Random graphs

- How many edges are needed to make a random graph on \(n \) nodes connected?

First, we need to define precisely what we mean by a “random graph.”

Experiment 1:

\[
\text{start with } n \text{ vertices } V = \{1, 2, \ldots, n\} \text{ and } E = \emptyset
\]

\[
\text{do } m \text{ times}
\]

- select an edge \(e = \{i, j\} \notin E \) uniformly at random
- add \(e \) to \(E \)

output \(G = (V, E) \)

Sample space: all \(\binom{n}{2} \) labeled graphs \(G \) with \(n \) vertices and \(m \) edges, each equally likely

Ex: Enumerate the entire sample space for \(n = 4, m = 3 \). □

Let \(G \) be a random graph (sample point) as above; we want to find the smallest value of \(m \) s.t. \(\Pr[G \text{ is connected}] \) is close to 1.

Actually, it is much easier to answer a similar question for a slightly different sample space: then we'll translate the answer to the above sample space.

Experiment 2:

\[
\text{start with } n \text{ vertices } V = \{1, 2, \ldots, n\} \text{ and } E = \emptyset
\]

\[
\text{do until } G = (V, E) \text{ is connected}
\]

- select an edge \(e = \{i, j\} \notin E \) uniformly at random
- add \(e \) to \(E \)

output \(G = (V, E) \)

Sample space: all connected graphs \(G \) obtained from the above experiment, with probabilities ???

Ex: Enumerate the entire sample space (including the probabilities) for \(n = 4 \). □

We are interested in the random variable \(X = |E| \), i.e., the number of edges in the graph \(G \) at the end of the experiment. Let’s compute \(\mathbb{E}(X) \).

Idea: let \(X_k \) = number of edges added to reduce number of components from \(k \) to \(k - 1 \).

Then \(X = \sum_{k=2}^{n} X_k \) and \(\mathbb{E}(X) = \sum_{k=2}^{n} \mathbb{E}(X_k) \).

What does \(X_k \) look like?

Well, \(X_n = 1 \) always (with probability 1) — why?

And \(X_{n-1} = 1 \) with probability 1 — why?

The distribution of \(X_{n-2} \) depends on the first two edges (why?); but presumably its expectation is not much bigger than 1 (again, why?)

Similarly, for \(k < n - 2 \), the distributions of the \(X_k \) become rather complicated, but maybe we can compute an upper bound on \(\mathbb{E}(X_k) \).
Claim: For all k, we have $E(X_k) \leq \frac{n-1}{k-1}$.

Proof: Suppose G has exactly $k > 1$ components. Consider any vertex i. Our experiment is equally likely to pick any of the edges $\{i,j\}$ that is not in E. There are at most $n-1$ such edges, of course. How many of them reduce the number of components? Well, at least $k-1$ (why?). Therefore, the probability that any such edge reduces the number of components is at least $\frac{k-1}{n-1}$. Since this holds for every vertex i, it holds in general. But now we see that $X_k \leq Y_k$, where $Y_k = \# \text{ coin flips up to and including first head for a coin with } \Pr[\text{heads}] = p = \frac{k-1}{n-1}$. And by qun. 2(a) of HW2, we know that $E(Y_k) = \frac{1}{p} = \frac{n-1}{k-1}$. Hence $E(X_k) \leq \frac{n-1}{k-1}$. □

Now we are done:

$$E(X) = \sum_{k=2}^{n} E(X_k) \leq (n-1) \left\{ 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} \right\} \sim (n-1)(\ln(n-1) + 1).$$

So the expected number of edges at the end of Experiment 2 is at most $(n-1)(\ln(n-1) + 1)$ as $n \to \infty$.

Note: This is only an upper bound on $E(X)$. The exact answer (which requires more effort) is $E(X) \sim \frac{n}{2} \ln n$. So we are off by only a factor of 2.

Ex: In the above proof, we said that $X_k \leq Y_k$. What does this mean, in view of the fact that X_k and Y_k are not numbers but random variables (over different sample spaces)? What it means, precisely, is that $\Pr[X_k \geq z] \leq \Pr[Y_k \geq z]$ for all z. Think about this statement, and convince yourself that it holds for the X_k and Y_k in the above proof. Also, show that $X_k \leq Y_k$ implies that $E(X_k) \leq E(Y_k)$, as we used in the proof. □

We’ve seen that the expected number of edges required to make the graph connected is at most $M(n) = (n-1)(\ln(n-1) + 1)$. What’s the probability that we need much more than this? We can get a bound on this probability using Markov’s inequality:

Theorem [Markov’s Inequality]: Let X be a r.v. taking non-negative values, and let $\mu = E(X)$. Then

$$\Pr[X \geq c\mu] \leq \frac{1}{c} \quad \text{for any } c \geq 1.$$

Proof:

$$\mu = E(X) = \sum_k \Pr[X = k] \cdot k \geq \sum_{k \geq c\mu} \Pr[X = k] \cdot k \geq c\mu \sum_{k \geq c\mu} \Pr[X = k] = c\mu \Pr[X \geq c\mu].$$

Therefore, $\Pr[X \geq c\mu] \leq \frac{1}{c}$. □

Ex: The above proof isn’t formally valid when $\mu = 0$, since in the last step we cancel μ. Is the theorem still true when $\mu = 0$? □

Ex: Give a simple counterexample which shows that Markov’s inequality is definitely false if we drop the assumption that X is non-negative. □

Applying Markov’s inequality to our r.v. X, we get

$$\Pr[X \geq cM(n)] \leq \frac{1}{c} \quad \text{for any } c \geq 1. \quad (*)$$

2
So, for example, if we add $10M(n)$ edges, the probability that G is connected is at least $\frac{9}{10}$.

This will help us to analyze Experiment 1. First, suppose we modify Experiment 2 slightly so that, if G becomes connected before m edges have been added, we still continue to add random edges until G has exactly m edges. View each point of the sample space of this modified Experiment 2 as $G = G' + G''$, where G' is the graph consisting of the first m edges and G'' is the remainder. (Note that G'' will be empty if G' is connected.) Then it should be clear that

$$\Pr[X \leq m] = \Pr[G'$ is connected'].
$$

What is the relationship with Experiment 1? Well, if you think about it you should see that the sample space of graphs G' is exactly the same as the sample space of Experiment 1 (why?). So we get

$$\Pr_1[G$ is connected$] = \Pr_2[G'$ is connected$] = \Pr_2[X \leq m],$$

where \Pr_1 and \Pr_2 denote probabilities in Experiments 1 and 2 respectively. Now, putting $m = cM(n)$ in Experiment 1, we get from (*) that

$$\Pr_1[G$ is connected$] = \Pr_2[X \leq cM(n)] \geq 1 - \frac{1}{\varepsilon},$$

which gives a good answer to our original question about Experiment 1; i.e., a random graph with n vertices and $m = c(n - 1)(\ln(n - 1) + \gamma)$ edges is connected with probability at least $1 - \frac{1}{\varepsilon}$.

A randomized algorithm for a graph problem

Let $G = (V, E)$ be an undirected graph. A **cut** in G is a set of edges whose removal separates G into two (or more) components.

The problem **MinCut** involves finding a cut in G with the minimum number of edges.

Here is a very simple randomized algorithm (due to Karger) for **MinCut**:

```plaintext
while $G$ has more than two vertices do
    pick an edge $e = (u, v)$ u.a.r.
    contract $e$
output the remaining edges
```

The operation “contract e” means that the endpoints, u and v, of e are merged into a single vertex, retaining all their connections to other vertices. More precisely, we retain all multiple edges that are created, but eliminate all self-loops.

Since the number of vertices decreases by 1 each time, there will be exactly $n - 2$ iterations, where n is the number of vertices in G. So the algorithm runs in $O(n^2)$ time. (Check this.) But does it work???

First, note that the algorithm always outputs a valid cut in G. (Why?) We need to analyze the probability that it outputs a **minimum** cut.

Let’s focus on a particular minimum cut, which we’ll call \mathcal{C}. We’ll look at the probability that \mathcal{C} survives throughout the repeated contraction process of the algorithm.

Let E_i be the event that \mathcal{C} survives iteration i. We want to compute $\Pr[E_1 \land E_2 \land \ldots \land E_{n-2}]$.

Using the fact that \(\Pr[E \land F] = \Pr[F] \Pr[E|F] \), we can write this as

\[
\Pr[\bigwedge_{i=1}^{n-2} E_i] = \Pr[E_1] \times \Pr[E_2|E_1] \times \Pr[E_3|E_1 \land E_2] \times \cdots \times \Pr[E_{n-2}|\bigwedge_{j=1}^{n-3} E_j].
\] (†)

What is \(\Pr[E_1] \), the probability that \(\mathcal{C} \) survives the first iteration?

Well, let the number of edges in \(\mathcal{C} \) be \(k \). Then every vertex in \(G \) must have degree\(^1\) at least \(k \) (why?). So \(G \) must have at least \(\frac{k n}{2} \) edges.

Therefore, \(\Pr[E_1] \geq 1 - \frac{k}{(kn/2)} = 1 - \frac{2}{n} = \frac{n-2}{n}. \) (Why?)

Now let’s look at \(\Pr[E_2|E_1] \), the probability that \(\mathcal{C} \) survives the second iteration given that it survived the first.

By the same argument as above, \(G \) must now have at least \(\frac{k(n-1)}{2} \) edges.

So \(\Pr[E_2|E_1] \geq 1 - \frac{k}{(kn-1)/2} = 1 - \frac{2}{n-1} = \frac{n-3}{n-1}. \)

In similar fashion, we can show for each \(i \) that

\[
\Pr[E_i|\bigwedge_{j=1}^{i-1} E_j] \geq 1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}.
\]

Plugging this into (†) gives

\[
\Pr[\bigwedge_{i=1}^{n-2} E_i] \geq \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \cdots \times \frac{2}{n+1} = \frac{2^{n-2}}{n(n-1)}.
\]

So, our algorithm discovers the minimum cut \(\mathcal{C} \) with probability at least \(\frac{2}{n^2} \).

Ex: If there were many — say, \(m \) — minimum cuts, show that this probability would improve to \(\frac{2m}{n^2} \). \(\Box \)

The observation in this exercise isn’t much use, however, since in general we can’t assume that \(G \) will have more than a single minimum cut. So the best lower bound we have on the success probability of the algorithm is about \(\frac{2}{n^2} \).

Disappointing?

Not really: suppose we perform \(t \) independent trials of the algorithm, and choose the smallest cut we find. What is the probability that we fail to discover \(\mathcal{C} \) on all \(t \) attempts?

Clearly, this prob. is at most \((1 - \frac{2}{n^2})^t \). (Why?)

So if we take \(t = cn^2 \), with \(c \) a constant, the prob. is at most \((1 - \frac{2}{n^2})^c n^2 \leq e^{-2c} \).

So, to make the probability that the algorithm fails as small as (say) \(e^{-14} \approx 10^{-6} \), it is enough to perform only \(7n^2 \) repetitions.

Ex: The above proof shows that \(G \) can have at most \(\frac{n(n-1)}{2} \) different minimum cuts. Why? \(\Box \)

Ex: Suppose that Karger’s algorithm is applied to a tree \(G \). Show that it finds a minimum cut with probability 1. \(\Box \)

Ex: Suppose we modify the algorithm so that, instead of choosing an edge u.a.r. and merging its endpoints, it chooses two vertices u.a.r. and merges them. Find a family of graphs \(G_n \) (where \(G_n \) has \(n \) vertices for each \(n \)) such that, when the modified algorithm is applied to \(G_n \), the probability that it finds a minimum cut is \emph{exponentially} small in \(n \). How many times would you have to repeat this algorithm to have a reasonable chance of finding a minimum cut? \(\Box \)

\(^1\)The degree of a vertex is the number of neighbors it has.