\sigma_2(0)} \right)^2
\]

This is true for any \(\theta_n \downarrow 0 \) independent of \(\alpha \) and \(\gamma \).

Proof. First, we need to show that \(n_{\nu,i} \to \infty \) for both \(i \). This proof is given in the book (it arises from the assumption that the variation distance goes to zero). Since \(n_{\nu,i} \to \infty \), we can use the assumption of asymptotic normality of \(T_{n,i} \) to define tests of level \(\alpha \); we reject when

\[
\sqrt{n_{\nu,i}}(T_{n,i} - \mu_i(0)) > \sigma_i(0) z_\alpha + o(1)
\]
Then the power of this test is
\[\pi_{n_{\nu,i}}(\theta_{\nu}) = 1 - \Phi \left(z_\alpha + o(1) - \sqrt{n_{\nu,i}} \mu'_i(0)/\sigma_i(0)(1 + o(1)) \right) + o(1) \]

where we have used the same derivative trick to get \(\mu'_i(0) \) as before. This tends to level \(\gamma < 1 \) iff the arguments of \(\Phi \) tends to \(z_\gamma \). Therefore
\[
\lim_{\nu \to \infty} \frac{n_{\nu,2}}{n_{\nu,1}^2} = \lim_{\nu \to \infty} \frac{n_{\nu,2} \theta_\nu^2}{n_{\nu,1} \theta_\nu^2} \\
= \frac{(z_\alpha - z_\gamma)^2}{(\mu'_2(0)/\sigma_2(0))^2} \frac{(z_\alpha - z_\gamma)^2}{(\mu'_1(0)/\sigma_1(0))^2} \\
= \frac{(\mu'_1(0)/\sigma_1(0))^2}{(\mu'_2(0)/\sigma_2(0))^2} = \text{the ratio of the square of the slopes}
\]

This has all been for 1-D cases. It gets harder in higher dimensional spaces. See the text for a flavor of higher dimensions.